Colloquium Topics in SS 2025

Colloquium Topics in SS 2025

بواسطة - Felix Haase
عدد الردود: 5

In this thread all special talks in our CogSys colloq will be announced.

رداً على Felix Haase

Re: Colloquium Topics in SS 2025

بواسطة - Felix Haase

Vortrag von: Corbinian Weithmann
Titel: Erklärbare Fehlerklassifikation in der bildbasierten industriellen Qualitätskontrolle
Zeit: 11.04.2025 - 15:00 - 16:00
Ort: WE5/05.013 und Teams (wegen Vertraulicher Information nur Audioübertragung)
Abstract folgt


Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 393 811 156 024

Kennung: CL6pv9QD

رداً على Felix Haase

Re: MA Verteidigung Corbinian Weithmann - Update mit Abstract

بواسطة - Felix Haase

Vortrag von: Corbinian Weithmann
Titel: Erklärbare Fehlerklassifikation in der bildbasierten industriellen Qualitätskontrolle
Zeit: 11.04.2025 - 15:00 - 16:00
Ort: WE5/05.013 und Teams (wegen Vertraulicher Information nur Audioübertragung)
Abstract:
In der Abteilung EA-343 der BMW Group wird eine Künstliche Intelligenz (KI) zur Fehlerdetektion bei der Entwicklung von Elektromotor-Komponenten eingeführt. Als Pilotkomponente wird der Stator verwendet, um die automatisierte Erkennung von Produktionsfehlern durch ein Convolutional Neural Network (CNN) zu testen.
Ziel ist die zuverlässige Identifikation von Fehlern, wie Blasen oder Risse, die manuell schwer zu erkennen sind. In einem zweistufigen Prozess entscheidet das CNN-Modell zunächst, ob ein Fehler vorliegt. Methoden der erklärbaren KI (xAI) werden verwendet, um die Vertrauenswürdigkeit und Qualität der Ergebnisse zu verbessern.
Erwartet wird, dass Ingenieure durch die automatisierte Fehlererkennung frühzeitig fundierte Entscheidungen treffen können, um Design und Prozesse zu optimieren.

Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 393 811 156 024

Kennung: CL6pv9QD

رداً على Felix Haase

Colloquium - External Presentation by Adni Islami

بواسطة - Felix Haase

Presentation by: Adni Islami (University of Prishtina, Kosovo)
Title: Developing a Green Infrastructure Database for Prishtina: Insights from Research Experience in Würzburg
Time&Date: 14.05.2025 - 16:00 - 17:00
Location: WE5/05.013 and Teams
Abstract:
This presentation will focus on my current research work in Würzburg, which represents the first practical step within a broader project aimed at developing a green infrastructure database for the city of Prishtina. The overall goal of the project, funded by DBU, is to support the creation of a comprehensive tree cadastre to improve urban green space planning and management in Prishtina.
During my stay in Würzburg, I am working with local cadastral data on individual trees and exploring its structure in comparison with the publicly available dataset from the Bavarian open geodata portal. The aim is to understand how well-structured and accessible data systems function in practice, and how such models can inform and inspire the future development of tree data management in Prishtina.

Information to participate via Teams:

Microsoft Teams Benötigen Sie Hilfe?

Meeting join link

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf

رداً على Felix Haase

MA Verteidigung Mai Anh Selina Vu - Integrating Large Language Models into Intelligent Tutoring Systems for Basic Arithmetic to Generate Text Exercises and Tailored Feedback

بواسطة - Felix Haase

Vortrag von: Mai Anh Selina Vu
Titel: Integrating Large Language Models into Intelligent Tutoring Systems for Basic Arithmetic to Generate Text Exercises and Tailored Feedback
Zeit: 11.06.2025 - 16:00 - 17:00
Ort: WE5/05.013 und Teams
Abstract:

This thesis investigates the integration of large language models (LLMs) into intelligent tutoring systems (ITS), with the goal of generating diverse and pedagogically meaningful subtraction-based text exercises for primary school students. Building on the existing ITS Subkraki – which previously relied on static, template-based exercises – the project introduces a dynamic content generation approach supported by a locally hosted LLM. Following a requirements-driven planning phase, the prototyping stage revealed key challenges, including long generation times and inconsistencies in the generated output, especially when using mid-sized models due to hardware constraints. To address these limitations, the system architecture was extended with a validation layer in form of an additional educator-facing frontend. This allows educators to generate, manually add, review, and correct exercises before they are made available to students, ensuring quality and reliability. The final implementation was evaluated against the previously defined requirements. Although the fully automated generation of consistently correct exercises that meet all set criteria is not yet feasible, the results demonstrate that LLMs can significantly enhance educational tools when combined with a human-in-the-loop workflow. Overall, the thesis provides a scalable and adaptable architecture that addresses the research question of how LLMs can be utilized to generate text exercises for ITS, while also managing challenges related to exercise difficulty, analogy selection, and prompt design within the constraints of the local deployment.


Microsoft Teams Benötigen Sie Hilfe?

Jetzt an der Besprechung teilnehmen

Besprechungs-ID: 379 093 638 480

Kennung: jS3Mf7xf