Colloquium Topics in SS 2025

Colloquium Topics in SS 2025

ó $a->name - $a->date
Number of replies: 18

In this thread all special talks in our CogSys colloq will be announced.

In reply to Felix Haase

Re: Colloquium Topics in SS 2025

ó $a->name - $a->date

Vortrag von: Corbinian Weithmann
Titel: Erklärbare Fehlerklassifikation in der bildbasierten industriellen Qualitätskontrolle
Zeit: 11.04.2025 - 15:00 - 16:00
Ort: WE5/05.013 und Teams (wegen Vertraulicher Information nur Audioübertragung)
Abstract folgt


Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 393 811 156 024

Kennung: CL6pv9QD

In reply to Felix Haase

Re: MA Verteidigung Corbinian Weithmann - Update mit Abstract

ó $a->name - $a->date

Vortrag von: Corbinian Weithmann
Titel: Erklärbare Fehlerklassifikation in der bildbasierten industriellen Qualitätskontrolle
Zeit: 11.04.2025 - 15:00 - 16:00
Ort: WE5/05.013 und Teams (wegen Vertraulicher Information nur Audioübertragung)
Abstract:
In der Abteilung EA-343 der BMW Group wird eine Künstliche Intelligenz (KI) zur Fehlerdetektion bei der Entwicklung von Elektromotor-Komponenten eingeführt. Als Pilotkomponente wird der Stator verwendet, um die automatisierte Erkennung von Produktionsfehlern durch ein Convolutional Neural Network (CNN) zu testen.
Ziel ist die zuverlässige Identifikation von Fehlern, wie Blasen oder Risse, die manuell schwer zu erkennen sind. In einem zweistufigen Prozess entscheidet das CNN-Modell zunächst, ob ein Fehler vorliegt. Methoden der erklärbaren KI (xAI) werden verwendet, um die Vertrauenswürdigkeit und Qualität der Ergebnisse zu verbessern.
Erwartet wird, dass Ingenieure durch die automatisierte Fehlererkennung frühzeitig fundierte Entscheidungen treffen können, um Design und Prozesse zu optimieren.

Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 393 811 156 024

Kennung: CL6pv9QD

In reply to Felix Haase

Colloquium - External Presentation by Adni Islami

ó $a->name - $a->date

Presentation by: Adni Islami (University of Prishtina, Kosovo)
Title: Developing a Green Infrastructure Database for Prishtina: Insights from Research Experience in Würzburg
Time&Date: 14.05.2025 - 16:00 - 17:00
Location: WE5/05.013 and Teams
Abstract:
This presentation will focus on my current research work in Würzburg, which represents the first practical step within a broader project aimed at developing a green infrastructure database for the city of Prishtina. The overall goal of the project, funded by DBU, is to support the creation of a comprehensive tree cadastre to improve urban green space planning and management in Prishtina.
During my stay in Würzburg, I am working with local cadastral data on individual trees and exploring its structure in comparison with the publicly available dataset from the Bavarian open geodata portal. The aim is to understand how well-structured and accessible data systems function in practice, and how such models can inform and inspire the future development of tree data management in Prishtina.

Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

In reply to Felix Haase

MA Verteidigung Mai Anh Selina Vu - Integrating Large Language Models into Intelligent Tutoring Systems for Basic Arithmetic to Generate Text Exercises and Tailored Feedback

ó $a->name - $a->date

Vortrag von: Mai Anh Selina Vu
Titel: Integrating Large Language Models into Intelligent Tutoring Systems for Basic Arithmetic to Generate Text Exercises and Tailored Feedback
Zeit: 11.06.2025 - 16:00 - 17:00
Ort: WE5/05.013 und Teams
Abstract:

This thesis investigates the integration of large language models (LLMs) into intelligent tutoring systems (ITS), with the goal of generating diverse and pedagogically meaningful subtraction-based text exercises for primary school students. Building on the existing ITS Subkraki – which previously relied on static, template-based exercises – the project introduces a dynamic content generation approach supported by a locally hosted LLM. Following a requirements-driven planning phase, the prototyping stage revealed key challenges, including long generation times and inconsistencies in the generated output, especially when using mid-sized models due to hardware constraints. To address these limitations, the system architecture was extended with a validation layer in form of an additional educator-facing frontend. This allows educators to generate, manually add, review, and correct exercises before they are made available to students, ensuring quality and reliability. The final implementation was evaluated against the previously defined requirements. Although the fully automated generation of consistently correct exercises that meet all set criteria is not yet feasible, the results demonstrate that LLMs can significantly enhance educational tools when combined with a human-in-the-loop workflow. Overall, the thesis provides a scalable and adaptable architecture that addresses the research question of how LLMs can be utilized to generate text exercises for ITS, while also managing challenges related to exercise difficulty, analogy selection, and prompt design within the constraints of the local deployment.


Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

In reply to Felix Haase

MA Verteidigung Philippe Crackau - Examining Image Classifier Decisions Through the Lense of Probabilistic Relational Explanations – Extending the CoReX Framework by Probabilistic Logic Programming

ó $a->name - $a->date

Vortrag von: Philippe Crackau
Titel: Examining Image Classifier Decisions Through the Lense of Probabilistic Relational Explanations – Extending the CoReX Framework by Probabilistic Logic Programming
Zeit: 11.06.2025 - 13:00 - 14:00
Ort: WE5/05.013 und Teams
Abstract:

Explainability and human interpretability are relevant topics of research due to
the ubiquity of AI systems in various fields through the rise of Deep Neural Net-
works and the growing awareness of their shortcomings. The CoReX-framework
is one such system, which uses Prolog to learn human readable First-order logic
rules from features informing the NNs decision-making.

In this thesis, the current Prolog-explainer Aleph will be replaced with a prob-
abilistic inductive logic programming extension in Prolog by Riguzzi et al. in
order to gain an additional layer of information by weighting the certainty of
the classification.

 

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 383 659 694 423 3

Kennung: Mv68nY9K

In reply to Felix Haase

MA Verteidigung Sonja Ruschhaupt - An Intelligent Tutoring System for Primary-Level Tree Identification by Alignment and Socratic Dialogue

ó $a->name - $a->date

Vortrag von: Sonja Ruschhaupt 
Titel: An Intelligent Tutoring System for Primary-Level Tree Identification by Alignment and Socratic Dialogue
Zeit: 28.07.2025 - 09:00 - 10:00
Ort: WE5/05.013 und Teams
Abstract folgt


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 392 396 124 216 2

Kennung: qd2Np2Tc

In reply to Felix Haase

Re: MA Verteidigung Sonja Ruschhaupt - An Intelligent Tutoring System for Primary-Level Tree Identification by Alignment and Socratic Dialogue

ó $a->name - $a->date

Vortrag von: Sonja Ruschhaupt 
Titel: An Intelligent Tutoring System for Primary-Level Tree Identification by Alignment and Socratic Dialogue
Zeit: 28.07.2025 - 09:00 - 10:00
Ort: WE5/05.013 und Teams
Abstract:

German primary teachers are overwhelmed with heterogeneity in classrooms leading to students not receiving the individual attention they require. Intelligent Tutoring Systems (ITSs) can relieve both teachers and students by providing feedback-rich independent learning opportunities to students, thus freeing up time for teachers for individual mentoring.  This thesis introduces WaldSchwein, an ITS for teaching primary school students the identification and attribute description of trees. To do so, WaldSchwein conducts a socratic dialogue by dynamically adjusting tasks and responses to the student’s input. Contrasting images are provided to help the student align differences between classes upon incorrect classification. Additionally, a heuristic based on Laplace’s Rule of Succession (LRoS) for selecting the next classification problem presented to the student is developed as an alternative to Knowledge Tracing (KT) in the case of insufficient statistical data about tasks. The heuristic is tested using different prototype students. WaldSchwein’s usability was evaluated by experts in the fields of ITS and biology education. While the heuristic outperformed a random and ordered round-robin heuristic, its application to this particular teaching problem is likely unsuitable as breaks between sessions and outside influence muddy results. The usability study found that WaldSchwein was largely seen as a useful teaching device. In particular the use of contrasting images and abstraction found approval. The layout was said to need some improvement as in some task views information mapping from text to image was seen as too complicated. Overall, once the layout has been adjusted, WaldSchwein is ready for real student testing.


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 392 396 124 216 2

Kennung: qd2Np2Tc

In reply to Felix Haase

MA Verteidigung Christoph Ubald Stößel - Ein multimodales interaktives Lehr-Lern-System zur Vermittlung von KI-Kompetenzen für KMUs

ó $a->name - $a->date

Vortrag von: Christoph Ubald Stößel 
Titel: Ein multimodales interaktives Lehr-Lern-System zur Vermittlung von KI-Kompetenzen für KMUs
Zeit31.07.2025 - 09:00 - 10:00
Ort: WE5/05.013 und Teams
Abstract:

Small and medium-sized enterprises (SMEs) represent a central business segment and play a crucial role for the German economy. Nevertheless, the increasingly important topic of artificial intelligence (AI) remains underrepresented by most SMEs, primarily due to a lack of necessary skills. This can be attributed to various inhibiting factors, one of which is the lack of access to information materials addressing the needs of the target group. As part of this study, a multimodal interactive tutor system was developed, to inform SME employees about AI and its practical applications, while also aiming to build relevant competencies. The content is tailored to the target group based on learning theories from adult education and multimedia learning. Furthermore, special emphasis is placed on ensuring a high level of usability. The development followed a design-based research approach, encompassing the phases of requirements analysis, implementation and evaluation. The system’s usability was evaluated using the System Usability Scale (SUS). Additional insights into content design were gained through qualitative supplementary questions. The results indicate that the system positively influences user perception, thanks to its wide range of interactive features and clear visual design. Moreover, the evaluation results offer valuable insights for potential improvements in a subsequent iteration of the system.


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 334 724 880 415 0

Kennung: qv97Uf75 

In reply to Felix Haase

MA Zwischenpräsentation Amir Ebrahimi Moghaddam - Revising CNN Models via Augmented Near Hits and Near Misses in Binary Image Classification

ó $a->name - $a->date

Vortrag von: Amir Ebrahimi Moghaddam 
Titel: Revising CNN Models via Augmented Near Hits and Near Misses in Binary Image Classification
Zeit: 30.07.2025 - 16:00 - 17:00
Ort: WE5/05.013 und Teams
Abstract:

In this thesis, we propose a method for revising a baseline CNN model by augmenting images selected through Near Hits and Near Misses (NHMs) found in its misclassified predictions. Unlike traditional random augmentation, our approach aims to target the decision boundary and support more meaningful  model improvements. We experiment with different strategies for selecting misclassified images: randomly or based on low-confidence predictions close to the decision boundary. These misclassified  samples are then used to find NHMs( visually or semantically similar examples) which are augmented and added back into training. We compare the effects of NHM-based augmentation with random selection, measuring improvements in accuracy and generalization. Key challenges include ensuring diversity in augmentation, choosing the right model capacity, and determining how misclassified sample selection affects NHM quality. Our results aim to reveal whether model uncertainty and semantic similarity can guide more effective and interpretable model revisions.


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

In reply to Felix Haase

MA Verteidigung Kemal Tanirak - "Leben in Deutschland" als Serious Game

ó $a->name - $a->date

Vortrag von: Kemal Tanirak
Titel: "Leben in Deutschland" als Serious Game: Vermittlung von deklarativem Wissen durch ein dialogbasiertes System auf Basis eines LLMs (MA CitH)
Zeit: 09.09.2025 - 14:00 - 15:00
Ort: WE5/05.005 und Teams
Abstract folgt


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 344 663 060 513 1

Kennung: Yo7Qa7MW

In reply to Felix Haase

MA Verteidigung Max Brombach - Automated Test Case Generation for Bug Detection in Python Programs Using Large Language Models

ó $a->name - $a->date

Vortrag von: Max Brombach
Titel: Automated Test Case Generation for Bug Detection in Python Programs Using Large Language Models: A Comparative Study of End-to-End and Systematic Test Case Generation
Zeit: 27.08.2025 - 12:00 - 13:00
Ort: WE5/05.005 und Teams
Abstract folgt


Information to participate via Teams:

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 340 579 583 586 4

Kennung: 8aQ3Fp9V

In reply to Felix Haase

MA Verteidigung Eva Jansohn - An Intelligent Tutoring System for Solving Multiplication Word Problems with Error-specific Feedback by Analogical Worked-out Examples

ó $a->name - $a->date

Vortrag von: Eva Jansohn
Titel: An Intelligent Tutoring System for Solving Multiplication Word Problems with Error-specific Feedback by Analogical Worked-out Examples
Zeit: 24.09.2025 - 16:00 - 17:00
Ort: WE5/05.005 und Teams
Abstract folgt

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

In reply to Felix Haase

Probevorträge zur KI Konferenz 2025 zu kontrastiven Erklärungen

ó $a->name - $a->date

Vortrag: Yuliia Kaidashova
Titel: Toward Short and Robust Contrastive Explanations for Image Classification by Leveraging Instance Similarity and Concept Relevance

Vortrag: Luisa Schneider
Titel: Re-Evaluating the Robustness and Interpretability of the Contrastive Explanation Method for Image Classification

Zeit: 10.09.2025 - 16:00 - 17:00
Ort: WE5/05.005 und Teams

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

In reply to Felix Haase

Re: Probevorträge zur KI Konferenz 2025 zu kontrastiven Erklärungen

ó $a->name - $a->date
Es ist hier ein kleiner Kopierfehler passiert, die Probevorträge sind am 10.09. und nicht am 24.09.

Liebe Grüße,
Felix
In reply to Felix Haase

MA Verteidigung Mohammadkazem Vahedi - Development of an Efficient Sorting Algorithm for the Detection of PCB Defects based on CNN

ó $a->name - $a->date

Vortrag von: Mohammadkazem Vahedi
Titel: Development of an Efficient Sorting Algorithm for the Detection of PCB Defects based on CNN
Zeit: 25.09.2025 - 11:00 - 12:00
Ort: WE5/05.005 und Teams
Abstract:

This thesis develops a practical, end-to-end framework for automated defect detection in X-ray images of printed circuit boards (PCBs), created in collaboration with Brose Fahrzeugteile. The system couples a Faster R-CNN detector with a ResNet-18–FPN backbone and provides an integrated toolchain for data preparation, training, and evaluation in industrial settings. A PySide6 annotation interface (Pre-training, Fine-tuning, Inference, and ROI Tool) standardizes bounding-box labels in Pascal VOC format and encodes defect status directly in class names. To prevent semantic leakage across product families, a group-aware label map defines a single global class space with per-group admissible subsets, enforced during training and scoring.

To address the scarcity of large labeled PCB datasets, the framework optionally employs SimCLR self-supervised pre-training on 680 unlabeled X-ray images to initialize the backbone with domain-adapted features. Training and inference are driven by YAML configuration, with reproducible logging, visualization, and checkpointing. Evaluation emphasizes operationally meaningful metrics (group-filtered F1 at fixed IoU/score thresholds) rather than aggregate AP, aligning model assessment with quality-assurance practice.

Empirically, both scratch and SimCLR-initialized models converge reliably on this dataset; relative advantages depend on the operating point rather than training stability alone. The main contributions are:

(i) a deployable PCB X-ray inspection pipeline,
(ii) an annotation GUI with group-aware label governance,
(iii) a reproducible training/evaluation suite, and
(iv) a controlled study of domain-adapted self-supervision for PCB defect detection.

The limitations include the similarity between training and validation datasets, class imbalance between defect and non-defect samples, and the use of ResNet on CPU rather than GPU due to Python version constraints with CUDA support.

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 366 816 300 669 2

Passcode: M2zU2X2w

In reply to Felix Haase

MA Verteidigung Anna Thaler - Deep Spatiotemporal Learning for Facial Expression Classification: Using an Action Unit-Enhanced CNN-LSTM Network for Video-Based Classification of Pain and Disgust

ó $a->name - $a->date

Vortrag von: Anna Thaler
Titel: Deep Spatiotemporal Learning for Facial Expression Classification: Using an Action Unit-Enhanced CNN-LSTM Network for Video-Based Classification of Pain and Disgust
Zeit: 25.09.2025 - 18:00 - 19:00
Ort: WE5/05.005 und Teams
Abstract:

Automated pain assessment from facial expressions faces a compounded challenge: pain must be inferred without self-report, facial actions overlap with those of disgust, and clinically realistic datasets with spontaneous expressions are typically small, which constrains model development and validation. This thesis examines whether commonly used deep learning methods with strong regularization can reliably distinguish the two aversive affective states of pain from disgust under conditions of limited data. It further investigates whether frame-level semantic cues derived from facial action units (AUs) enhance this discrimination. A CNN–LSTM architecture is implemented that applies transfer learning, using FaceNet (pre-trained on VGGFace2) as a backbone and fine-tuned via gradual unfreezing and discriminative learning rates on a subset of the proprietary PainFaceReader video dataset. An additional model variant incorporates concatenated frame-level AUs as auxiliary features. Evaluation through leave-one-participant-out (LOPO) cross-validation followed by statistical testing shows that both the baseline model and the AU-enhanced models distinguish pain from disgust significantly above chance (binomial test: p=0.002, and p=0.005 respectively) achieving accuracies, recall, and F1-scores of 56 % (baseline) and 57 % (AU-enhanced). However, the inclusion of AUs did not yield significant performance gains, and strong overfitting is still observed. The findings highlight that spontaneous facial expressions pose particular challenges for deep learning models, which tend to overfit when trained on small, clinically realistic datasets, thereby emphasizing the need for more data-efficient and adaptive methods.

________________________________________________________________________________

Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 367 104 110 913 9

Passcode: Hs3Lt7us


In reply to Felix Haase

MA Verteidigung Vu Thuy Giang Do - Latent Distribution Based Anomaly Detection for Multivariate Time-Series Data

ó $a->name - $a->date

Vortrag von: Vu Thuy Giang Do
Titel: Latent Distribution Based Anomaly Detection for Multivariate Time-Series Data
Zeit: 26.09.2025 - 10:00 - 11:00
Ort: WE5/05.005 (nicht hybrid)
Abstract:

Anomaly detection in telemetry data plays a crucial role, as any abnormal data can compromise the space monitoring system. To date, a variety of architectural models exist that can detect anomalies by reconstructing normal and abnormal data under autoencoder architectures and determine the presence of anomalies based on reconstruction error; the greater the reconstruction error, the more likely it is that an anomaly is present. These models focus on reducing reconstruction error while learning high-dimensional time-series data, such as telemetry data. However, recent models based on reconstruction error to detect abnormal data may be neither sufficient nor high-performance for multivariate time-series data, as outlier data points can also be reconstructed too well, resulting in an unexpectedly low reconstruction error. Moreover, how the data is represented affects the performance of a machine learning approach. This thesis applies the LatentOut unsupervised algorithm designed by Angiulli et al. (2022) to take advantage of the latent space data in combination with the reconstruction error representation to detect outliers in such complex data. The final result shows that the anomalies lie in a tendency in the sparsest region of the combined space.