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Part 1 – Efficient Query Processing 

General Data Model: 

• Set of data items D („documents“) 

• Set of attributes T („terms“) 

• Each item d: 

– Set of attribute values st(d) for all tT 
(„term frequencies“, „scores“) 

– Importance weight w(d) („page rank“) 

Any implementations of values and weights suitable 
that satisfy 

0  st(d)   1 and 0  w(d)  MAX_WEIGHT 



(Simple) Query Model 

Input: query q={t1…tn} on D 

    „efficient query processing“ on the Web 

Output: subset RD of items where 

       F(st1(d),…,stn(d)) ≥ θ         „score of d for q“ 

       for some (monotonous) function F  

       and some threshold θ 

More fancy query models: 
Term weights, mandatory terms, negative terms, phrases 



Common Instances of this Model 

• Boolean (unranked) queries and scores: 
st(d)=1 iff d contains t, 0 else 

– conjunctive Boolean: „efficient and effective“ 
F(x1…xn)=x1·…·xn=min(x1…xn) 

– disjunctive Boolean: „efficient or effective“ 
F(x1…xn)=x1+…+xn or F(x1…xn)=max(x1…xn) 

– Threshold θ=1 in both cases 



Common Instances of this Model 

• Ranked queries: 

– st(d)  importance of t in d, 
           importance of t in D, 
           features of D (like length), … 

– most frequent implementation of F: 
F(x1…xn)=x1+…+xn (summation) 

– Threshold θ = score of kth result in score order 

 

tf*idf, 
BM25 Okapi 

Focus of part 1: 
„Find the k results with highest aggregated score“ 



Part 1 – Efficient Query Processing 

Different aspects of efficiency: 

1. user-oriented: minimize query answer time 

2. system-oriented:  maximize query throughput 

3. resource-oriented: minimize disk accesses, 
memory footprint, CPU cycles, energy 
consumption, … 

Difficult to optimize 1+2 together; combine goals: 
Maximize throughput such that query answer 

time is below 0.1s for 95% of queries 



Part 1 – Efficient Query Processing 

Different aspects of efficiency: 

1. user-oriented: minimize query answer time 

2. system-oriented:  maximize query throughput 

3. resource-oriented: minimize disk accesses, 
memory footprint, CPU cycles, energy 
consumption, … 

Focus of part 1: 
Resource-oriented optimization to reduce answer time 



Part 1 – Efficient Query Processing 

Fundamental data structure: Inverted List 

• Inverted List L(t) for a term t consists of 
sequence of tuples (d,payload) 

• each d contains term t 

• payload is additional information 

– st(d) 

– frequency of t in d 

– positions of t in d (for phrases) 

Order of tuples depends on processing strategy 



Inverted Lists 

• Implementation usually as compressed file with 
all inverted lists for a collection plus access index 

 

 

 

• Alternative implementation (simpler, but slower): 
use big database table with index on t (plus 
additional columns, depending on sort order) 

Lt1 Lt2 Lt3 Lt4 

B+ tree on terms 

file 

t d score(d,t) 



Index Compression 

Why? 

• Smaller index, may fit in memory 

• Faster list access when stored on disk 

Comes with two kinds of execution cost: 

• Compression effort at indexing time 

• Decompression effort at query time 

Important to keep this low 



Compression/Performance Tradeoff 

When does it pay off to compress? 

[BCC-6] 

125 million bytes/s 

1000 million bits/s 
~1 ns/bit 

Method that saves b bits per posting 
must decompress posting in ≤ b ns 

Rules out many effective bit-based methods (Huffman Coding, 
gzip, γ codes, δ codes, ω codes, Golomb/Rice codes, …) 



Common method: Δ encoding & vbytes 
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compute gaps 

of docids 

0 0 0 101 0 0 0 5 

0 0 0   17 0 0 0 2 

0 0 0   62 0 0 0 3 

0 0 1 186 0 0 0 4 

0 0 0   29 0 0 0 2 

naive: 2x4 bytes per posting 

#bytes per field: 2+1 bytes 

Encode bytes with variable length: 

00111010 10000011 442: 

continuation flag 

chunk1 chunk0 

0000000110111010 

chunk1 chunk0 

vbyte 

encoding 

118: 0000000001110110 

chunk0 

vbyte 

encoding 
01110110 

chunk0 
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Three main Classes of Algorithms 

• Term-at-a-time (TAAT) 

• Document-at-a-time (DAAT) 

• Score-at-a-time (SAAT) 



Term-at-a-Time Processing 

• Lists sorted by d (technically, by d‘s unique ID) 

• Lists read one after the other 

• Partial scores of results maintained 

• Implemented by 2-way merge join with skipping 

• Results sorted by score to get top-k results 

[Anh et al., CIKM 06] 
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Pros: 
• Independent of payload 
• Best for Boolean queries 

Cons: 
•Needs to load and consider complete lists 
• Requires |D| intermediate variables 
• Requires sorting (|D|·log |D| time) 



Conjunctive Term-at-a-time Processing 
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Even more skipping 
with block-structured 
lists: 

IDs 1-10 

D1: 0.15 
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… 

IDs 12-61 

… 

Blocks of fixed size 

Summary of ID range in block 



Layered (or Impact-Ordered) Indexes 
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disjunctive query with both lists 

Current top-k results 
+ candidates 

[Strohman & Croft, SIGIR 07] same idea as [Bast et al, VLDB 06] 



Document-at-a-Time Processing 

• Lists sorted by d (technically, by d‘s unique ID) 

• joined by n-way merge join 

• Top-k results computed on the fly 

[Anh et al., CIKM 06] 
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Pros: 
• Can be very efficiencly implemented 
• Simple data structures 
• Independent of payload 
• Requires k intermediate variables 

Cons: 
• Needs to load and consider complete lists 



Efficient DAAT: WAND 
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doc 42: 26.6 

Sort lists in ascending order 
of current doccid 

[Broder et al., CIKM 03] 



Efficient DAAT: WAND 
max= 
15.6 

max= 
7.5 

max= 
10.0 

max= 
9.4 current top-1 

102 
86 

75 
115 

doc 42: 26.6 

Select enough lists to improve 
on current top-1 score 

max=10.0 max=17.5 max=33.1 

[Broder et al., CIKM 03] 



Efficient DAAT: WAND 
max= 
15.6 

max= 
7.5 

max= 
10.0 

max= 
9.4 current top-1 

102 102 

110 

115 

doc 42: 26.6 

Move pointers in these lists 
to docid in last list (or next) 

Score this document, replace 
top-1 if possible, resort lists, … 

[Broder et al., CIKM 03] 

Improvement: 
consider per-list blocks 
& per-block max score 
[Ding&Suel, SIGIR 11] 



Score-at-a-Time Processing 

Goal: 

Avoid reading of complete lists (millions of entries) 

 

Observation: 

„Good“ results have high scores 

Order lists by descending scores 

Have „intelligent“ algorithm with early stopping  

[Anh et al., CIKM 06] 



List Access Modes 

Factors of disk access cost: 

Seek time, rotational delay, transfer time 

• Sequential (sorted) 
– Access tuples in list order 

– Seek time & rotational delay amortized over many 
accesses 

•  Random 
– Look up list entry for specific item 

– Pay full cost (plus lookup cost for tuple position) for 
each access 

– 10-1000 times more expensive than sequential acc. 



Family of Threshold Algorithms 

• State-of-the-art algorithm for top-k processing 

• Independently developed by different groups: 

– Fagin et al. [Fagin03] 

– Güntzer et al. [Güntzer01] 

– Nepal et al. [Nepal99] 



Sorted-Access-Only (NRA) Baseline 

• Interleaved scans of index lists (round-robin) 

• Maintain current high score bound highi for list i 

• Maintain, for each seen item d: 

– dimensions E(d) where d has been seen 

– worstscore(d), bestscore(d): score bounds for d 

Updated whenever d is seen or highi changes, iE(d) 

• k items with best worstscores are current top-k; smallest 
worstscore in top-k: mink 

• Prune item d whenever 

• Stop when no candidates 
left and ∑highi≤mink (“virtual document check”) 

[Fagin et al., JCSS 03], [Güntzer et al., ITCC 01], [Nepal et al., ICDE 99]  
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Example: Top-1 for 2-term query 
L1 L2 top-1 item 

min-k: 

candidates 

A: 0.9 

G: 0.3 

H: 0.3 

I: 0.25 

J: 0.2 

K: 0.2 

D: 0.15 

D: 1.0 

E: 0.7 

F: 0.7 

B: 0.65 

C: 0.6 

A: 0.3 

G: 0.2 



Example: Top-1 for 2-term query 
top-1 item 

min-k: 

candidates 

0.9 ? A: 

 score: [0.9;1.9] 

0.9 
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? ? ?: 

 score: [0.0;1.9] 
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Example: Top-1 for 2-term query 
top-1 item 

min-k: 

candidates 

0.9 ? A: 

score: [0.9;1.9] 

0.9 

? 1.0 D: 

score: [1.0;1.9] 

1.0 
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? ? ?: 

 score: [0.0;1.9] 
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1.0 

Example: Top-1 for 2-term query 
top-1 item 

min-k: 

candidates 

0.9 ? A: 

score: [0.9;1.9] 

0.3 ? G: 

score: [0.3;1.3] 

? 1.0 D: 

score: [1.0;1.3] 
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D: 1.0 
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B: 0.65 
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A: 0.3 

G: 0.2 

? ? ?: 

 score: [0.0;1.3] 

L1 L2 



1.0 

Example: Top-1 for 2-term query 
top-1 item 

min-k: 

candidates 

0.9 ? A: 

score: [0.9;1.6] 
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score: [1.0;1.3] 
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 score: [0.0;1.0] 

L1 L2 



1.0 

Example: Top-1 for 2-term query 
top-1 item 

min-k: 

candidates 

0.9 ? A: 

score: [0.9;1.6] 

? 1.0 D: 

score: [1.0;1.3] 

Algorithm safely terminates after 12 SA 

A: 0.9 

G: 0.3 

H: 0.3 

I: 0.25 

J: 0.2 

K: 0.2 

D: 0.15 

D: 1.0 

E: 0.7 

F: 0.7 

B: 0.65 

C: 0.6 

A: 0.3 

G: 0.2 

? 1.0 D: 

score: [1.0;1.25] 

0.9 ? A: 

score: [0.9;1.55] 

? 1.0 D: 

score: [1.0;1.2] 

0.9 ? A: 

score: [0.9;1.5] 

? 1.0 D: 

score: [1.0;1.2] 0.9 0.4 A: 

score: [1.3;1.3] 

1.3 

L1 L2 



Background: TREC Benchmark Collection 

• TREC Terabyte collection: 
~24 million docs from .gov domain, 
~420GB (unpacked) size 

• 200 keyword topics from TREC Terabyte 2004/5 

• Quality measures: 

– Precision at several cutoffs 

– Mean average precision (MAP) 

• Performance measures: 

– Number of (sequential, random) accesses 

– Weighted cost C(factor)= #SA + factor · #RA 

– Wall-clock answer time 



Experiments: NRA 
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Improving Sorted Access 

• Reduce overhead: 

– Prune candidates not after every step, but after a 
batch of steps (100-10000) 

• Improve List Structure 

• Improve List Selection 

[Bast et al., VLDB 06] 



Inverted block-index 

Lists are first sorted by 
score 

each block 
sorted by 
item-id 

3 3 3 

2 2 2 

1 1 1 

Top-k algorithm with block-index 

1 1 1 

2 2 

3 3 

1 1 1 

2 2 2 

3 3 3 

full-merge 

blocks are sorted by item 
ids, efficiently merged by 
full-merge!  

and so on… 

full merge 

pruned 



Sorted access scheduling 

List 1     List 2    List 
3  

Inverted 
Block-Index 

General Paradigm 



Sorted access scheduling 

List 1     List 2    List 
3  
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General Paradigm 
• We assign benefits to every block of each list 

• Optimization problem 
– Goal: choose a total of 3 blocks from any of the 

lists such that the total benefit is maximized 

– This problem is NP-Hard, the well known 
Knapsack problem reduces to it 

– But, since the number of blocks to choose and 
number of lists to choose from are very small, 
we can solve it exactly by enumerating all 
possibilities 

– We choose the schedule with maximum 
benefit, and continue to next round 

Inverted 
Block-Index 



Sorted access scheduling 
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– We choose the schedule with maximum 
benefit, and continue to next round 



Sorted access scheduling 

List 1     List 2    List 
3  

b1

1 

b2

1 

b3

1 

b1

2 

b2

2 

b3

2 

b1

3 

b2

3 

b3

3 

b1

4 

b2

4 

b3

4 

Inverted 
Block-Index 

General Paradigm 
• We assign benefits to every block of each list 

• Optimization problem 
– Goal: choose a total of 3 blocks from any of the 

lists such that the total benefit is maximized 

– This problem is NP-Hard, the well known 
Knapsack problem reduces to it 

– But, since the number of blocks to choose and 
number of lists to choose from are very small, 
we can solve it exactly by enumerating all 
possibilities 

– We choose the schedule with maximum 
benefit, and continue to next round 



Sorted access scheduling 

List 1     List 2    List 
3  

Knapsack for Score Reduction (KSR) 

• Pre-compute score reduction ij of every block 
of each list : (max-score of the block – min-
score of the block) 

Inverted 
Block-Index 
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Sorted access scheduling 

Knapsack for Score Reduction (KSR) 

• Pre-compute score reduction ij of every block 
of each list : (max-score of the block – min-
score of the block) 

• Candidate item d is already seen in list 3. If we 
scan list 3 further, score sd and best-score bd of 
d do not change 

• In list 2, d is not yet seen. If we scan one block 
from list 2 

– with high probability d will not be not 
found in that block: best-score bd of d 
decreases by 22 

• Benefit of block B in list i  

d B (1 - Pr[d found in B]) »  d B 

sum taken over all candidates d not yet seen in list 
i 

Inverted 
Block-Index 

List 1     List 2    List 
3  

31 

32 

item d 
[sd,bd] 



Sorted access scheduling 

List 1     List 2    List 
3  

Knapsack for Benefit Aggregation (KBA) 

• Pre-compute expected score eij of an item seen in 
block j of list i : (average score of the block) 

• Pre-compute score reduction ij of every block of 
each list : (max-score of the block – min-score of the 
block) 

Inverted 
Block-Index 

List 1     List 2    List 
3  
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Sorted access scheduling 
Knapsack for Benefit Aggregation (KBA) 

• Pre-compute expected score eij of an item seen in 
block j of list i : (average score of the block) 

• Pre-compute score reduction ij of every block of each 
list : (max-score of the block – min-score of the block) 

• Candidate item d is already seen in list 3. If we scan list 
3 further, score sd and best-score bd of d do not change 

• In list 2, d is not yet seen. If we scan one block from list 
2 

– either d is found in that block: score sd of d 
increases, expected increase = e22 

– or d is not found in that block: best-score bd of d 
decreases by 22 

• Benefit of block B in list i  

d eB Pr[d found in B] + B (1 - Pr[d found in B]) 

The sum is taken over all candidates d not yet seen in list i 

Inverted 
Block-Index 

List 1     List 2    List 
3  
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Random Accesses 

Two main purposes for random accesses: 

• Can speed up execution 

• Some predicates cannot be read from sorted lists 
(„X and not Y“) => expensive predicates 

 

Scheduling problem: 

• When perform RA for which item to which list? 



Random Access Scheduling – When 

• Immediately when an item is seen (TA) 

– Scores always correct 

– No need for score bounds & candidates 

– Most RA are wasted (items seen again later) 

– Really slow if RA are expensive 

• Balanced: after C sorted accesses, do 1 RA 
(Combined Algorithm, CA) 

– Faster than TA 

– Most RA are still wasted 



Random Access Scheduling – When 

• LAST heuristics: switch from SA to RA when 

– All possible candidates have been seen 

– expected future cost for RA is below the cost already 
spent for SA 

• Cost spent for SA: known by bookkeeping 

• (simplified) cost expected for RA: 

 
d dEi

C
)(

Rationale behind this: 
Do expensive RA as late as possible 

to avoid wasting them 



Experiments: TREC 
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TREC Terabyte benchmark collection 

• over 25 million documents, 426 GB raw data 

• 50 queries from TREC 2005 adhoc task 
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Rationale for Approximation Algorithms 

• Scoring functions are (well-founded) heuristics, 
not the gold standard 

• Users don’t care about the exact top-k results, 
but about relevant results 

• Many relevant results beyond the top-k 

• Often one relevant result is enough 

Threshold algorithms may be overly conservative 



Evolution of a Candidate’s Score 

 scan  
depth 

drop d 

from the 
candidate 

queue  

 Approximate top-k 
    “What is the probability that d qualifies for the top-k ?” 

bestscore(d) 

worstscore(d) 

min-k 

score 
Worst- and best-scores 
slowly converge to final 
score 

Add d to top-k result, if 
worstscore(d) > min-k 

Drop d only if    

      bestscore(d) < min-k, 
otherwise keep it in 
candidate queue 

 Overly conservative 
threshold & long sequential 
index scans 

TA family of algorithms based on invariant (with sum as aggr) 

i i i
i E( d ) i E( d ) i E( d )

s ( d ) s( d ) s ( d ) high  
  

  

worstscore(d) bestscore(d) 



where the random variable Si has some (postulated and/or estimated)  
distribution in the interval (0,highi] 

Probabilistic Guarantees 
TA family of algorithms based on invariant (with sum as aggr) 

i i i
i E( d ) i E( d ) i E( d )

s ( d ) s( d ) s ( d ) high  
  

  

Relaxed into probabilistic invariant 

i i
i E( d ) i E( d )

p( d ) : P[ s( d ) ] P[ s ( d ) S threshold ]  
 

    

i i i
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f: 0.5 

b: 0.4 

c: 0.35 

a: 0.3 

h: 0.1 

d: 0.1 

 

a: 0.55 

b: 0.2 

f: 0.2 

g: 0.2 

c: 0.1 

 

h: 0.35 

d: 0.35 

b: 0.2 

a: 0.1 

c: 0.05 

f: 0.05 

 

S1 
S2 S3 

• Discard candidates  
   with p(d) ≤   
• Exit index scan when 
   candidate list empty 
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      Probabilistic Threshold Test 

•fitting Poisson distribution (or Poisson mixture) 

•   over equidistant values: 

•   easy and exact convolution  

• distribution approximated by histograms: 

•   precomputed for each dimension 

•   dynamic convolution at query-execution time 

with independent Si‘s or with correlated Si‘s 
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engineering-wise  
histograms work best! 

0 

f2(x) 

1 high2 

f3(x) 

high3 1 0 

  
cand item d 
with  
2  E(d), 
3  E(d) 

Convolution 
(f2(x),  f3(x)) 

2 0 δ(d) 

Probabilistic Guarantees: 
E[relative precision @ k] = 1- 
E[relative recall @ k] = 1- 



   NRA  Prob-Top-k 
#sorted accesses 2,263,652 527,980 
elapsed time [s] 148.7  15.9 
max queue size 10849  400 
relative recall  1  0.69 
rank distance  0  39.5 
score error  0  0.031 

Results for .Gov Queries 
on .GOV corpus from TREC-12 Web track: 
1.25 Mio. docs (html, pdf, etc.)  

50 keyword queries, e.g.:  
• „Lewis Clark expedition“,   
• „juvenile delinquency“,  
• „legalization Marihuana“,   
• „air bag safety reducing injuries death facts“ 
 



.Gov Expanded Queries 
on .GOV corpus with query expansion based on WordNet synonyms: 
50 keyword queries, e.g.:  
• „juvenile delinquency youth minor crime law jurisdiction  
    offense prevention“,  
• „legalization marijuana cannabis drug soft leaves plant smoked  
    chewed euphoric abuse substance possession control pot grass  
    dope weed smoke“ 

   NRA  Prob-Top-k 
#sorted accesses 22,403,490 18,287,636 
elapsed time [s] 7908  1066 
max queue size 70896  400 
relative recall  1  0.88 
rank distance  0  14.5 
score error  0  0.035 
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Including Term Expansion 

Problem: Users use different terms for similar things 

 poor recall (missing relevant results) 

Solution: 

1. Define notion of similar terms 

2. Expand queries with similar terms 

3. Modify scoring function for expanded queries 

Example: 
MPI, MPII, MPI-INF, MPI-CS, Max-Planck-Institut, D5, 
AG5, DB&IS, MMCI, UdS, Saarland University, … 

[Theobald et al., SIGIR 05] 



Heuristics for finding similar terms 

Co-Occurrence heuristics: 

Terms t1 and t2 similar if they occur (almost) always together 

|)(||)(|

|)()(|2
),(

21

21
21

tdocstdocs

tdocstdocs
ttsim






|)(|

|)()(|
]|[),(

2

21
2121

tdocs

tdocstdocs
ttPttsim




Specialization heuristics: 

Term t2 specialization of t1 if t1 occurs (almost) whenever t2 occurs 



Ontology-Based Query Expansion 

wizard 

intellectual 

artist 

alchemist 

director 
primadonna 

lecturer 

professor 

teacher 

educator 

scholar 

academic, 
academician, 
faculty member 

scientist 

researcher 

HYPONYM (0.7) 

Thesaurus/Ontology: 
concepts, relationships, glosses 
from WordNet, Gazetteers,  
Web forms & tables, Wikipedia 

relationships quantified by 
statistical correlation measures 

Similarity conditions like 
~Professor ~course ~IR 

Query expansion 

Weighted expanded query 
Example: 
(professor lecturer(0.7) scholar(0.6) ...)  
 (course class(1.0) seminar(0.84) ... )  
(„IR“ „Web search“ (0.653)  ...) 

disambiguation 

δ-exp(x)={w|sim(x,w)>δ} 

Efficient top-k search 
with dynamic expansion 

better recall, but possibly 
worse precision (due to 

topic drift) 

investigator 

mentor 



Scoring Expanded Queries 

Naive approach: 

For query term t, add similar terms t‘ with sim(t,t‘)>δ to query 

Better: auto-tuning incremental expansion [SIGIR’05] 

For query term t, consider only expansion with 

highest combined score per item 

)()',(max)( '
'

isttsimis t
Tt

t 


„international crime“ expanded by „mafia camorra yakuza …“  
But: 
„transportation disaster“ expanded by „train car bus plane …“ 

Result quality drops due to topic drift 



92   0.9 

67   0.9 

52   0.9 

44   0.8 

55   0.8 

scholar 

*0.6 

Consider expandable content condition Professor 

with score 

Incremental Query Expansion 

course 

57   0.6 

44   0.4 

52   0.4 

33   0.3 

75   0.3 

..
. 

professor 

thesaurus/ontology 

max tT { sim(Professor,t)*st(i) } 

professor 

lecturer  0.7 
scholar    0.6 
academic 0.53 
scientist  0.5 

Dynamic query expansion with incremental, on-demand 
merging of additional index lists 

+ much more efficient than threshold-based expansion 
+ no threshold tuning 
+ better recall, no topic drift 
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Effectiveness of Incremental Expansion 
Approximation 



Efficiency of Incremental Expansion 
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Motivation for Text Proximity Scoring 

„Bag of words“ without term proximity  

sometimes yields unsatisfactory results 

 

 

 

Phrase queries can avoid such bad results.  
But: prevent also many potentially good results.  

All query terms individually important, but appear in different paragraphs. 

Example: query: Chilean pianists 

1st paragraph:  
Chilean hotels 

2nd paragraph: 
British pianists 

document 

[Schenkel et al., SPIRE 07], [Broschart et al., Grundlagen von Datenbanken 08] 



Motivation for Text Proximity Scoring 

1st paragraph:  
Chilean hotels 

2nd paragraph: 
British pianists 

document 

Chilean hotels …  

Chilean hotels usually offer … 

Chilean specialty … 

British pianists … 

The pianist performed … 

The live show of the pianist  … 

Idea of proximity scores: 
Reward occurrences of different query terms in close proximity 
 



What is the best proximity score? 

#1 for all test beds: Büttcher et al.  

[PhD thesis Andreas Broschart – defense next week] 



Proximity-enhanced scoring  
Büttcher et al., SIGIR 2006: 

linear combination of content score and 

BM25-style proximity score 

adjacent query term        in    

content score proximity score 

 



Example: Computation of acc 

It1 took2 the3 sea4 a5 thousand6 years,7 

A8 thousand9 years10 to11 trace12 

The13 granite14 features15 of16 this17 cliff,18 

In19 crag20 and21 scarp22 and23 base.24 

 

Query: {sea, years, cliff} 

 



That‘s great, but… 

Experiments on TREC collection: 

Implementation of this score in a top-k-style engine 
with precomputed inverted lists? 



Towards an efficient implementation 

Problem: acc(d,t) based on adjacent query terms 

 

But: queries not known at index build time 
=> we need a query-independent index! 

adjacent query term       in    

every query term       in    

Solution: 

Build inverted list with                     for all term pairs 

Document length (in K) does not fit in this framework 
=> drop document length  (set b=0) 



Index Structures and Results 

d7:3.0 

d68:0.7 

d61:0.5 

d10:0.2 

PXL 

(california, 

hotel) 

CL 

(california, 

hotel) 

d7:(3,8.6,4.5) 

d68:(0.7,9.1,1.5) 

d61:(0.5,3.0,7.2) 

d10:(0.2,2.0,1.7) 

TL(hotel) 

d68:9.1 

d7:8.6 

d73:5.9 

d73:9.3 

d61:7.2 

d78:5.0 

d7:4.5 d8:4.6 

TL(california) 
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What about the index size? 

Construction of query-independent index failed (too slow!)* 

randomly sampled 1,500,000 term pairs: 
1.2% nonempty proximity lists 

 
 
 
keeping all proximity lists: infeasible 

 
 

Pruning might be the solution: 
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horizontal pruning vertical pruning 

horizontal pruning and 

*we fixed that now 



Different horizontal pruning methods 

• limit distance of term occurrences  

• limit proximity score  

• limit list size to a constant (from 500 to 3,000 tuples) 

• Carmel et al. [SIGIR 2001]: static index pruning 

 drop index entries having scores below ε·top-k score   

• combinations (e.g., limit list size + static index pruning) 

 



Horizontal pruning helps a lot 

Index size: in bytes (estimated) 

Index size: in million tuples (estimated) 

Index size of (real) file-based index 



Top-10 retrieval: unpruned vs. pruned lists 



Query Processing with Merge Joins 

TL(hotel) 

d73:9,3 

d61:7,2 
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TL(hotel) 

d7:4,5 

d61:7,2 

d73:9,3 

d78:5,0 

d7:8,6 

d8:4,6 

d68:9,1 

d73:5,9 

TL(california) 

in
c
re

a
s
in
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merge join 

top-k results 
No need for top-k overhead! 

threshold 

prune and resort index lists 

sort 



Evaluation 



– Apply compression to docid-ordered index lists:   

• docid values: delta-encoding + v-byte encoding 

• scores: v-byte encoding ( normalization  ≤ 2bytes each) 

80 

Static index pruning for TL+CL 
Our pruning approach  

– keep all pair lists  (more precise: CLs) 

– tune list length    and 

– minimum          -score      and text window size W=10 for CLs 

                  : index for collection      with TLs and CLs cut after   entries 

and only keeping CL tuples with                  (and text window W=10) 

TL(t1) TL(t2) CL(t1,t2) 

tuples 



Index tuning 
Two optimization goals:  

• effectiveness-oriented index tuning:  
best retrieval quality within index size constraint (then minimize size) 

• efficiency-oriented index tuning:  
at least BM25 quality and query processing as fast as possible.  

 

Available input data:  

• absolute index quality tuning:  
we have relevance assessments 

• relative index quality tuning:  
we do not have relevance assessments 

81 

relevance 
assessments 

no relevance 
assessments 

effectiveness efficiency 

optimization goals 

in
p

u
t 

d
at

a 
[Broschart2012] 



Absolute index quality tuning:  

input: training topics     + their relevance assessments 

              : average quality of top-k results (e.g., P@k) over    on index  
 

effectiveness-oriented: maximize 

Index quality measures 

82 

Goal: choose pruning parameters   and      for a given collection    ,  

an upper limit    for the index size, and a result cardinality    

 s.t. the index quality measure                           is maximized. 

Relevance 

assessments 

Maximize precision for all feasible indexes:  

equally high precision of      and        

Example (                                  ) 

Pick index with smaller index size   

Top-k results of  



Absolute index quality tuning:  

input: training topics     + their relevance assessments 

              : average quality of top-k results (e.g., P@k) over    on index  
 

 

Index quality measures 

83 

Goal: choose pruning parameters   and      for a given collection    ,  

an upper limit    for the index size, and a result cardinality    

 s.t. the index quality measure                           is maximized. 

efficiency-oriented: maximize 

Example (                                  ) 

Lowest length for      = maximal index quality  



Warm cache comparison to BMW 

84 

50,000 queries from TREC Terabyte Efficiency Track 2005: 
compare fastest index (l,m)= (310,0.05) (efficiency-oriented index tuning) to state-of 
the art DAAT-algorithm BMW. Use LRU cache of varying size.  

Speedup of our approach: factor 7 for top-10, factor 9 for top-100 retrieval 

(cache hit ratio 50% vs less than 4%)  

Index size: (310,0.05): 94.9GB,                     : 10.5GB,                     : 221.0GB 
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Dual Optimization Problem 

So far: 

 Minimize answer time for optimal results 

 But: this may take too long (several seconds). 

 

Now: 

 Maximize result quality for given answer time 

 (or processing cost) 

User-oriented efficiency measure 

[Shmueli-Scheuer et al., ICDE 09] 



Classes of Top-k Algorithms 

• Budget-Keeping Algorithms: 
Execution cost never exceeds predefined limit 

• Budget-Oblivious Algorithms: 
Scheduler does not know cost limit 
(Anytime-algorithms) 

• Budget-Aware Algorithms: 
Scheduler knows cost limit in advance, optimizes 
for result quality when limit is hit 



Measuring Result Quality 

Gold standard: 

Results Ropt of top-k algorithm with unlimited budget 

 

Goal: 

Optimize relative overlap of results R with Ropt 



Traces for a query 

Trace: sequence of steps performed by an algorithm 

– Sequential scan in a list (cost 1) 

– Random access to a previously read item (cost C) 

 

Cost of a trace: sum of cost of its steps 

 

Results of a trace: Results of a top-k algorithm performing 
the steps of the trace in this order 



Optimization problem 

Given a query with the corresponding lists, 

find a trace with cost ≤ B with a result that 

maximizes relative overlap with Ropt 



This is a nontrivial problem. 

C=3 (cost for random access) 

Final top-2 result: {d,t} 

Correct result requires at least 
budget 9 (4SA in L1, then 2RA to 
L2 for d and t) 

For precision 0.5, we need at 
least budget 6 (t) 

TA:  budget 12 to find {t}, budget 16 to find {d,t} 

NRA with round-robin: 8 steps to find {d}, 10 steps for {d,t}  

Results depend on clever scheduling of SA and RA 



Heuristics for SA scheduling 1 

Two execution phases (without sharp transition): 

• Gathering: Find good candidate items (with high scores) 
that may be in final top-k 

• Reducing: Decide for k results in the final top-k (reducing 
score bounds by dropping list high score bounds) 

Rule of thumb: Mediocre scores don’t help 

 



Heuristics for SA Scheduling 2 

Schedule batches of size b (b<<budget) 

Utility functions for performing x scans on list i: 

• Based on average score 

 

 

• Based on score drop 



Heuristics for SA Scheduling 3 

Combined utility for optimization: 

 

where α depends on the phase: 

α = 

1, if less than k different items have been seen 

, else 

probability that c will move to the top-k 



Heuristics for SA Scheduling 4 

Fair scheduling of the next b accesses: 

 

Assign to each list Li a number SALi of SA 

 

 

 

More complex (and more effective) heuristics 



Experiments: SA Scheduling 



RA Scheduling is a Lot More Difficult 

Key questions to answer: 

• When to switch from SA to RA? 

– Need to have seen „enough“ items 

– Need to have „enough“ budget left 

• Which items to access? 

– Goal: RA only for „good“ items, not to eliminate 
candidates 

Some results, but far from real understanding 



Part 1 – Uncovered Issues 

• Inverted file organization, compression, … 

• Caching of (partial) results 

• Hardware issues 
– Multicore CPUs 

– Memory hierarchies (CPU caches, flash disks) 

– Nonstandard hardware (FPGA, GPU)  

• Parallel and Distributed Retrieval 
– Distribute & replicate lists over different machines 

– Query distributed data over the Web 

• XML retrieval 

• … 



Part 1 – Summary 

• Top-k processing central part of search engines 

• Basic problem well understood in the literature 

• Good engineering can make the difference 

 

• Many interesting problems still out there 

– Heuristics are good, but guarantees would be better. 
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Web-Scale Computation 

Many problems cannot be easily scaled to the Web 

(about 20TB per Google crawl) 

(commoncrawl.org: 5 billion pages, 60TB) 

• Document inversion 

• PageRank etc. computation 

• Web log mining 

• Host statistics 

– Term distribution per host 

– Accesses per host 



Motivation 

Precomputation on 20TB of data? 

 Easy, we have paris: 64 cores, 192 GB RAM 
titan: 16 cores, 256 GB RAM  

25,000€  1625.50 €/core, 48.83 €/GB 

ALDI Süd, 27.09.2012: 
4 cores, 4GB RAM,399€ 
 99.75 €/core, 

     99.75 €/GB 

himalia: 16 cores, 512 GB RAM  



Large Clusters of Commodity Hardware 

• Thousands of off-the-shelf networked PCs 

• Hardware failures (of single machines) common 

• Harddrive failures common 

 

• Distributed Programs to exploit full power 
(RPC, CORBA, MPI, WebServices, REST, ...?) 



MapReduce Features 

• Complete solution for distributed computing 

• Simple, but powerful interface 

• Implementation within hours, not weeks 

• Detects machine failures and redistributes work 

• Avoids data loss due to harddisk failures 
(together with distributed file system) 

Widely used at Google for daily business 
(2 mio MapReduce jobs in Sep 07 on 15TB each, 400s each) 

[Dean et al., CACM 51(1), 2008] 



MapReduce by Example 

Problem: Compute document frequencies 

• Input: data with keys (docs with docids/urls) 

• Output: aggregated data (terms with counts) 

 

Solved by two functions (provided by user): 

• MAP: partition input data by output key (term) 

• REDUCE: aggregate data for each output key 

 

Automatically executed in a distributed fashion 



MapReduce by Example 

map(String key, String value) 

  // key: document name 

  // value: document content 

  for each term in value: 

    EmitIntermediate(term,1); 

 

 

reduce(String key, Iterator values) 

  // key: term 

  // values: list of counts 

  int result=0; 

  for each v in values: 

    result:=result+value; 

  Emit(term,result); 



Architecture 

taken from [Dean et al., CACM 51(1), 2008] 



Architecture 

• Dedicated master process identifies worker 
processes/machines for map and reduce 

• Master partitions input file into M partitions 

• Partitions assigned to map workers 

• Map workers output to R files on local hard disks 
(by hash code), master notified 

• Each reduce worker reads one output file from 
the map workers (by RPC) & sorts them (many 
output keys per file!) 

• Each reduce worker aggregates data per key 



Failure Handling 

• Master monitors workers 

• On worker failure: 

– All MAP tasks marked failed and submitted to other 
workers (including finished ones – data on local hard 
disk!) 

– All active REDUCE tasks resubmitted to other workers 

– Requires idempotence of operations (workers could 
just be slow, not failed) 



Application Example: PageRank 

• Definition of PageRank 

 

 

• Computed through power iteration: 
values in step i computed from values in step i-1 
and graph structure 

• Highly local computation: requires only old 
pageranks from incident nodes 
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PageRank in MapReduce 

Map: distribute PageRank “credit” to link targets 

... 

Reduce: gather up PageRank “credit” from multiple sources 

to compute new PageRank value 

Iterate until 

convergence 

[Picture probably courtesy of Jimmy Lin or Christophe Bisciglia et al.] 



Initial Step 

MAP: 

(url, content) 

 

(url, (initial pagerank, list(linked urls))) 

 

REDUCE: 

Passes input tuples to output without change 



Iteration Steps 

MAP: 

(url, (PR, list(n linked urls))) 

 

(linked url 1, PR/n), …, (linked url n, PR/n), 

(url, list(n linked urls) 

 

REDUCE: 

(url, PR1),…,(url, PRx) , (url, list(linked urls)) 

 

(url, (PR’, list(linked urls))) 



Termination 

Terminate when values are stable 

(determined by central component) 



Implementations freely available 

• PIG (Yahoo) 
http://research.yahoo.com/node/90 

 

• Hadoop (Apache) 
http://hadoop.apache.org/ 

 

• DryadLinq (Microsoft) 
http://research.microsoft.com/research/sv/DryadLINQ/ 

http://research.yahoo.com/node/90
http://hadoop.apache.org/
http://research.microsoft.com/research/sv/DryadLINQ/


Pig Latin vs. SQL 

SELECT category, AVG(pagerank) 

FROM urls WHERE pagerank > 0.2 

GROUP BY category HAVING COUNT(*) > 106 

 

 

good_urls = FILTER urls BY pagerank > 0.2; 

groups = GROUP good_urls BY category; 

big_groups = FILTER groups BY COUNT(good_urls)>106; 

output = FOREACH big_groups GENERATE 

category, AVG(good_urls.pagerank); 



Part 2 – Summary 

• MapReduce is a powerful framework for 
distributed computing 

• Exploits potential of commodity hardware 

 

• Hadoopify your applications! 

 

• But: Does not solve everything 
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Simplified Preprocessing Procedure 

1. For each document d in the collection 
  for each term t contained in d 
  emit tuple (t,d,score(d,t)) to temp 
storage 

2. Group tuples by term 

3. Build inverted lists for each term 

4. Build access structure Natural steps to exploit distribution: 1+3 
• Assign subcollections to different machines and parse documents at these machines 
• Two alternatives: 

• Generate local index for each subcollection 
• Combine all temp data, partition it by term to different machines, 

create global inverted list for each term 

Map phase of a MapReduce job 

Reduce phase of a MapReduce job 



Two distribution models 
Index can be distributed in two ways: 

• Partitioned by terms (complete index lists at 
different machines); 
often the outcome of index creation 

• Partitioned by documents (subcollections with 
their own indexes at different machines); 
often caused by natural distribution of data 

Result of horizontal partitioning of table, can be seen 
as „distributed database“ with one logical table: 

t1 d1 score(d1,t1) 

t2 d1 score(d1,t2) 

t1 d2 score(d2,t1) 

t2 d2 score(d2,t2) 

t1 d3 score(d3,t1) 

t1 d1 score(d1,t1) 

t2 d1 score(d1,t2) 

t1 d2 score(d2,t1) 

t2 d2 score(d2,t2) 

t1 d3 score(d3,t1) 

t1 d1 score(d1,t1) 

t2 d1 score(d1,t2) 

t1 d2 score(d2,t1) 

t2 d2 score(d2,t2) 

t1 d3 score(d3,t1) 

or 
T1 

T2 

D1 

D2 

T 



QP for Term-Based Partitions 

Can we apply straight-forward techniques from 
distributed databases? 

Assume query with 3 terms at 3 (different) nodes, compute top-1 

t1 d1 1.0 

t1 d2 0.8 

t1 d3 0.6 

t1 d4 0.4 

t1 d5 0.3 

t1 d6 0.2 

t1 d7 0.1 

t2 d1 1.0 

t2 d2 0.3 

t2 d3 0.5 

t2 d4 0.1 

t2 d5 0.1 

t2 d6 0.2 

t2 d7 0.8 

t3 d1 0.1 

t3 d2 0.2 

t3 d3 0.3 

t3 d4 0.2 

t3 d5 0.3 

t3 d6 0.6 

• Ship all to one node (here, the query initiator Q) 

N1 N2 N3 

Q 

• (Semi-)Join at Q, sum scores, project terms away, sort by score 

|x| |x| 

d1 2.1 

d2 1.3 

d3 1.4 

d4 0.7 

d5 0.7 

d7 0.9 

d6 1.0 = 

cost: 3 messages, 20 attribute values 

Can we do better? 



Basic distributed top-k algorithm: TPUT 
Assume query with m terms at m (different) nodes 

Three phases, driven by query initiator Q: 

1. Collect top-k entries from all lists at Q, 
join and sort them by score, 
denote score of current top-k by mink 

2. Collect all entries with score at least mink/m 
from all lists at Q, recompute current top-k and 
mink, prune candidates 

3. Get missing scores for all remaining candidates 

(Easy) Theorem: 
Step 2 does not miss any final top-k results, TPUT is correct. 



TPUT for the example 

t1 d1 1.0 

t1 d2 0.8 

t1 d3 0.6 

t1 d4 0.4 

t1 d5 0.3 

t1 d6 0.2 

t1 d7 0.1 

t2 d1 1.0 

t2 d2 0.3 

t2 d3 0.5 

t2 d4 0.1 

t2 d5 0.1 

t2 d6 0.2 

t2 d7 0.8 

t3 d1 0.1 

t3 d2 0.2 

t3 d3 0.3 

t3 d4 0.2 

t3 d5 0.3 

t3 d6 0.6 

• Each node ships top-1 local entry to Q 

N1 N2 N3 

Q 

• (Semi-)Join at Q, sum scores, project terms away, sort by score 

|x| |x| d1 2.0 

d6 0.6 
= 

cost: 9 messages, 9 attribute values 

t1 d1 1.0 t2 d1 1.0 t3 d6 0.6 
mink=2.0 

• Each node ships entries with score mink/3 to Q 

t1 d2 0.8 t2 d7 0.8 

• Update scores at Q 

d1 2.0 

d2 0.8 

d7 0.8 

d6 0.6 

2.0+0.6=2.6 
0.8+2.0/3+0.6 > mink 
0.8+2.0/3+0.6 > mink 
0.6+2.0/3+2.0/3  mink 

• Get missing scores for remaining candidates, update scores 

t1 d7 0.1 t2 d2 0.3 

t3 d1 0.1 

d1 2.1 

d7 0.9 

d2 1.3 

t3 d2 0.2 



Improvements for TPUT 

• Locality: Execute query at node with longest list, 
send only result to Q 

• Approximation: Drop last phase, drop some lists 
(but: which lists?) 

• Hierarchically group operators 

• Distribute mink threshold not uniformly, but in a 
way that minimizes (estimated) number of 
values to transfer 

[From Neumann et al., Distributed top-k aggregation queries at large, 2009] 



Outline 

• Efficient Query Processing 
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– Scheduling 1x1 

– Approximation Algorithms 
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• Efficient Precomputation 

• Efficient Distributed Query Processing 

– Term-based partitions 

– Document-based partitions 



2 important use cases for doc-based p. 
• Distributed indexing (always „cooperative“) 

– scale out indexing by distributing existing collection 
over many nodes 

– Keep index at each node (plus optional extra nodes) 

 scale out query processing as well (indexes in 
memory) 

• Federation of independent search engines 
• Document partitions built independently (crawlers, 

digital libraries, archives) 

• Local indexes built independently 

• Perform federated queries over all search engines 
(examples: excite.com, metager.de) 



2 important use cases for doc-based p. 
• Distributed indexing (always „cooperative“) 

– scale out indexing by distributing existing collection 
over many nodes 

– Keep index at each node (plus optional extra nodes) 

 scale out query processing as well (indexes in 
memory) 

• Federation of independent search engines 
• Document partitions built independently (crawlers, 

digital libraries, archives) 

• Local indexes built independently 

• Perform federated queries over all search engines 
(examples: excite.com, metager.de) 

Important distinction: 
•cooperative sources provide details about scores (implementations, 

parameters, statistics, …) and allow partial access to their collection 
(e.g., for computing new statistics) 

•uncooperative sources provide only a query-based interface and 
no access to internal operations (only sampling possible) 



QP for doc-based partitions 

• Documents distributed over multiple servers 
(may or may not include duplicates) 

• Straight-forward top-k query processing: 

– Submit top-k query to all servers 

– Collect results at dedicated machine & combine to overall top-k 

t1 d1 1.0 t1 d2 0.8 t1 d3 0.6 

t1 d4 0.4 t1 d5 0.3 t1 d6 0.2 

t1 d7 0.1 

t2 d1 1.0 t2 d2 0.3 t2 d3 0.5 

t2 d4 0.1 

t2 d5 0.1 t2 d6 0.2 t2 d7 0.8 t3 d1 0.1 t3 d2 0.2 t3 d3 0.3 

t3 d4 0.2 t3 d5 0.3 t3 d6 0.6 

D1 D2 D0 

d1 2.1 d2 1.3 d3 1.4 

|x| |x| |x| 

d1 2.1 

cost: 3 messages, 3 attribute values 
Two questions: 
1. Is this always correct? 
2. Is this always efficient? 



Correctness under score equivalence 

• Correctness:  
combination of local top-k results identical to 
top-k result in unpartitioned collection 

• straight-forward for partitioned database 

• Not necessarily true for distributed search engine: 
– Indexes may be build locally 

– Scores may be computed locally (with local document 
frequencies!)  

• Solution: Make sure that local and global scores are 
equivalent (e.g., keep global document freq.) 

• Additional complication: Local optimizations (pruning of 
entries with low scores, …) 



What if score equivalence is impossible? 
• Scores may be incomparable (different scoring models 

or even no scores at all, e.g., Google) 

• Result Merging (or Fusion) in such settings: 

– Round Robin: 
• Order sources by expected usefulness Si (see later) 

• Pick result 1 from source 1, result 1 from source 2, etc. 

– Use source-normalized scores: 
• Normalize scores for all docs from a source to [1.0;0.0] 

• Multiply scores by expected usefulness to get sourced-normalized 
scores 

• Rank documents in order of sourced-normalized score 

– Use machine learning to predict scores: 
• Collect samples of each collection in central place 

• Learn correllation of result scores on centralized sample and in each 
collection (from large training set of queries) 



Improving Efficiency: Two Paths 
• Reduce number of results per partition 

– For global top-k, usually local top-k‘ sufficient 
(with k‘<<k) 

– But: safe choice of local k‘ difficult (depends on scores 
of local results), estimation based on local score 
distribution (done at central node!) 

– Approximate, not exact query results  

• Reduce number of partitions accessed 
– Many partitions have no (or hardly any) good results 

(esp. in federations over multiple domains) 

– Preselect a few good partitions for querying based on 
expected usefulness („collection selection problem“) 

– Approximate, not exact results 



Collection Selection: CORI 
Basic approach: 

Rank collections similar to documents for a query 
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Importance of term t 
in collection dbi 

Importance of term t 
for collection selection  

dfi(t): number of documents in dbi that contain term t 
cwi(t): number of words in dbi 
avg(cw): average number of words in collections 
|DB|: number of collections 
cf(t): number of collections that contain term t 

Given query Q={t1,…,tn}, rank sources by average belief  

Belief in dbi for term t 

[Callan et al., 1995] 



Extensions for Collection Selection 
• Consider size of collection: 

larger collection should give more „good“ results [Si, 
2006] 

• Consider overlap of collections: 
if two collections are largely overlapping, consider only 
one of them („diversity“ of collections) [Bender et al., 
2005] 

• Estimate usefulness of collection from sample: 
Estimate number of relevant results from subcollection 
from scores of docs in sample (e.g., ratio of documents 
in sample with score>threshold, divided by sample ratio) 
[Si&Callan, 2003] 



Upwards Down: Document Allocation 

• Goal: Create partitions such that „usually“ a 
small number of collections is sufficient per 
query 

• Options for document allocation: 

– Randomized 

– Group documents per source (e.g., Web server) 

– Group documents per topic: 

• Build coherent clusters of subset of documents 

• Assign remaining docs to clusters 

• Each cluster forms a partition 



Example for Document Allocation 

• TREC ClueWeb09-CatA collection (~500M docs) 

• 50 standard benchmark queries 

• Sample size 1%, 1000 partitions 

figures from [Kulkarni and Callan, 2010] 



Summary: Distributed IR 

• Techniques in general very similar to DDBS 

• Main techniques: 

– Distributed top-k 

– Collection selection 

• Approximative variants very common (unlike in 
distributed databases, but may have applications 
there as well) 
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