
Effizienzaspekte von Information
Retrieval

Ralf Schenkel

This talk includes material from

• Andreas Broschart

• Debapriyo Majumdar

• Martin Theobald

• Gerhard Weikum

• and myself ;-)

Outline

• Efficient Centralized Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

– The Map-Reduce Framework

• Efficient Distributed Query Processing

Part 1 – Efficient Query Processing

General Data Model:

• Set of data items D („documents“)

• Set of attributes T („terms“)

• Each item d:

– Set of attribute values st(d) for all tT
(„term frequencies“, „scores“)

– Importance weight w(d) („page rank“)

Any implementations of values and weights suitable
that satisfy

0  st(d)  1 and 0  w(d)  MAX_WEIGHT

(Simple) Query Model

Input: query q={t1…tn} on D

 „efficient query processing“ on the Web

Output: subset RD of items where

 F(st1(d),…,stn(d)) ≥ θ „score of d for q“

 for some (monotonous) function F

 and some threshold θ

More fancy query models:
Term weights, mandatory terms, negative terms, phrases

Common Instances of this Model

• Boolean (unranked) queries and scores:
st(d)=1 iff d contains t, 0 else

– conjunctive Boolean: „efficient and effective“
F(x1…xn)=x1·…·xn=min(x1…xn)

– disjunctive Boolean: „efficient or effective“
F(x1…xn)=x1+…+xn or F(x1…xn)=max(x1…xn)

– Threshold θ=1 in both cases

Common Instances of this Model

• Ranked queries:

– st(d)  importance of t in d,
 importance of t in D,
 features of D (like length), …

– most frequent implementation of F:
F(x1…xn)=x1+…+xn (summation)

– Threshold θ = score of kth result in score order

tf*idf,
BM25 Okapi

Focus of part 1:
„Find the k results with highest aggregated score“

Part 1 – Efficient Query Processing

Different aspects of efficiency:

1. user-oriented: minimize query answer time

2. system-oriented: maximize query throughput

3. resource-oriented: minimize disk accesses,
memory footprint, CPU cycles, energy
consumption, …

Difficult to optimize 1+2 together; combine goals:
Maximize throughput such that query answer

time is below 0.1s for 95% of queries

Part 1 – Efficient Query Processing

Different aspects of efficiency:

1. user-oriented: minimize query answer time

2. system-oriented: maximize query throughput

3. resource-oriented: minimize disk accesses,
memory footprint, CPU cycles, energy
consumption, …

Focus of part 1:
Resource-oriented optimization to reduce answer time

Part 1 – Efficient Query Processing

Fundamental data structure: Inverted List

• Inverted List L(t) for a term t consists of
sequence of tuples (d,payload)

• each d contains term t

• payload is additional information

– st(d)

– frequency of t in d

– positions of t in d (for phrases)

Order of tuples depends on processing strategy

Inverted Lists

• Implementation usually as compressed file with
all inverted lists for a collection plus access index

• Alternative implementation (simpler, but slower):
use big database table with index on t (plus
additional columns, depending on sort order)

Lt1 Lt2 Lt3 Lt4

B+ tree on terms

file

t d score(d,t)

Index Compression

Why?

• Smaller index, may fit in memory

• Faster list access when stored on disk

Comes with two kinds of execution cost:

• Compression effort at indexing time

• Decompression effort at query time

Important to keep this low

Compression/Performance Tradeoff

When does it pay off to compress?

[BCC-6]

125 million bytes/s

1000 million bits/s
~1 ns/bit

Method that saves b bits per posting
must decompress posting in ≤ b ns

Rules out many effective bit-based methods (Huffman Coding,
gzip, γ codes, δ codes, ω codes, Golomb/Rice codes, …)

Common method: Δ encoding & vbytes

(101, 5)

(118, 2)

(180, 3)

(622, 4)

(651, 2)

(docid, tf)

d
e

sc
e

n
d

in
g

d
o

ci
d

 (101, 5)

(17, 2)

(62, 3)

(442, 4)

(29, 2)

compute gaps

of docids

0 0 0 101 0 0 0 5

0 0 0 17 0 0 0 2

0 0 0 62 0 0 0 3

0 0 1 186 0 0 0 4

0 0 0 29 0 0 0 2

naive: 2x4 bytes per posting

#bytes per field: 2+1 bytes

Encode bytes with variable length:

00111010 10000011 442:

continuation flag

chunk1 chunk0

0000000110111010

chunk1 chunk0

vbyte

encoding

118: 0000000001110110

chunk0

vbyte

encoding
01110110

chunk0

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

• Efficient Distributed Query Processing

Three main Classes of Algorithms

• Term-at-a-time (TAAT)

• Document-at-a-time (DAAT)

• Score-at-a-time (SAAT)

Term-at-a-Time Processing

• Lists sorted by d (technically, by d‘s unique ID)

• Lists read one after the other

• Partial scores of results maintained

• Implemented by 2-way merge join with skipping

• Results sorted by score to get top-k results

[Anh et al., CIKM 06]

D1: 0.15

D2: 0.51

D3: 0.01

D4: 0.77

D8: 0.99

in
cr

e
as

in
g

ID

Pros:
• Independent of payload
• Best for Boolean queries

Cons:
•Needs to load and consider complete lists
• Requires |D| intermediate variables
• Requires sorting (|D|·log |D| time)

Conjunctive Term-at-a-time Processing

D1: 0.15

D2: 0.51

D3: 0.01

D4: 0.77

D8: 0.99

List 1

D1: 0.15

D2: 0.51

D3: 0.01

D4: 0.77

D8: 0.99

RSet 1

D1: 0.31

D4: 0.02

D7: 0.41

D9: 0.63

x

D1: 0.46

D4: 0.79

RSet 2

D1: 0.05

D2: 0.71

D3: 0.88

D5: 0.16

x

D1: 0.51

RSet 3

Even more skipping
with block-structured
lists:

IDs 1-10

D1: 0.15

D2: 0.51

…

IDs 12-61

…

Blocks of fixed size

Summary of ID range in block

Layered (or Impact-Ordered) Indexes
List 1

so
rt

 b
y

d
e

sc
e

n
d

in
g

sc
o

re

4 Layers of List 1
max=31.7

max=20.5

max=12.8

max=7.2

4 Layers of List 2
max=25.3

max=10.5

max=4.3

max=2.2

so
rt

 b
y

d
es

ce
n

d
in

g
d

o
ci

d

disjunctive query with both lists

Current top-k results
+ candidates

[Strohman & Croft, SIGIR 07] same idea as [Bast et al, VLDB 06]

Document-at-a-Time Processing

• Lists sorted by d (technically, by d‘s unique ID)

• joined by n-way merge join

• Top-k results computed on the fly

[Anh et al., CIKM 06]

D1: 0.15

D2: 0.51

D3: 0.01

D4: 0.77

D8: 0.99

in
cr

e
as

in
g

ID

Pros:
• Can be very efficiencly implemented
• Simple data structures
• Independent of payload
• Requires k intermediate variables

Cons:
• Needs to load and consider complete lists

Efficient DAAT: WAND
so

rt
 b

y
d

e
sc

e
n

d
in

g
d

o
ci

d

max=
15.6

max=
7.5

max=
10.0

max=
9.4

17 5 48 5
current top-1

doc 5: 15.7 7

102
86

75
115

35
doc 42: 26.6

Sort lists in ascending order
of current doccid

[Broder et al., CIKM 03]

Efficient DAAT: WAND
max=
15.6

max=
7.5

max=
10.0

max=
9.4 current top-1

102
86

75
115

doc 42: 26.6

Select enough lists to improve
on current top-1 score

max=10.0 max=17.5 max=33.1

[Broder et al., CIKM 03]

Efficient DAAT: WAND
max=
15.6

max=
7.5

max=
10.0

max=
9.4 current top-1

102 102

110

115

doc 42: 26.6

Move pointers in these lists
to docid in last list (or next)

Score this document, replace
top-1 if possible, resort lists, …

[Broder et al., CIKM 03]

Improvement:
consider per-list blocks
& per-block max score
[Ding&Suel, SIGIR 11]

Score-at-a-Time Processing

Goal:

Avoid reading of complete lists (millions of entries)

Observation:

„Good“ results have high scores

Order lists by descending scores

Have „intelligent“ algorithm with early stopping

[Anh et al., CIKM 06]

List Access Modes

Factors of disk access cost:

Seek time, rotational delay, transfer time

• Sequential (sorted)
– Access tuples in list order

– Seek time & rotational delay amortized over many
accesses

• Random
– Look up list entry for specific item

– Pay full cost (plus lookup cost for tuple position) for
each access

– 10-1000 times more expensive than sequential acc.

Family of Threshold Algorithms

• State-of-the-art algorithm for top-k processing

• Independently developed by different groups:

– Fagin et al. [Fagin03]

– Güntzer et al. [Güntzer01]

– Nepal et al. [Nepal99]

Sorted-Access-Only (NRA) Baseline

• Interleaved scans of index lists (round-robin)

• Maintain current high score bound highi for list i

• Maintain, for each seen item d:

– dimensions E(d) where d has been seen

– worstscore(d), bestscore(d): score bounds for d

Updated whenever d is seen or highi changes, iE(d)

• k items with best worstscores are current top-k; smallest
worstscore in top-k: mink

• Prune item d whenever

• Stop when no candidates
left and ∑highi≤mink (“virtual document check”)

[Fagin et al., JCSS 03], [Güntzer et al., ITCC 01], [Nepal et al., ICDE 99]





)()(

mink)(
dEi

i

dEi

i highds

Example: Top-1 for 2-term query
L1 L2 top-1 item

min-k:

candidates

A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

Example: Top-1 for 2-term query
top-1 item

min-k:

candidates

0.9 ? A:

 score: [0.9;1.9]

0.9

A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

? ? ?:

 score: [0.0;1.9]

L1 L2

Example: Top-1 for 2-term query
top-1 item

min-k:

candidates

0.9 ? A:

score: [0.9;1.9]

0.9

? 1.0 D:

score: [1.0;1.9]

1.0

A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

? ? ?:

 score: [0.0;1.9]

L1 L2

1.0

Example: Top-1 for 2-term query
top-1 item

min-k:

candidates

0.9 ? A:

score: [0.9;1.9]

0.3 ? G:

score: [0.3;1.3]

? 1.0 D:

score: [1.0;1.3]
A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

? ? ?:

 score: [0.0;1.3]

L1 L2

1.0

Example: Top-1 for 2-term query
top-1 item

min-k:

candidates

0.9 ? A:

score: [0.9;1.6]

? 1.0 D:

score: [1.0;1.3]

0.3 ? G:

score: [0.3;1.0]

No more new candidates considered

A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

? ? ?:

 score: [0.0;1.0]

L1 L2

1.0

Example: Top-1 for 2-term query
top-1 item

min-k:

candidates

0.9 ? A:

score: [0.9;1.6]

? 1.0 D:

score: [1.0;1.3]

Algorithm safely terminates after 12 SA

A: 0.9

G: 0.3

H: 0.3

I: 0.25

J: 0.2

K: 0.2

D: 0.15

D: 1.0

E: 0.7

F: 0.7

B: 0.65

C: 0.6

A: 0.3

G: 0.2

? 1.0 D:

score: [1.0;1.25]

0.9 ? A:

score: [0.9;1.55]

? 1.0 D:

score: [1.0;1.2]

0.9 ? A:

score: [0.9;1.5]

? 1.0 D:

score: [1.0;1.2] 0.9 0.4 A:

score: [1.3;1.3]

1.3

L1 L2

Background: TREC Benchmark Collection

• TREC Terabyte collection:
~24 million docs from .gov domain,
~420GB (unpacked) size

• 200 keyword topics from TREC Terabyte 2004/5

• Quality measures:

– Precision at several cutoffs

– Mean average precision (MAP)

• Performance measures:

– Number of (sequential, random) accesses

– Weighted cost C(factor)= #SA + factor · #RA

– Wall-clock answer time

Experiments: NRA

10 50 100 200 500
0

4,000,000

k

 a
v
e
ra

g
e
 c

o
st

 (
#

S
A
 +

 1
0
0
0
 x

 #
R
A
)

full merge

NRA

lower bound

10 50 100 200 500
0

250

k

a
v
e
ra

g
e
 r

u
n
n
in

g
 t

im
e
 (

m
ill

is
e
co

n
d
s)

full merge

NRA

100

Improving Sorted Access

• Reduce overhead:

– Prune candidates not after every step, but after a
batch of steps (100-10000)

• Improve List Structure

• Improve List Selection

[Bast et al., VLDB 06]

Inverted block-index

Lists are first sorted by
score

each block
sorted by
item-id

3 3 3

2 2 2

1 1 1

Top-k algorithm with block-index

1 1 1

2 2

3 3

1 1 1

2 2 2

3 3 3

full-merge

blocks are sorted by item
ids, efficiently merged by
full-merge!

and so on…

full merge

pruned

Sorted access scheduling

List 1 List 2 List
3

Inverted
Block-Index

General Paradigm

Sorted access scheduling

List 1 List 2 List
3

b1

1

b2

1

b3

1

b1

2

b2

2

b3

2

b1

3

b2

3

b3

3

b1

4

b2

4

b3

4

General Paradigm
• We assign benefits to every block of each list

• Optimization problem
– Goal: choose a total of 3 blocks from any of the

lists such that the total benefit is maximized

– This problem is NP-Hard, the well known
Knapsack problem reduces to it

– But, since the number of blocks to choose and
number of lists to choose from are very small,
we can solve it exactly by enumerating all
possibilities

– We choose the schedule with maximum
benefit, and continue to next round

Inverted
Block-Index

Sorted access scheduling

List 1 List 2 List
3

b1

1

b2

1

b3

1

b1

2

b2

2

b3

2

b1

3

b2

3

b3

3

b1

4

b2

4

b3

4

Inverted
Block-Index

General Paradigm
• We assign benefits to every block of each list

• Optimization problem
– Goal: choose a total of 3 blocks from any of the

lists such that the total benefit is maximized

– This problem is NP-Hard, the well known
Knapsack problem reduces to it

– But, since the number of blocks to choose and
number of lists to choose from are very small,
we can solve it exactly by enumerating all
possibilities

– We choose the schedule with maximum
benefit, and continue to next round

Sorted access scheduling

List 1 List 2 List
3

b1

1

b2

1

b3

1

b1

2

b2

2

b3

2

b1

3

b2

3

b3

3

b1

4

b2

4

b3

4

Inverted
Block-Index

General Paradigm
• We assign benefits to every block of each list

• Optimization problem
– Goal: choose a total of 3 blocks from any of the

lists such that the total benefit is maximized

– This problem is NP-Hard, the well known
Knapsack problem reduces to it

– But, since the number of blocks to choose and
number of lists to choose from are very small,
we can solve it exactly by enumerating all
possibilities

– We choose the schedule with maximum
benefit, and continue to next round

Sorted access scheduling

List 1 List 2 List
3

Knapsack for Score Reduction (KSR)

• Pre-compute score reduction ij of every block
of each list : (max-score of the block – min-
score of the block)

Inverted
Block-Index

List 1 List 2 List
3

31

32

Sorted access scheduling

Knapsack for Score Reduction (KSR)

• Pre-compute score reduction ij of every block
of each list : (max-score of the block – min-
score of the block)

• Candidate item d is already seen in list 3. If we
scan list 3 further, score sd and best-score bd of
d do not change

• In list 2, d is not yet seen. If we scan one block
from list 2

– with high probability d will not be not
found in that block: best-score bd of d
decreases by 22

• Benefit of block B in list i

d B (1 - Pr[d found in B]) » d B

sum taken over all candidates d not yet seen in list
i

Inverted
Block-Index

List 1 List 2 List
3

31

32

item d
[sd,bd]

Sorted access scheduling

List 1 List 2 List
3

Knapsack for Benefit Aggregation (KBA)

• Pre-compute expected score eij of an item seen in
block j of list i : (average score of the block)

• Pre-compute score reduction ij of every block of
each list : (max-score of the block – min-score of the
block)

Inverted
Block-Index

List 1 List 2 List
3

e11
e2

1
e31

e12
e2

2
e32

e13
e2

3
e33

e14
e2

4
e34

31

32

Sorted access scheduling
Knapsack for Benefit Aggregation (KBA)

• Pre-compute expected score eij of an item seen in
block j of list i : (average score of the block)

• Pre-compute score reduction ij of every block of each
list : (max-score of the block – min-score of the block)

• Candidate item d is already seen in list 3. If we scan list
3 further, score sd and best-score bd of d do not change

• In list 2, d is not yet seen. If we scan one block from list
2

– either d is found in that block: score sd of d
increases, expected increase = e22

– or d is not found in that block: best-score bd of d
decreases by 22

• Benefit of block B in list i

d eB Pr[d found in B] + B (1 - Pr[d found in B])

The sum is taken over all candidates d not yet seen in list i

Inverted
Block-Index

List 1 List 2 List
3

e11
e2

1
e31

e12
e2

2
e32

e13
e2

3
e33

e14
e2

4
e34

31

32

item d
[sd,bd]

Random Accesses

Two main purposes for random accesses:

• Can speed up execution

• Some predicates cannot be read from sorted lists
(„X and not Y“) => expensive predicates

Scheduling problem:

• When perform RA for which item to which list?

Random Access Scheduling – When

• Immediately when an item is seen (TA)

– Scores always correct

– No need for score bounds & candidates

– Most RA are wasted (items seen again later)

– Really slow if RA are expensive

• Balanced: after C sorted accesses, do 1 RA
(Combined Algorithm, CA)

– Faster than TA

– Most RA are still wasted

Random Access Scheduling – When

• LAST heuristics: switch from SA to RA when

– All possible candidates have been seen

– expected future cost for RA is below the cost already
spent for SA

• Cost spent for SA: known by bookkeeping

• (simplified) cost expected for RA:

 
d dEi

C
)(

Rationale behind this:
Do expensive RA as late as possible

to avoid wasting them

Experiments: TREC

10 50 100 200 500
0

4,000,000

k

 a
v
e
ra

g
e
 c

o
st

 (
#

S
A
 +

 1
0
0
0
 x

 #
R
A
)

full merge

NRA

CA

KBA+LAST

lower bound

10 50 100 200 500
0

250

k

a
v
e
ra

g
e
 r

u
n
n
in

g
 t

im
e
 (

m
ill

is
e
co

n
d
s)

full merge

NRA

KBA+LAST
100

TREC Terabyte benchmark collection

• over 25 million documents, 426 GB raw data

• 50 queries from TREC 2005 adhoc task

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

• Efficient Distributed Query Processing

Rationale for Approximation Algorithms

• Scoring functions are (well-founded) heuristics,
not the gold standard

• Users don’t care about the exact top-k results,
but about relevant results

• Many relevant results beyond the top-k

• Often one relevant result is enough

Threshold algorithms may be overly conservative

Evolution of a Candidate’s Score

 scan
depth

drop d

from the
candidate

queue

 Approximate top-k
 “What is the probability that d qualifies for the top-k ?”

bestscore(d)

worstscore(d)

min-k

score
Worst- and best-scores
slowly converge to final
score

Add d to top-k result, if
worstscore(d) > min-k

Drop d only if

 bestscore(d) < min-k,
otherwise keep it in
candidate queue

 Overly conservative
threshold & long sequential
index scans

TA family of algorithms based on invariant (with sum as aggr)

i i i
i E(d) i E(d) i E(d)

s (d) s(d) s (d) high  
  

  

worstscore(d) bestscore(d)

where the random variable Si has some (postulated and/or estimated)
distribution in the interval (0,highi]

Probabilistic Guarantees
TA family of algorithms based on invariant (with sum as aggr)

i i i
i E(d) i E(d) i E(d)

s (d) s(d) s (d) high  
  

  

Relaxed into probabilistic invariant

i i
i E(d) i E(d)

p(d) : P[s(d)] P[s (d) S threshold]  
 

    

i i i
i E(d) i E(d) i E(d)

P[S threshold s (d)] : P[S ']   
  

     

f: 0.5

b: 0.4

c: 0.35

a: 0.3

h: 0.1

d: 0.1

a: 0.55

b: 0.2

f: 0.2

g: 0.2

c: 0.1

h: 0.35

d: 0.35

b: 0.2

a: 0.1

c: 0.05

f: 0.05

S1
S2 S3

• Discard candidates
 with p(d) ≤ 
• Exit index scan when
 candidate list empty

highi

0

0,2

0,4

0,6

0,8

1

1,2

 Probabilistic Threshold Test

•fitting Poisson distribution (or Poisson mixture)

• over equidistant values:

• easy and exact convolution

• distribution approximated by histograms:

• precomputed for each dimension

• dynamic convolution at query-execution time

with independent Si‘s or with correlated Si‘s

)!1(
][

1







j
evdP

j
ii

j



engineering-wise
histograms work best!

0

f2(x)

1 high2

f3(x)

high3 1 0

 
cand item d
with
2  E(d),
3  E(d)

Convolution
(f2(x), f3(x))

2 0 δ(d)

Probabilistic Guarantees:
E[relative precision @ k] = 1-
E[relative recall @ k] = 1-

 NRA Prob-Top-k
#sorted accesses 2,263,652 527,980
elapsed time [s] 148.7 15.9
max queue size 10849 400
relative recall 1 0.69
rank distance 0 39.5
score error 0 0.031

Results for .Gov Queries
on .GOV corpus from TREC-12 Web track:
1.25 Mio. docs (html, pdf, etc.)

50 keyword queries, e.g.:
• „Lewis Clark expedition“,
• „juvenile delinquency“,
• „legalization Marihuana“,
• „air bag safety reducing injuries death facts“

.Gov Expanded Queries
on .GOV corpus with query expansion based on WordNet synonyms:
50 keyword queries, e.g.:
• „juvenile delinquency youth minor crime law jurisdiction
 offense prevention“,
• „legalization marijuana cannabis drug soft leaves plant smoked
 chewed euphoric abuse substance possession control pot grass
 dope weed smoke“

 NRA Prob-Top-k
#sorted accesses 22,403,490 18,287,636
elapsed time [s] 7908 1066
max queue size 70896 400
relative recall 1 0.88
rank distance 0 14.5
score error 0 0.035

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Query Expansion

• Proximity-Aware Retrieval

• Top-k with Constrained Budget

• Efficient Precomputation

• Efficient Distributed Query Processing

Including Term Expansion

Problem: Users use different terms for similar things

 poor recall (missing relevant results)

Solution:

1. Define notion of similar terms

2. Expand queries with similar terms

3. Modify scoring function for expanded queries

Example:
MPI, MPII, MPI-INF, MPI-CS, Max-Planck-Institut, D5,
AG5, DB&IS, MMCI, UdS, Saarland University, …

[Theobald et al., SIGIR 05]

Heuristics for finding similar terms

Co-Occurrence heuristics:

Terms t1 and t2 similar if they occur (almost) always together

|)(||)(|

|)()(|2
),(

21

21
21

tdocstdocs

tdocstdocs
ttsim






|)(|

|)()(|
]|[),(

2

21
2121

tdocs

tdocstdocs
ttPttsim




Specialization heuristics:

Term t2 specialization of t1 if t1 occurs (almost) whenever t2 occurs

Ontology-Based Query Expansion

wizard

intellectual

artist

alchemist

director
primadonna

lecturer

professor

teacher

educator

scholar

academic,
academician,
faculty member

scientist

researcher

HYPONYM (0.7)

Thesaurus/Ontology:
concepts, relationships, glosses
from WordNet, Gazetteers,
Web forms & tables, Wikipedia

relationships quantified by
statistical correlation measures

Similarity conditions like
~Professor ~course ~IR

Query expansion

Weighted expanded query
Example:
(professor lecturer(0.7) scholar(0.6) ...)
 (course class(1.0) seminar(0.84) ...)
(„IR“ „Web search“ (0.653) ...)

disambiguation

δ-exp(x)={w|sim(x,w)>δ}

Efficient top-k search
with dynamic expansion

better recall, but possibly
worse precision (due to

topic drift)

investigator

mentor

Scoring Expanded Queries

Naive approach:

For query term t, add similar terms t‘ with sim(t,t‘)>δ to query

Better: auto-tuning incremental expansion [SIGIR’05]

For query term t, consider only expansion with

highest combined score per item

)()',(max)('
'

isttsimis t
Tt

t 


„international crime“ expanded by „mafia camorra yakuza …“
But:
„transportation disaster“ expanded by „train car bus plane …“

Result quality drops due to topic drift

92 0.9

67 0.9

52 0.9

44 0.8

55 0.8

scholar

*0.6

Consider expandable content condition Professor

with score

Incremental Query Expansion

course

57 0.6

44 0.4

52 0.4

33 0.3

75 0.3

..
.

professor

thesaurus/ontology

max tT { sim(Professor,t)*st(i) }

professor

lecturer 0.7
scholar 0.6
academic 0.53
scientist 0.5

Dynamic query expansion with incremental, on-demand
merging of additional index lists

+ much more efficient than threshold-based expansion
+ no threshold tuning
+ better recall, no topic drift

12 0.9

14 0.8

28 0.6

17 0.55

61 0.5

44 0.5

37 0.9

44 0.8

22 0.7

23 0.65

51 0.6

52 0.6

lecturer

*0.7

..
.

..
. ..

.

..
.

Effectiveness of Incremental Expansion
Approximation

Efficiency of Incremental Expansion

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Query Expansion

• Proximity-Aware Retrieval

• Top-k with Constrained Budget

• Efficient Precomputation

• Efficient Distributed Query Processing

Motivation for Text Proximity Scoring

„Bag of words“ without term proximity

sometimes yields unsatisfactory results

Phrase queries can avoid such bad results.
But: prevent also many potentially good results.

All query terms individually important, but appear in different paragraphs.

Example: query: Chilean pianists

1st paragraph:
Chilean hotels

2nd paragraph:
British pianists

document

[Schenkel et al., SPIRE 07], [Broschart et al., Grundlagen von Datenbanken 08]

Motivation for Text Proximity Scoring

1st paragraph:
Chilean hotels

2nd paragraph:
British pianists

document

Chilean hotels …

Chilean hotels usually offer …

Chilean specialty …

British pianists …

The pianist performed …

The live show of the pianist …

Idea of proximity scores:
Reward occurrences of different query terms in close proximity

What is the best proximity score?

#1 for all test beds: Büttcher et al.

[PhD thesis Andreas Broschart – defense next week]

Proximity-enhanced scoring
Büttcher et al., SIGIR 2006:

linear combination of content score and

BM25-style proximity score

adjacent query term in

content score proximity score

Example: Computation of acc

It1 took2 the3 sea4 a5 thousand6 years,7

A8 thousand9 years10 to11 trace12

The13 granite14 features15 of16 this17 cliff,18

In19 crag20 and21 scarp22 and23 base.24

Query: {sea, years, cliff}

That‘s great, but…

Experiments on TREC collection:

Implementation of this score in a top-k-style engine
with precomputed inverted lists?

Towards an efficient implementation

Problem: acc(d,t) based on adjacent query terms

But: queries not known at index build time
=> we need a query-independent index!

adjacent query term in

every query term in

Solution:

Build inverted list with for all term pairs

Document length (in K) does not fit in this framework
=> drop document length (set b=0)

Index Structures and Results

d7:3.0

d68:0.7

d61:0.5

d10:0.2

PXL

(california,

hotel)

CL

(california,

hotel)

d7:(3,8.6,4.5)

d68:(0.7,9.1,1.5)

d61:(0.5,3.0,7.2)

d10:(0.2,2.0,1.7)

TL(hotel)

d68:9.1

d7:8.6

d73:5.9

d73:9.3

d61:7.2

d78:5.0

d7:4.5 d8:4.6

TL(california)

d
e

s
c

e
n

d
in

g
 s

c
o

re

What about the index size?

Construction of query-independent index failed (too slow!)*

randomly sampled 1,500,000 term pairs:
1.2% nonempty proximity lists

keeping all proximity lists: infeasible

Pruning might be the solution:

d
e
s
c
e
n
d
in

g
 s

c
o
re

horizontal pruning vertical pruning

horizontal pruning and

*we fixed that now

Different horizontal pruning methods

• limit distance of term occurrences

• limit proximity score

• limit list size to a constant (from 500 to 3,000 tuples)

• Carmel et al. [SIGIR 2001]: static index pruning

 drop index entries having scores below ε·top-k score

• combinations (e.g., limit list size + static index pruning)

Horizontal pruning helps a lot

Index size: in bytes (estimated)

Index size: in million tuples (estimated)

Index size of (real) file-based index

Top-10 retrieval: unpruned vs. pruned lists

Query Processing with Merge Joins

TL(hotel)

d73:9,3

d61:7,2

d78:5,0

d7:4,5

d68:9,1

d7:8,6

d73:5,9

d8:4,6

TL(california)

d
e
s
c
e
n
d
in

g
 s

c
o
re

TL(hotel)

d7:4,5

d61:7,2

d73:9,3

d78:5,0

d7:8,6

d8:4,6

d68:9,1

d73:5,9

TL(california)

in
c
re

a
s
in

g
 i
d

merge join

top-k results
No need for top-k overhead!

threshold

prune and resort index lists

sort

Evaluation

– Apply compression to docid-ordered index lists:

• docid values: delta-encoding + v-byte encoding

• scores: v-byte encoding (normalization  ≤ 2bytes each)

80

Static index pruning for TL+CL
Our pruning approach

– keep all pair lists (more precise: CLs)

– tune list length and

– minimum -score and text window size W=10 for CLs

 : index for collection with TLs and CLs cut after entries

and only keeping CL tuples with (and text window W=10)

TL(t1) TL(t2) CL(t1,t2)

tuples

Index tuning
Two optimization goals:

• effectiveness-oriented index tuning:
best retrieval quality within index size constraint (then minimize size)

• efficiency-oriented index tuning:
at least BM25 quality and query processing as fast as possible.

Available input data:

• absolute index quality tuning:
we have relevance assessments

• relative index quality tuning:
we do not have relevance assessments

81

relevance
assessments

no relevance
assessments

effectiveness efficiency

optimization goals

in
p

u
t

d
at

a
[Broschart2012]

Absolute index quality tuning:

input: training topics + their relevance assessments

 : average quality of top-k results (e.g., P@k) over on index

effectiveness-oriented: maximize

Index quality measures

82

Goal: choose pruning parameters and for a given collection ,

an upper limit for the index size, and a result cardinality

 s.t. the index quality measure is maximized.

Relevance

assessments

Maximize precision for all feasible indexes:

equally high precision of and

Example ()

Pick index with smaller index size

Top-k results of

Absolute index quality tuning:

input: training topics + their relevance assessments

 : average quality of top-k results (e.g., P@k) over on index

Index quality measures

83

Goal: choose pruning parameters and for a given collection ,

an upper limit for the index size, and a result cardinality

 s.t. the index quality measure is maximized.

efficiency-oriented: maximize

Example ()

Lowest length for = maximal index quality

Warm cache comparison to BMW

84

50,000 queries from TREC Terabyte Efficiency Track 2005:
compare fastest index (l,m)= (310,0.05) (efficiency-oriented index tuning) to state-of
the art DAAT-algorithm BMW. Use LRU cache of varying size.

Speedup of our approach: factor 7 for top-10, factor 9 for top-100 retrieval

(cache hit ratio 50% vs less than 4%)

Index size: (310,0.05): 94.9GB, : 10.5GB, : 221.0GB

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Query Expansion

• Proximity-Aware Retrieval

• Top-k with Constrained Budget

• Efficient Precomputation

• Efficient Distributed Query Processing

Dual Optimization Problem

So far:

 Minimize answer time for optimal results

 But: this may take too long (several seconds).

Now:

 Maximize result quality for given answer time

 (or processing cost)

User-oriented efficiency measure

[Shmueli-Scheuer et al., ICDE 09]

Classes of Top-k Algorithms

• Budget-Keeping Algorithms:
Execution cost never exceeds predefined limit

• Budget-Oblivious Algorithms:
Scheduler does not know cost limit
(Anytime-algorithms)

• Budget-Aware Algorithms:
Scheduler knows cost limit in advance, optimizes
for result quality when limit is hit

Measuring Result Quality

Gold standard:

Results Ropt of top-k algorithm with unlimited budget

Goal:

Optimize relative overlap of results R with Ropt

Traces for a query

Trace: sequence of steps performed by an algorithm

– Sequential scan in a list (cost 1)

– Random access to a previously read item (cost C)

Cost of a trace: sum of cost of its steps

Results of a trace: Results of a top-k algorithm performing
the steps of the trace in this order

Optimization problem

Given a query with the corresponding lists,

find a trace with cost ≤ B with a result that

maximizes relative overlap with Ropt

This is a nontrivial problem.

C=3 (cost for random access)

Final top-2 result: {d,t}

Correct result requires at least
budget 9 (4SA in L1, then 2RA to
L2 for d and t)

For precision 0.5, we need at
least budget 6 (t)

TA: budget 12 to find {t}, budget 16 to find {d,t}

NRA with round-robin: 8 steps to find {d}, 10 steps for {d,t}

Results depend on clever scheduling of SA and RA

Heuristics for SA scheduling 1

Two execution phases (without sharp transition):

• Gathering: Find good candidate items (with high scores)
that may be in final top-k

• Reducing: Decide for k results in the final top-k (reducing
score bounds by dropping list high score bounds)

Rule of thumb: Mediocre scores don’t help

Heuristics for SA Scheduling 2

Schedule batches of size b (b<<budget)

Utility functions for performing x scans on list i:

• Based on average score

• Based on score drop

Heuristics for SA Scheduling 3

Combined utility for optimization:

where α depends on the phase:

α =

1, if less than k different items have been seen

, else

probability that c will move to the top-k

Heuristics for SA Scheduling 4

Fair scheduling of the next b accesses:

Assign to each list Li a number SALi of SA

More complex (and more effective) heuristics

Experiments: SA Scheduling

RA Scheduling is a Lot More Difficult

Key questions to answer:

• When to switch from SA to RA?

– Need to have seen „enough“ items

– Need to have „enough“ budget left

• Which items to access?

– Goal: RA only for „good“ items, not to eliminate
candidates

Some results, but far from real understanding

Part 1 – Uncovered Issues

• Inverted file organization, compression, …

• Caching of (partial) results

• Hardware issues
– Multicore CPUs

– Memory hierarchies (CPU caches, flash disks)

– Nonstandard hardware (FPGA, GPU)

• Parallel and Distributed Retrieval
– Distribute & replicate lists over different machines

– Query distributed data over the Web

• XML retrieval

• …

Part 1 – Summary

• Top-k processing central part of search engines

• Basic problem well understood in the literature

• Good engineering can make the difference

• Many interesting problems still out there

– Heuristics are good, but guarantees would be better.

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

– The Map-Reduce Framework

• Efficient Distributed Query Processing

Web-Scale Computation

Many problems cannot be easily scaled to the Web

(about 20TB per Google crawl)

(commoncrawl.org: 5 billion pages, 60TB)

• Document inversion

• PageRank etc. computation

• Web log mining

• Host statistics

– Term distribution per host

– Accesses per host

Motivation

Precomputation on 20TB of data?

 Easy, we have paris: 64 cores, 192 GB RAM
titan: 16 cores, 256 GB RAM

25,000€  1625.50 €/core, 48.83 €/GB

ALDI Süd, 27.09.2012:
4 cores, 4GB RAM,399€
 99.75 €/core,

 99.75 €/GB

himalia: 16 cores, 512 GB RAM

Large Clusters of Commodity Hardware

• Thousands of off-the-shelf networked PCs

• Hardware failures (of single machines) common

• Harddrive failures common

• Distributed Programs to exploit full power
(RPC, CORBA, MPI, WebServices, REST, ...?)

MapReduce Features

• Complete solution for distributed computing

• Simple, but powerful interface

• Implementation within hours, not weeks

• Detects machine failures and redistributes work

• Avoids data loss due to harddisk failures
(together with distributed file system)

Widely used at Google for daily business
(2 mio MapReduce jobs in Sep 07 on 15TB each, 400s each)

[Dean et al., CACM 51(1), 2008]

MapReduce by Example

Problem: Compute document frequencies

• Input: data with keys (docs with docids/urls)

• Output: aggregated data (terms with counts)

Solved by two functions (provided by user):

• MAP: partition input data by output key (term)

• REDUCE: aggregate data for each output key

Automatically executed in a distributed fashion

MapReduce by Example

map(String key, String value)

 // key: document name

 // value: document content

 for each term in value:

 EmitIntermediate(term,1);

reduce(String key, Iterator values)

 // key: term

 // values: list of counts

 int result=0;

 for each v in values:

 result:=result+value;

 Emit(term,result);

Architecture

taken from [Dean et al., CACM 51(1), 2008]

Architecture

• Dedicated master process identifies worker
processes/machines for map and reduce

• Master partitions input file into M partitions

• Partitions assigned to map workers

• Map workers output to R files on local hard disks
(by hash code), master notified

• Each reduce worker reads one output file from
the map workers (by RPC) & sorts them (many
output keys per file!)

• Each reduce worker aggregates data per key

Failure Handling

• Master monitors workers

• On worker failure:

– All MAP tasks marked failed and submitted to other
workers (including finished ones – data on local hard
disk!)

– All active REDUCE tasks resubmitted to other workers

– Requires idempotence of operations (workers could
just be slow, not failed)

Application Example: PageRank

• Definition of PageRank

• Computed through power iteration:
values in step i computed from values in step i-1
and graph structure

• Highly local computation: requires only old
pageranks from incident nodes

)1(
)outdeg(

)(
)(

),(

  
Evu u

uPR
vPR

PageRank in MapReduce

Map: distribute PageRank “credit” to link targets

...

Reduce: gather up PageRank “credit” from multiple sources

to compute new PageRank value

Iterate until

convergence

[Picture probably courtesy of Jimmy Lin or Christophe Bisciglia et al.]

Initial Step

MAP:

(url, content)

(url, (initial pagerank, list(linked urls)))

REDUCE:

Passes input tuples to output without change

Iteration Steps

MAP:

(url, (PR, list(n linked urls)))

(linked url 1, PR/n), …, (linked url n, PR/n),

(url, list(n linked urls)

REDUCE:

(url, PR1),…,(url, PRx) , (url, list(linked urls))

(url, (PR’, list(linked urls)))

Termination

Terminate when values are stable

(determined by central component)

Implementations freely available

• PIG (Yahoo)
http://research.yahoo.com/node/90

• Hadoop (Apache)
http://hadoop.apache.org/

• DryadLinq (Microsoft)
http://research.microsoft.com/research/sv/DryadLINQ/

http://research.yahoo.com/node/90
http://hadoop.apache.org/
http://research.microsoft.com/research/sv/DryadLINQ/

Pig Latin vs. SQL

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT(*) > 106

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>106;

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank);

Part 2 – Summary

• MapReduce is a powerful framework for
distributed computing

• Exploits potential of commodity hardware

• Hadoopify your applications!

• But: Does not solve everything

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

• Efficient Distributed Query Processing

– Term-based partitions

– Document-based partitions

Simplified Preprocessing Procedure

1. For each document d in the collection
 for each term t contained in d
 emit tuple (t,d,score(d,t)) to temp
storage

2. Group tuples by term

3. Build inverted lists for each term

4. Build access structure Natural steps to exploit distribution: 1+3
• Assign subcollections to different machines and parse documents at these machines
• Two alternatives:

• Generate local index for each subcollection
• Combine all temp data, partition it by term to different machines,

create global inverted list for each term

Map phase of a MapReduce job

Reduce phase of a MapReduce job

Two distribution models
Index can be distributed in two ways:

• Partitioned by terms (complete index lists at
different machines);
often the outcome of index creation

• Partitioned by documents (subcollections with
their own indexes at different machines);
often caused by natural distribution of data

Result of horizontal partitioning of table, can be seen
as „distributed database“ with one logical table:

t1 d1 score(d1,t1)

t2 d1 score(d1,t2)

t1 d2 score(d2,t1)

t2 d2 score(d2,t2)

t1 d3 score(d3,t1)

t1 d1 score(d1,t1)

t2 d1 score(d1,t2)

t1 d2 score(d2,t1)

t2 d2 score(d2,t2)

t1 d3 score(d3,t1)

t1 d1 score(d1,t1)

t2 d1 score(d1,t2)

t1 d2 score(d2,t1)

t2 d2 score(d2,t2)

t1 d3 score(d3,t1)

or
T1

T2

D1

D2

T

QP for Term-Based Partitions

Can we apply straight-forward techniques from
distributed databases?

Assume query with 3 terms at 3 (different) nodes, compute top-1

t1 d1 1.0

t1 d2 0.8

t1 d3 0.6

t1 d4 0.4

t1 d5 0.3

t1 d6 0.2

t1 d7 0.1

t2 d1 1.0

t2 d2 0.3

t2 d3 0.5

t2 d4 0.1

t2 d5 0.1

t2 d6 0.2

t2 d7 0.8

t3 d1 0.1

t3 d2 0.2

t3 d3 0.3

t3 d4 0.2

t3 d5 0.3

t3 d6 0.6

• Ship all to one node (here, the query initiator Q)

N1 N2 N3

Q

• (Semi-)Join at Q, sum scores, project terms away, sort by score

|x| |x|

d1 2.1

d2 1.3

d3 1.4

d4 0.7

d5 0.7

d7 0.9

d6 1.0 =

cost: 3 messages, 20 attribute values

Can we do better?

Basic distributed top-k algorithm: TPUT
Assume query with m terms at m (different) nodes

Three phases, driven by query initiator Q:

1. Collect top-k entries from all lists at Q,
join and sort them by score,
denote score of current top-k by mink

2. Collect all entries with score at least mink/m
from all lists at Q, recompute current top-k and
mink, prune candidates

3. Get missing scores for all remaining candidates

(Easy) Theorem:
Step 2 does not miss any final top-k results, TPUT is correct.

TPUT for the example

t1 d1 1.0

t1 d2 0.8

t1 d3 0.6

t1 d4 0.4

t1 d5 0.3

t1 d6 0.2

t1 d7 0.1

t2 d1 1.0

t2 d2 0.3

t2 d3 0.5

t2 d4 0.1

t2 d5 0.1

t2 d6 0.2

t2 d7 0.8

t3 d1 0.1

t3 d2 0.2

t3 d3 0.3

t3 d4 0.2

t3 d5 0.3

t3 d6 0.6

• Each node ships top-1 local entry to Q

N1 N2 N3

Q

• (Semi-)Join at Q, sum scores, project terms away, sort by score

|x| |x| d1 2.0

d6 0.6
=

cost: 9 messages, 9 attribute values

t1 d1 1.0 t2 d1 1.0 t3 d6 0.6
mink=2.0

• Each node ships entries with score mink/3 to Q

t1 d2 0.8 t2 d7 0.8

• Update scores at Q

d1 2.0

d2 0.8

d7 0.8

d6 0.6

2.0+0.6=2.6
0.8+2.0/3+0.6 > mink
0.8+2.0/3+0.6 > mink
0.6+2.0/3+2.0/3  mink

• Get missing scores for remaining candidates, update scores

t1 d7 0.1 t2 d2 0.3

t3 d1 0.1

d1 2.1

d7 0.9

d2 1.3

t3 d2 0.2

Improvements for TPUT

• Locality: Execute query at node with longest list,
send only result to Q

• Approximation: Drop last phase, drop some lists
(but: which lists?)

• Hierarchically group operators

• Distribute mink threshold not uniformly, but in a
way that minimizes (estimated) number of
values to transfer

[From Neumann et al., Distributed top-k aggregation queries at large, 2009]

Outline

• Efficient Query Processing

– Introduction

– Basic Top-k Algorithms

– Scheduling 1x1

– Approximation Algorithms

– Non-Traditional Top-K Processing

• Efficient Precomputation

• Efficient Distributed Query Processing

– Term-based partitions

– Document-based partitions

2 important use cases for doc-based p.
• Distributed indexing (always „cooperative“)

– scale out indexing by distributing existing collection
over many nodes

– Keep index at each node (plus optional extra nodes)

 scale out query processing as well (indexes in
memory)

• Federation of independent search engines
• Document partitions built independently (crawlers,

digital libraries, archives)

• Local indexes built independently

• Perform federated queries over all search engines
(examples: excite.com, metager.de)

2 important use cases for doc-based p.
• Distributed indexing (always „cooperative“)

– scale out indexing by distributing existing collection
over many nodes

– Keep index at each node (plus optional extra nodes)

 scale out query processing as well (indexes in
memory)

• Federation of independent search engines
• Document partitions built independently (crawlers,

digital libraries, archives)

• Local indexes built independently

• Perform federated queries over all search engines
(examples: excite.com, metager.de)

Important distinction:
•cooperative sources provide details about scores (implementations,

parameters, statistics, …) and allow partial access to their collection
(e.g., for computing new statistics)

•uncooperative sources provide only a query-based interface and
no access to internal operations (only sampling possible)

QP for doc-based partitions

• Documents distributed over multiple servers
(may or may not include duplicates)

• Straight-forward top-k query processing:

– Submit top-k query to all servers

– Collect results at dedicated machine & combine to overall top-k

t1 d1 1.0 t1 d2 0.8 t1 d3 0.6

t1 d4 0.4 t1 d5 0.3 t1 d6 0.2

t1 d7 0.1

t2 d1 1.0 t2 d2 0.3 t2 d3 0.5

t2 d4 0.1

t2 d5 0.1 t2 d6 0.2 t2 d7 0.8 t3 d1 0.1 t3 d2 0.2 t3 d3 0.3

t3 d4 0.2 t3 d5 0.3 t3 d6 0.6

D1 D2 D0

d1 2.1 d2 1.3 d3 1.4

|x| |x| |x|

d1 2.1

cost: 3 messages, 3 attribute values
Two questions:
1. Is this always correct?
2. Is this always efficient?

Correctness under score equivalence

• Correctness:
combination of local top-k results identical to
top-k result in unpartitioned collection

• straight-forward for partitioned database

• Not necessarily true for distributed search engine:
– Indexes may be build locally

– Scores may be computed locally (with local document
frequencies!)

• Solution: Make sure that local and global scores are
equivalent (e.g., keep global document freq.)

• Additional complication: Local optimizations (pruning of
entries with low scores, …)

What if score equivalence is impossible?
• Scores may be incomparable (different scoring models

or even no scores at all, e.g., Google)

• Result Merging (or Fusion) in such settings:

– Round Robin:
• Order sources by expected usefulness Si (see later)

• Pick result 1 from source 1, result 1 from source 2, etc.

– Use source-normalized scores:
• Normalize scores for all docs from a source to [1.0;0.0]

• Multiply scores by expected usefulness to get sourced-normalized
scores

• Rank documents in order of sourced-normalized score

– Use machine learning to predict scores:
• Collect samples of each collection in central place

• Learn correllation of result scores on centralized sample and in each
collection (from large training set of queries)

Improving Efficiency: Two Paths
• Reduce number of results per partition

– For global top-k, usually local top-k‘ sufficient
(with k‘<<k)

– But: safe choice of local k‘ difficult (depends on scores
of local results), estimation based on local score
distribution (done at central node!)

– Approximate, not exact query results

• Reduce number of partitions accessed
– Many partitions have no (or hardly any) good results

(esp. in federations over multiple domains)

– Preselect a few good partitions for querying based on
expected usefulness („collection selection problem“)

– Approximate, not exact results

Collection Selection: CORI
Basic approach:

Rank collections similar to documents for a query

0.1||log

)(

5.0||
log

)(





DB

tcf

DB

tI
)(

*15050)(

)(
)(

cwavg

cw
tdf

tdf
tT

i
i

i
i





)()()1()|(tItTbbdbtp ii 

Importance of term t
in collection dbi

Importance of term t
for collection selection

dfi(t): number of documents in dbi that contain term t
cwi(t): number of words in dbi
avg(cw): average number of words in collections
|DB|: number of collections
cf(t): number of collections that contain term t

Given query Q={t1,…,tn}, rank sources by average belief

Belief in dbi for term t

[Callan et al., 1995]

Extensions for Collection Selection
• Consider size of collection:

larger collection should give more „good“ results [Si,
2006]

• Consider overlap of collections:
if two collections are largely overlapping, consider only
one of them („diversity“ of collections) [Bender et al.,
2005]

• Estimate usefulness of collection from sample:
Estimate number of relevant results from subcollection
from scores of docs in sample (e.g., ratio of documents
in sample with score>threshold, divided by sample ratio)
[Si&Callan, 2003]

Upwards Down: Document Allocation

• Goal: Create partitions such that „usually“ a
small number of collections is sufficient per
query

• Options for document allocation:

– Randomized

– Group documents per source (e.g., Web server)

– Group documents per topic:

• Build coherent clusters of subset of documents

• Assign remaining docs to clusters

• Each cluster forms a partition

Example for Document Allocation

• TREC ClueWeb09-CatA collection (~500M docs)

• 50 standard benchmark queries

• Sample size 1%, 1000 partitions

figures from [Kulkarni and Callan, 2010]

Summary: Distributed IR

• Techniques in general very similar to DDBS

• Main techniques:

– Distributed top-k

– Collection selection

• Approximative variants very common (unlike in
distributed databases, but may have applications
there as well)

References 1 – Efficient Centralized QP
[Anh01] V. N. Anh et al: Vector-Space Ranking with Effective Early Termination. SIGIR 2001
[Anh06] V. N. Anh et al: Pruned query evaluation using pre-computed impacts. SIGIR 2006
[Anh06a] V. N. Anh et al: Pruning strategies for mixed-mode querying. CIKM 2006
[Arai07] B. Arai et al. Anytime measures for top-k algorithms. VLDB 2007.
[Bast06] H. Bast et al. IO-Top-k: Index-access optimized top-k query processing. VLDB 2006.
[Broschart12]A. Broschart et al. High-performance processing of text queries with tunable pruned term and term pair indexes, ACM

Trans. Information Syst., 30(1):5, 2012
[Buckley85] C. Buckley et al. Optimization of inverted vector searches. SIGIR 1985.
[Chang02] K. C.-C. Chang et al. Minimal probing: Supporting expensive predicates for top-k queries. SIGMOD 2002.
[Fagin03] R. Fagin et al. Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.
[Güntzer01] U. Güntzer et al. Towards efficient multifeature queries in heterogeneous environments. ITCC 2001.
[Ilyas08] Ihab F. Ilyas et al. A survey of top-k query processing techniques in relational database systems. ACM Computing Surveys,

2008.
[Marian04] A. Marian et al. Evaluating top-k queries over web-accessible databases. ACM Trans. Database Syst., 29(2):319–362,

2004.
[Moffat96] A. Moffat et al. Self-indexing inverted files for fast text retrieval. ACM Trans. Inf. Syst., 14(4):349–379, 1996.
[Nepal99] S. Nepal et al. Query processing issues in image (multimedia) databases. ICDE 1999.
[Schenkel07] R. Schenkel et al. Efficient Text Proximity Search, SPIRE 2007.
[Shmueli09] M. Shmueli-Scheuer et al. Best-effort top-k query processing under budgetary constraints. ICDE 2009.
[Theobald04] M. Theobald et al. Top-k query evaluation with probabilistic guarantees. VLDB 2004.
[Theobald05]M. Theobald et al: Efficient and self-tuning incremental query expansion for top-k query processing. SIGIR 2005.
[Zobel06] J. Zobel et al. Inverted files for text search engines. ACM Computing Surveys 38(2), 2006.
[Strohman07] T. Strohman et al. Efficient document retrieval in main memory. SIGIR, 2007.
[Broder03] A. Broder et al. Efficient query evaluation using a two-level retrieval process. CIKM, 2003.
[Ding11] S. Ding et al. Faster top-k document retrieval using block-max indexes. SIGIR, 2011
[Ding11a] S. Ding et al. Batch query processing for web search engines. WSDM, 2011.
[BCC-4] Stefan Büttcher, Charles L.A. Clarke, Gordon V. Cormack: Information Retrieval, chapter 6 (index compression). MIT

Press, 2010

References 2 – Efficient Precomputation
[Dean04] J. Dean et al. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004.

[DeWitt08] D. DeWitt et al. MapReduce: A major step backwards. The Database Column, January 17, 2008
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html

[He08] B. He et al.Mars: A MapReduce Framework on Graphics Processors. PACT 2008.

[Olston08] C. Olston et al. Pig Latin: A Not-So-Foreign Language for Data Processing. SIGMOD 2008.

[Ranger07] C. Ranger. et al. Evaluating MapReduce for Multi-core and Multiprocessor Systems. HPCA 2007.

[Witten99] I. Witten et al. Managing Gigabytes. Morgan Kaufman, 1999.

[Yang07] H. Yang et a. Map-reduce-merge: simplified relational data processing on large clusters. SIGMOD 2007.

http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html

References 3 – Efficient Distributed QP
• Stefan Büttcher, Charles L.A. Clarke, Gordon V. Cormack: Information Retrieval. MIT Press, 2010

– Chapter 4 for inverted indexes
– Chapters 8-11 for scoring models
– Chapter 14 for parallel IR

• Ihab F. Ilyas, George Beskales, Mohamed A. Soliman: A survey of top-k query processing techniques
in relational database systems. ACM Comput. Surv. 40(4), 2008

• P. Cao, Z. Wang: Efficient top-k query calculation in distributed networks. PODC, pp. 206–215, 2004
• H. Yu, H.G. Li, P.Wu, D. Agrawal, A.E. Abbadi: Efficient processing of distributed top-k queries. DEXA,

pp. 65–74, 2005
• Thomas Neumann, Matthias Bender, Sebastian Michel, Ralf Schenkel, Peter Triantafillou, Gerhard

Weikum: Distributed top-k queries at large. Distributed and Parallel Databases 26:3-27, 2009
• James P. Callan, Zhihong Lu, W. Bruce Croft: Searching Distributed Collections With Inference

Networks. SIGIR, 1995.
• Luo Si and Jamie Callan: Relevant Document Distribution Estimation Method for Resource Selection.

SIGIR, 2003.
• Luo Si: Federated Search of Text Search Engines in Uncooperative Environments. PhD Thesis, CMU,

2006. http://www.lti.cs.cmu.edu/Research/Thesis/LuoSi06.pdf
• Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard Weikum, Christian Zimmer:

Improving Collection Selection with Overlap Awareness in P2P Search Engines. SIGIR, 2005
• Anagha Kulkarni and Jamie Callan: Document Allocation Policies for Selective Searching of Distributed

Indexes. CIKM, 2010.
• Richard McCreadie, Craig Macdonald, Iadh Ounis: MapReduce indexing strategies: Studying

scalability and efficiency. IP&M 48(5):873-888, September 2012

http://www.lti.cs.cmu.edu/Research/Thesis/LuoSi06.pdf

