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Introduction

IR and Geometry

A Language for IR

The geometry and mathematics behind quantum mechanics can
be seen as a ’language’ for expressing the different IR models
[van Rijsbergen, 2004].

Combination of geometry, probability and logics

Leading to non-classical probability theory and logics

Potential unified framework for IR models
Applications in areas outside physics emerging

Quantum Interaction symposia (e.g. [Song et al., 2011])

6 / 143



Introduction

IR and Geometry

IR as Quantum System?
An Analogy

Quantum System IR System

Particles, physical properties in
Hilbert spaces

Documents, relevance, informa-
tion needs in Hilbert Spaces

System state uncertain Information need (IN) uncertain
Observation changes system
state

User interaction changes sys-
tem state

Observations interfere (Heisen-
berg)

Document relevance interferes

Combination of systems Combination of IN facets,
polyrepresentation
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Introduction

IR and Geometry

Brief History of the Quantum Formalism

1890s Max Planck’s hypothesis: energy not continuous but
comes in quantas

1920s Born/Jordan: matrix reformulation of Heisenberg’s work

1930s Dirac/von Neumann: mathematical formulation of
quantum physics (Hilbert space), theory of quantum
measurement, quantum logics
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Quantum Probabilities Introduction

Quantum Formalism

What does this remind you of?
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Quantum Probabilities Introduction

Quantum Formalism

Quantum Formalism

The quantum formalism is build on top of Hilbert spaces
Each finite-dimensional vector space with an inner product is a
Hilbert space [Halmos, 1958]

We focus on finite-dimensional spaces here

A vector space is defined over a field K, e.g R or C
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Complex Numbers

Complex Numbers

Complex number z ∈ C

z = a+ ib, a,b ∈ R, i2 =−1

Polar form: z =
r(cos(φ)+ isin(φ)) = reiφ

with r ∈ R+,φ ∈ [0,2π]

Addition/Multiplication:
z1 = a1+ ib1 = r1eiφ1 ,
z2 = a2+ ib2 = r2eiφ2 :
z1+z2 =(a1+a2)+ i(b1+b2)
z1 ·z2 = r1r2ei(φ1+φ2)

12 / 143



Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Complex Numbers

Complex Numbers

Complex number z ∈ C

z = a+ ib, a,b ∈ R, i2 =−1

Polar form: z =
r(cos(φ)+ isin(φ)) = reiφ

with r ∈ R+,φ ∈ [0,2π]

Complex conjugate
z = a− ib = re−iφ

b = 0⇔ z ∈ R⇔ z = z

Absolute value
|z|=

p

a2+b2 = r =
p

zz
|z|2 = zz
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Vector Space

Vector Space

Set V of objects called vectors satisfying
Addition: ∀x,y ∈ V : x+y ∈ V and

Commutative: x+y = y+x
Associative: (x+y)+z = x+(y+z)
Origin: ∃!O ∈ V : x+O = x ∀x ∈ V
Additive inverse: ∀x ∈ V ∃!−x with x+(−x) = ϕ

Multiplication by scalar: Let α ∈ K be a scalar and x ∈ V . Then
αx is the product of α and x with the properties

Associative: (αβ)x = α(βx)
Distributive:

α(x+y) = αx+αy
(α+β)x = αx+βx
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Vector Space
Example

Example: n-dimensional complex vector space Cn:

x =









x1
...

xn









with xi ∈ C and

x+y =









x1+y1
...

xn +yn









and αx =









αx1
...

αxn








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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Vector Space
Linear Combinations

Linear combination: y = c1x1+ . . .+cnxn

{x1, . . . ,xn} are linearly independent if

c1x1+ . . .+cnxn = 0 iff c1 = c2 = . . .= cn = 0

with 0 being the zero vector
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Vector Space
Basis

(Finite) Basis

A set of n linearly independent vectors B= {x1, . . . ,xn} form a
(finite) basis of a vector space V if every vector in V is a linear
combination of vectors in B:

x = c1x1+ . . .+cnxn =
∑

i

cixi

Example: Canonical basis in Rn (orthonormal basis)

e1 =











1
0
.
0











,e2 =











0
1
.
0











, . . . ,en =











0
0
.
1











with x =
n
∑

i=1

xiei

The number of elements in B is the dimension dim(V) of V
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Vector Space
Subspace

Subspace

A non-empty subset V ′ of a vector space V is a subspace if along with
every pair x,y ∈ V ′, every linear combination αx+βy ∈ V ′.

A subspace is also a vector space

dim(V ′)≤ dim(V)
For each x ∈ V ′, x−x = 0 ∈ V ′ (each subspace passes through
the origin)

Example: Each 2-dimensional plane that passes through the
origin is a subspace of R3
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Hilbert Space
Inner product/1

Hilbert space H: vector space with an inner product

(Complex) Inner Product

A function 〈., .〉 ∈ C with

Conjugate symmetry: 〈x,y〉= 〈y,x〉 (symmetric if 〈., .〉 ∈ R, in
particular 〈x,x〉 ∈ R!)

Linearity:
〈λy,x〉= λ〈x,y〉= 〈y,λx〉
〈x+y,z〉= 〈x,z〉+ 〈y,z〉
Positive definite: 〈x,x〉 ≥ 0 and 〈x,x〉= 0 iff x = 0

for λ ∈ C and x,y,z ∈H
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Hilbert Space
Inner product/2

Properties of the inner product:

Real case (quite obvious):

〈x,αy1+βy2〉= α〈x,y1〉+β〈x,y2〉
Be careful in the complex case:

〈x,αy1+βy2〉 = 〈αy1+βy2,x〉
= α〈y1,x〉+β〈y2,x〉
= α〈x,y1〉+β〈x,y2〉
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Hilbert Space
Inner product/3

There are many possible inner products, they need to make
sense for the application

Inner product example (standard inner product)

〈x,y〉 = x†y =
∑

i

x iyi

= xTy =
∑

i

xiyi if real

with row vectors

x† = (x1, . . . ,xn) (adjoint)

xT = (x1, . . . ,xn) (transpose)
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Hilbert Space
Norm

Norm

||x||=
p

〈x ,x〉
is the norm of a vector x.

Geometric interpretation: length of the vector
||x|| ∈ R
Standard inner product:

||x||=
s

n
∑

i=1

x2
i
=
Æ

x2
1
+ . . .+x2

n

Vector x with ||x||= 1 is called a unit vector , e.g. x =

� 1p
2

1p
2

�
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Hilbert Spaces

Hilbert Space
Orthogonality

Orthogonality

Two vectors x and y are orthogonal if 〈x,y〉= 0

Example (R2):

x =

� 1p
2

1p
2

�

,y =

� 1p
2

− 1p
2

�

Example (C2):

x =

�

i
i

�

,y =

�

i
−i

�

23 / 143



Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Towards Projectors

One of the most important operations for quantum probabilities
are projectors

We need to learn about linear operators and their matrix
representation first (see also [van Rijsbergen, 2004, Chapter 4])
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Linear Operator

Basic operations in a Hilbert space H are performed by linear
operators (a special case of linear maps).

Linear Operator

A linear operator is a map f :H 7→H such that for any scalar λ ∈ C
we have

f (x+λy) = f (x)+λf (y)

Examples: rotation, projection, scaling

Linear operators can be represented by a (square) matrix A

Applying A to vector x: Ax

25 / 143



Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Operators as Matrices

yi =
n
∑

k=1

aik xk
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Product of Transformations
Commutativity

The product of two transformations A and B is defined by the
effect it has on the vector x

ABx means: Apply B to x then apply the result to A

ABx is usually (but not always) different from BAx

If ABx = BAx, that is AB = BA, A and B are said to be
commutative (commuting)

They are non-commutative if AB 6= BA

27 / 143



Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Product of Transformations
Matrix Multiplication

AB = C

cij =
n
∑

k=1

aik bkj
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Product of Transformations
Matrix Multiplication Example

�

1 2
3 4

��

3 4
5 6

�

=

�

13 16
29 36

�

6=
�

15 22
23 34

�

=

�

3 4
5 6

��

1 2
3 4

�

non-communitative

29 / 143



Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Adjoints

Adjoint and Self-Adjoint (Hermitian)

The adjoint of a linear operator (or matrix) A is an operator A† so that

〈A†x,y〉= 〈x,Ay〉
An operator/matrix is self-adjoint (Hermitian) if A = A†.

When the scalars are complex: A† = AT (conjugate transpose)

In the real case: A† = AT   symmetric (AT = A) and self-adjoint
matrices are the same
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Adjoints
Example

Real case:
�

a x
u c

�†

=

�

a u
x c

�

Complex case:

�

a+ ib x− iy
u− iv c+ id

�†

=

�

a− ib u+ iv
x + iy c− id

�

[van Rijsbergen, 2004, p. 55]
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Orthogonal Projector

Orthogonal Projector

An orthogonal projector P is an idempotent, self-adjoint linear operator
in H.

Idempotent: P = PP (P leaves its image unchanged)
There is a one-to-one correspondence between orthogonal
projectors and subspaces

Each vector orthogonal to the subspace projects to 0

We use the notation P to denote the orthogonal projector (a
matrix) that represents a subspace
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Orthogonal Projector
Example

P

z

y = Py

x

Px

P =







1 0 0
0 1 0
0 0 0







z =







0
0
1






orthogonal to P,

hence Pz = 0

y =







0
1
0






contained in P,

so projection has no effect
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Special Projector: Ray

Ray

If x is a unit vector (||x||= 1), then xx† is an orthogonal projector onto
the 1-dimensional subspace defined by x. This projector is called a ray
and denoted Px .

Example (R2):

e1 =

�

1
0

�

e1e†
1
=

�

1
0

�

�

1 0
�

=

�

1 0
0 0

�

= Pe1

Pe1e1 =

�

1 0
0 0

��

1
0

�

=

�

1
0

�

Pe1

�

1
1

�

=

�

1
0

�
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Spectral Theorem

Spectral Theorem

To any self-adjoint matrix A on a finite-dimensional complex inner
product space V there correspond real numbers α1, . . . ,αr and
projectors E1, . . . ,Er , r ≤ dim(V), so that

1 the αj are pairwise distinct;

2 the Ej are mutually orthogonal;

3
∑r

j=1
Ej = I (I is the identity matrix);

4 A =
∑r

j=1
αjEj

Orthogonality: Ei⊥Ej iff EiEj = EiEj = 0
The αj are the distinct eigenvalues of A
The Ej are the subspaces generated by the eigenvectors
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Operators and Projectors

Spectral Theorem
Simple Example

A =







1 0 0
0 0 0
0 0 0






Eigenvalues α1 = 1 α2 = 0

A = α1







1 0 0
0 0 0
0 0 0







︸ ︷︷ ︸

E1

+α2







0 0 0
0 1 0
0 0 1







︸ ︷︷ ︸

E2

Eigenvector e1 =







1
0
0






: e1e†

1
= E1
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Tensor Spaces

Tensor Space

A number of Hilbert spaces H1, . . . ,Hn can be combined to a
composite tensor space H=H1⊗ . . .⊗Hn

If
n

ei
j

o

is an orthonormal basis of Hi , then

⊗

i,j

ei
j

(the tensor product of all combination of basis vectors) is an
orthonormal basis of the tensor space
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Tensor Spaces

Tensor Space
Example

C2
1
⊗C2

2
is a 4-dimensional space C4 with base vectors

¦

e1
1
⊗e2

1
,e1

1
⊗e2

2
,e1

2
⊗e2

1
,e1

2
⊗e2

2

©

(
¦

e1
i

©

and
n

e2
j

o

base vectors of C2
1

and C2
2
, respectively)
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Quantum Probabilities Introduction

Preliminaries: Hilbert Spaces and Inner Products

Tensor Spaces

Tensor Space
Product Operators

If A is an operator in H1 and B is an operator in H2, then A⊗B is
an operator in H1⊗H2 and it is

(A⊗B)(a⊗b) = Aa⊗Bb

for a ∈H1, b ∈H2 and a⊗b ∈H1⊗H2.

A matrix representation for the tensor product is given by the
Kronecker product (see also [Nielsen and Chuang, 2000, p. 74])
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum Probabilities
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum Probabilities
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum and Classical Probabilities

Quantum and Classical Probabilities

Quantum probabilities are used in quantum theory to describe the
behaviour of matter at atomic and subatomic scales

Quantum probabilities are a generalisation of classical probability
theory
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum and Classical Probabilities

Quantum and Classical Probabilities
Correspondance

Sample space Set Hilbert space
Atomic event Element Ray

Event Subset Subspace
Null element Empty set Empty space
Membership Indicator function Projector

Exclusiveness Empty intersection Empty intersection
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Quantum Probabilities Introduction

Quantum Probabilities

Dirac Notation

Dirac Notation

In many textbooks on quantum mechanics a different (and quite
handy) notation is used for vectors, the so-called Dirac notation
(named after Paul Dirac).

Dirac Notation

A vector y in a Hilbert space H is represented by a |y〉, a ket. A bra
〈x | denotes a linear functional (a map f :H 7→ K). Thus the bra(c)ket
〈x |y〉 denotes the inner product 〈x,y〉= x†y = f (y).

〈x |= (|x〉)† (adjoint) if K = C

〈x |= (|x〉)T (transpose) if K = R

Bra linear: 〈x |(α |y〉+β |z〉) = α〈x |y〉+β〈x |z〉
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Quantum Probabilities Introduction

Quantum Probabilities

Dirac Notation

Dyads

Dyads are a special class of operators

Outer product of a ket and a bra (a matrix!): |x〉〈y |
In particular useful to describe (projectors onto) rays: Px = |x〉〈x |
Example:

�

0
1

�

�

0 1
�

=

�

0 0
0 1

�
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Quantum Probabilities Introduction

Quantum Probabilities

Dirac Notation

Notation

Vector x or |x〉
Adjoint x† or 〈x | or A† (for matrices)

Inner product 〈x,y〉 or x†y or 〈x |y〉
Projector S projects onto subspace S (and represents it)

Ray Px ray projector determined by |x〉
Standard probability Pr
Quantum probability bPr
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Quantum Probabilities Introduction

Quantum Probabilities

Events

Events

An event S in quantum probabilities is described by the subspace
S

Atomic events are 1-dimensional subspaces (rays)
Combination of events (a glimpse into quantum logics):

Join ∨: spanning subspace
Meet ∧: biggest included subspace
Complement ⊥: orthogonal subspace

If S1 and S2 commute:
S1∨S2 = S1+S2−S1S2
S1∧S2 = S1S2
S⊥ = I−S (I identity matrix)
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum Logics

Quantum Logic
Violation of distributive law

Let

|φ1〉=
�

1
0

�

|φ2〉=
�

1/
p

2
1/
p

2

�

|φ3〉=
�

0
1

�

Then

(Pφ1 ∧Pφ2)∨Pφ3 = Pφ3

but

(Pφ1 ∨Pφ3)∧ (Pφ2 ∨Pφ3) = I

|φ1〉

Pφ1

|φ2〉

Pφ2

|φ3〉Pφ3
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum Logics

The Classical Case

Quantum logics and probability reduces to classical logic and
probability if all measures are compatible

Compatibility basically means that the involved projectors are
commuting (so the order does not matter)

This happens when all event rays are orthogonal
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Quantum Probabilities Introduction

Quantum Probabilities

Quantum States

Quantum states

Quantum probabilities are induced by quantum states

A pure quantum state (or pure state) is represented by a unit
vector |φ〉 (the state vector) in the Hilbert space H
A mixed (quantum) state is a probabilistic mixture of pure states

Both kinds of states can be described by probability densities (a
matrix with trace 1)
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Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Quantum Probabilities: Pure state

Quantum probability (pure state)

The probability of the event S given the state φ is the squared length
of the projection onto the corresponding subspace S:

bPr(S|φ) = ||S |φ〉||2

S

|φ〉

S |φ〉

Example: Qubit (simplest quantum
mechanical system)

Orthonormal basis |0〉 and |1〉
State vector |φ〉= α |0〉+β |1〉 with
α,β ∈ C and |α|2+ |β|2 = 1

bPr(1|φ) = ||P1 |φ〉||2
= |||1〉〈1| |φ〉||2
= ||〈1|φ〉 |1〉||2
= (|〈1|φ〉| |||1〉||)2

= |〈1|φ〉|2 = |β|2

|0〉

|1〉
|φ〉

We can learn from the qubit example

Qubit state |φ〉=α |0〉+β |1〉 is a superposition of the states |0〉
and |1〉
α,β ∈ C are probability amplitudes (with bPr(0) = |α|2)

Classical bit can only be in state |0〉 or |1〉

Non-classical example

S1 and S2 are mutually exclusive events
(biggest included subspace is 0)
bPr(S1|φ)+ bPr(S2|φ)> 1!

S1

S2

|φ〉
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Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Vector Space Model
An example “quantum” system

We are now ready to build our first “quantum” IR system

Vector space model: document d and query q normalised vectors
|d〉 and |q〉 in term space Rn

|q〉 state vector, Pd = |d〉〈d |
bPr(d |q) = ||Pd |q〉||2= |||d〉 〈d |q〉||2

= ||〈d ,q〉||2=cos2(θ)

= ||〈q,d〉||2= |||q〉 〈q|d〉||2
=
�

�

�

�Pq |d〉
�

�

�

�

2
= bPr(q|d)

|d〉 state vector, Pq = |q〉〈q| (dual view)

|d〉 |q〉

θ
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Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Effect of Measurement

We have seen how we can express the probability of and event S

What happens if we observe or measure that an event occurs (for
instance the relevance of a document)?

The state needs to be updated

For a pure state φ this is just the normalised projection

�

�φ′
�

= |φ〉Â S =
S |φ〉
||S |φ〉||

S

|φ〉

S |φ〉

An immediate observation of the same event would not change
the state any more (S |φ′〉= |φ′〉, S idempotent!)
bPr(S|φ′) = 1
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Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Effect of Measurement

We have seen how we can express the probability of and event S

What happens if we observe or measure that an event occurs (for
instance the relevance of a document)?

The state needs to be updated

For a pure state φ this is just the normalised projection

�

�φ′
�

= |φ〉Â S =
S |φ〉
||S |φ〉||

S

|φ′〉

An immediate observation of the same event would not change
the state any more (S |φ′〉= |φ′〉, S idempotent!)
bPr(S|φ′) = 1
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Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Order Effects

|a〉

A

|b〉

B

|x〉

X

Quantum probabilities provide a theory
for explaining order effects

Such effects appear when incompatible
measures are involved

We sketch this with a simple example
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Order Effects

|a〉

A

|b〉

B

|x〉

X

3 Events A,B,X
A = |a〉〈a|
B = |b〉〈b|
X = |x〉〈x |
All non-commutative!
bPr(X |AB) 6= bPr(X |BA)
The probability that we observe X is
different if we observed A then B or if we
observed B then A

[van Rijsbergen, 2004]: Determining
relevance then aboutness is not the
same as determining aboutness then
relevance
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Pure States

Interference
The Double Slit Experiment

(Taken from [Feynman, 1951])

Physical experiment that
motivates interference

Some works (e.g.
[Zuccon et al., 2009,
Melucci, 2010b]) use this
analogy for IR

Particle either passes slit 1 or
slit 2 before it appears
somewhere on the screen

Probability Pr(x) that it
appears at position x?

Classical Kolmogorovian
probabilities:

Pr12(x) = Pr(x |slit 1 or slit 2)

= Pr(x |slit 1)+Pr(x |slit 2)

= Pr1(x)+Pr2(x)

But this is not what we observe!
Quantum Probabilities: Use
probability amplitudes!

An amplitude ϕ is a complex
number

Refer to qubit example: ϕ
could be an inner product
bPr(x) = |ϕ(x)|2

ϕ12 = ϕ(x |slit 1 or slit 2)

= ϕ(x |slit 1)+ϕ(x |slit 2)

= ϕ1+ϕ2

Following [Zuccon, 2012, p. 80]

bPr12(x) = |ϕ12|2 = |ϕ1+ϕ2|2
= |ϕ1|2+ |ϕ2|2+

ϕ1ϕ2+ϕ2ϕ1

= bPr1(x)+ bPr2(x)+

2 ·
Æ

bPr1(x)
Æ

bPr2(x)·
cos(θ1−θ2)

= bPr1(x)+ bPr2(x)+ I12

with ϕ1 = r1eiθ1 and ϕ2 = r2eiθ2
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Pure States

Interference
Interference Term

I12 = 2 ·
p

bPr1(x)
p

bPr2(x) ·cos(θ1−θ2) is called the interference
term

It also depends on the phase θ1−θ2 of
the two complex numbers involved

I12 = 0⇔ cos(θ1−θ2) = 0⇔θ1−θ2 =
π
2 +kπ

(both numbers are perpendicular in the complex plane)
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Pure States

Composite Systems
Tensor Spaces

Quantum systems (Hilbert spaces) can be combined using the
tensor product (see also [Griffiths, 2002])

If |φi〉 ∈Hi is the state of system i then

⊗

i

|φi〉

is the state in the composite system
⊗

i Hi (product state)

Let Si be a subspace (event) in Hi . Then

bPr

 

⊗

i

Si |
⊗

i

φi

!

=
∏

i

bPr(Si |φi) (1)
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Pure States

Composite Systems
2 Qubit Example, Separable State

|0〉

|1〉
|φ1〉

⊗

|0〉

|1〉

|φ2〉

Combining two qubits with

|φ1〉= a1 |0〉+a2 |1〉
|φ2〉= b1 |0〉+b2 |1〉

State of composite system is the product state

|φ1〉⊗ |φ2〉= a1b1 |00〉+a1b2 |01〉+a2b1 |10〉+a2b2 |11〉
(with, e.g., |01〉= |0〉⊗ |1〉)
If composite state is a product state, it is said to be separable
Both systems are independent – if we measure, say, |1〉in the first
qubit1, we can still measure either |0〉 or |1〉 in the second one!
Bivariate distribution with ai , bi as marginals [Busemeyer, 2012]

1Expressed by the subspace |10〉〈10|+ |11〉〈11|
60 / 143



Quantum Probabilities Introduction

Quantum Probabilities

Pure States

Composite Systems
Entanglement

There are states in a composite system that cannot be expressed
as product states

For example in the 2 qubit system,

|φ〉= 1
p

2
|00〉+ 1

p
2
|11〉

is such a non-separable state

The systems are not independent any more – if for instance we
measure |0〉 in the first qubit, this means the second qubit will be
in state |0〉!
The composite system is in an entangled state

Equation 1 does not hold any more
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Mixed States

Mixed State

In general we don’t know the state of
the system (or in IR we don’t know
what the user really wants)

We assume the system to be in a
certain state with a certain
(classical!) probability

S

|φ1〉(Pr(φ1)) |φ2〉(Pr(φ2))

|φ3〉(Pr(φ3))

Mixed (Quantum) State

We assume the system is in a state φi with probability Pr(φi) so that
∑

i Pr(φi) = 1. Then the probability of an event S is

bPr(S) =
∑

i

Pr(φi) bPr(S|φi) =
∑

i

Pr(φi) ||S |φi〉||2
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Mixed States

The Effect of Measurement
Mixed State

When observing/measuring S all state vectors are projected and
renormalised, resulting in a new state set {ψi}
The probability of each new state ψi is computed as follows:

Pr(ψi |S) =
∑

φ|ψi=|φ〉ÂS

bPr(S|φ)Pr(φ)
bPr(S)

φ|ψi = |φ〉Â S means all vectors that have the same normalised
projection |ψi〉
Conditional quantum probabilities:

bPr(S2|S1) =
∑

ψ

bPr(S2|ψ)Pr(ψ|S1)
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Density Operators

Preliminaries: Trace

Trace

tr(T) =
n
∑

i=1

〈ei |T |ei〉

is known as the trace of T with {|ei〉} as an orthonormal basis. It is
equal to the sum of the diagonal elements of T.

Some important properties (see [van Rijsbergen, 2004, p. 79]):

Linearity: tr(αT1+βT2) = αtr(T1)+βtr(T2)

Cyclic permutation: e.g. tr(T1T2) = tr(T2T1)

trT† = tr(T)

tr(T)≥ 0 if T is positive definite

An operator T is of trace class if T is positive and its trace is finite
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Density Operators

Trace and Probability
Density Operator

bPr(S) =
∑

i

Pr(φi) ||S |φi〉||2

=
∑

i

Pr(φi)〈Sφi |Sφi〉 Def. norm

=
∑

i

Pr(φi)〈φi |S |φi〉 S self-adjoint, idempotent

=
∑

i

Pr(φi) tr(S |φi〉〈φi |) [Nielsen and Chuang, 2000, p. 76]

= tr













S
∑

i

Pr(φi) |φi〉〈φi |
︸ ︷︷ ︸

=ρ













Trace linearity
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Density Operator

We saw that bPr(S) = tr(Sρ)
ρ is a density operator (usually a density matrix)

ρ encodes a quantum probability distribution (either mixed or
pure)

Density Operator

A density operator ρ is a trace-class operator with tr(ρ) = 1.

Simple example (2 events with probability 1/2):

ρ=

�

1
2 0
0 1

2

�
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Density Operators

Gleason’s Theorem

Gleason’s Theorem

Let μ be any measure on the closed subspaces of a separable (real or
complex) Hilbert space H of dimension of at least 3. There exists a
positive self-adjoint operator T of trace class such that, for all closed
subspaces S of H,

μ(S) = tr(TS)

If μ is a probability measure, then tr(T) = 1, so T is a density
operator.
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Density Operators

Gleason’s Theorem
In other words...

Following the Piwowarski/Melucci tutorial:

Distribution over a Hilbert Space

A distribution over a Hilbert space H is any function
bPr : S ⊆H 7→ [0,1] such that:

bPr(∅) = 0 and bPr(Pφ)≥ 0 ∀φ ∈H
∑

i
bPr(Pei ) = 1 for any basis {ei}

Gleason’s Theorem

To every probability distribution over a Hilbert space H (dimension
≥ 3), there exists a unique density matrix ρ such that for any S ⊆H

bPr(S) = tr(ρS)
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Density Operators

What does this mean?

Gleason’s theorem provides a 1-to-1 relationship between
quantum probability distributions and density operators

We can approximate density operators using spectral techniques,
decompositions etc.
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Density Operators

Some Observations

If the system is in a pure state φ, the density operator is
ρ= |φ〉〈φ|  pure distributions are represented by projectors
Density matrices are Hermitian
Applying the spectral theorem, we can decompose ρ:

ρ=
∑

i

piEi

The pi ≥ 0 (with
∑

i pi = 1 and pi ∈ R) are the eigenvalues and
probabilities associated to the events represented by the
projectors Ei

Example

ρ=

�

1
2 0
0 1

2

�

=
1

2

�

1 0
0 0

�

+
1

2

�

0 0
0 1

�
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Density Operators

Measurement and Conditional Probabilities

Update of density matrix after measuring/observing S1:

ρ′ =
S1ρS1

tr(S1ρS1)
=

S1ρS1

tr(ρS1)

Lüders’ Rule for conditional probabilities:

bPr(S2|S1) =
tr(S1ρS1S2)

tr(ρS1)

If S1 and S2 are compatible, this reduces to classical
conditionalisation (see [Hughes, 1992, p. 224])
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Density Operators

Tensor product

Let ρi be the state of the system represented by Hi . Then

ρi ⊗ . . .⊗ρn

is the state of the composite system H1⊗ . . .⊗Hn

bPr(
⊗

i Si |
⊗

i ρi) =
∏

i
bPr(Si |ρi)

Note that there can be a state ρ in the composite system that is
not separable any more
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Conclusion

Quantum Probabilities
Conclusion

Introduced quantum probabilities based on Hilbert Spaces

Some salient features: pure and mixed states, densities,
measurement/observation, order effects, interference, composite
systems, entanglement

Quantum probabilities as a generalisation of classical
probabilities

Now: How can we use this for information retrieval?
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Conclusion

Again: What does this remind you of?
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Quantum-inspired IR Models

The QIA Model

Notation Wrap-Up

Hilbert space: vector space with an inner product

Dirac Notation:
|φ〉 is a ket (a vector φ)
〈φ| is a bra (a transposed vector φT)
〈φ|ψ〉 ∈ C is a bra(c)ket (inner product)
|φ〉〈ψ| is a ketbra (a matrix)

A subspace S is represented by a projector (another matrix)

|φ〉〈φ| projector onto 1-dimensional subspace

Orthogonal projection of vector |φ〉 onto S: S |φ〉
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Quantum Information Access

Assumptions underlying QIA

IR system uncertain about user’s information need (IN)
System view of the user’s IN becomes more and more specific
through interaction

The IN may change from the user’s point of view

There is an IN Space, a Hilbert space
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Quantum Information Access

Information Need Space

|quantummechanics〉

INs as vectors: IN
vector |φ〉
Event “document d is
relevant” represented
by subspace R

Probability of
relevance: squared
length of projection
Pr(R|d ,φ) =
||R |φ〉 ||2
Unit vector imposes
relevance distribution
on subspaces (events)

79 / 143



Quantum-inspired IR Models

The QIA Model

Quantum Information Access

Information Need Space

R

|quantummechanics〉

INs as vectors: IN
vector |φ〉
Event “document d is
relevant” represented
by subspace R

Probability of
relevance: squared
length of projection
Pr(R|d ,φ) =
||R |φ〉 ||2
Unit vector imposes
relevance distribution
on subspaces (events)
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Quantum Information Access

Information Need Space

R

|quantummechanics〉

INs as vectors: IN
vector |φ〉
Event “document d is
relevant” represented
by subspace R

Probability of
relevance: squared
length of projection
Pr(R|d ,φ) =
||R |φ〉 ||2
Unit vector imposes
relevance distribution
on subspaces (events)
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Quantum Information Access

System’s Uncertainty about User’s Intentions

R

p1

p2

p4

p3

p5

System uncertain about
user’s IN

Expressed by an ensemble S
of possible IN vectors (density
ρ):

S ={(p1, |φ1〉) , . . . ,(pn, |φn〉)}
Probability of relevance:

Pr(R|d ,S)=
∑

i

pi ·Pr(R|d ,φi)
︸ ︷︷ ︸

=||R|φ〉||2
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Quantum Information Access

System’s Uncertainty about User’s Intentions

R

p1

p2

p4

p3

p5
Dual representation using
density operator and trace
function

ρ=
∑

i pi · |φi〉〈φi |
Pr(R|d ,S) = tr(ρR)
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Quantum Information Access

User Interaction and Feedback

R∗

|ϕ1〉

|ϕ2〉

|ϕ5〉

|ϕ3〉

Outcome of feedback: Query
and query reformulation, (click
on) relevant document, ...

Expressed as subspace

Project IN vectors onto
document subspace

Document now gets
probability 1

System’s uncertainty
decreases

Also reflects changes in
information needs
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Quantum Information Access

User Interaction and Feedback

R∗

|ϕ1〉

|ϕ2〉
|ϕ4〉

|ϕ3〉

|ϕ5〉

Outcome of feedback: Query
and query reformulation, (click
on) relevant document, ...

Expressed as subspace

Project IN vectors onto
document subspace

Document now gets
probability 1

System’s uncertainty
decreases

Also reflects changes in
information needs
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Quantum Information Access

Textual Representation
IN Space / Documents

|crash〉 (Term)

|car〉 (Term)

|jupiter〉 (Term)
|jupiter crash〉

|car crash〉

R∗
topic

|ϕ〉

IN space based on term
space

IN vectors made of document
fragments

Weighting scheme (e.g., tf,
tf-idf,...)

Document is relevant to all
INs found in its fragments

Document subspace R
spanned by IN vectors

No length normalisation
necessary
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Quantum Information Access

Single Query Term

Take all fragments vectors (IN
vectors) containing term t

This makes up ensemble St
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Quantum Information Access

Mixture

Mixture of all combinations of
term fragments

Document must at least
satisfy one term fragment

The more term fragments are
contained, the more relevant
a document is

S(M) =
∑n

i=1
wiSti

wi is term weight
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Quantum Information Access

Mixture of Superposition

Superpose all combinations
(e.g. 1p

2
(|φ〉+ |ψ〉))

At least one query term
fragment superposition must
be contained

The more fragment
superpositions are contained,
the more relevant a document
is

Indication that it works well
with multi-term concepts (e.g.
“digital libraries”)
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Quantum Information Access

Tensor product

Assumption: each term
covers an IN aspect

Tensor product of all fragment
vectors  combination of IN
aspects

Document must satisfy all IN
aspects

The more tensor products are
satisfied, the more relevant is
the document
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Quantum Information Access

What can it bring to IR?

Evaluation with several TREC collections
[Piwowarski et al., 2010]

Tensor representation of query could compete with BM25

We don’t lose retrieval effectiveness in an ad hoc scenario
Framework is open for possible extension:

Different forms of interactions (query reformulations, relevance
judgements)  sessions
Diversity and novelty
Structured queries (Boolean; based on mixture, superposition and
tensor)
Polyrepresentation [Frommholz et al., 2010]
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Polyprepresentation

Book Store Example
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Polyprepresentation

Book Store Example
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Polyprepresentation

The Principle of Polyrepresentation
Book Store Scenario

Content Author

Ratings
Comments

1 Get ranking for different representations
2 Find the cognitive overlap

Based on different document representations, but also different
representations of user’s information need
Hypothesis: cognitive overlap contains highly relevant documents
(experiments support this)
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The QIA Model

Polyprepresentation

How can we apply this in QIA?

Model single representations in a vector space (by example)
Authors
Ratings

Combine the representations
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Polyprepresentation

Example: Author Space

Each author is a dimension

Non-orthogonal vectors:
dependencies

Angle between vectors
reflects the degree of
dependency (90◦ =
orthogonal = upright =
independent)

Example: Jones and Smith
(somehow) related, Smith and
Miller not
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Polyprepresentation

Example: Author Space

Document by Smith and Miller

User seeks for documents by
Jones

Document retrieved due to
relationship between Jones
and Smith
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Polyprepresentation

Rating Space

Example: rating scale
good/bad/average – each is a
dimension

“Average” rated book
represented by 2-dimensional
subspace

User wants books which are
rated good
⇒ not relevant (|good〉
orthogonal)

Rrating

|good〉

|average〉

|bad〉
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Polyprepresentation

Combining the Evidence
Total Cognitive Overlap and Tensors

Modelled different representations in vector space

Probabilities w.r.t. single representations

How do we express user’s IN w.r.t. all representations?

How do we get a cognitive overlap?
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Polyprepresentation

Combining the Evidence
Total Cognitive Overlap and Tensors

Content Author

Ratings
Comments

Polyrepresentation space as tensor product (“⊗”) of single
spaces

Probability that document is in total cognitive overlap:
Prpolyrep = Prcontent ·Prratings ·Prauthor ·Prcomments
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Polyprepresentation

Wishlist

Content Author

Ratings
Comments

Documents not relevant in one representation should not get a
value of 0
Ignore selected representations
Relative importance of representations to user (mixing and
weighting)
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Polyprepresentation

“Don’t care” dimension

Introduction of a “don’t care” dimension
Part of each document subspace
  each document “satisfies” the don’t care “need”
Example: Document by Smith, user doesn’t care about authors
with probability α

|smith〉

|jones〉

|∗〉α

Rauthor

α= 1 means representation is ignored at all
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Polyprepresentation

Example

What the system assumes about the user’s IN:
Seeks books either by Jones or by Smith
Looks either for good books or doesn’t care about ratings

Assume a document d by Smith which is rated “bad”

Polyrepresentation space: 9-dimensional (3×3)
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Polyprepresentation

IN Vectors in Polyrepresentation Space
How do they look like and what do they mean?

Polyrepresentation space

Reflects all 4 possible
combinations of INs w.r.t. single
representations:

Smith/good: |smith〉⊗ |good〉
Smith/dont’ care: |smith〉⊗ |∗〉
Jones/good: |jones〉⊗ |good〉
Jones/dont’ care: |jones〉⊗ |∗〉
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Documents in Polyrepresentation Space

Represented as tensor product of single document subspaces

Here: 4-dimensional subspace (2×2)
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Polyprepresentation

Determining the Retrieval Weight

Why the system retrieves the
bad book by Smith
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Polyprepresentation

Something left on the Wishlist
Relationships between Representations

System observes (interaction/feedback) user preferences:
If book is by Smith, it has to be rated good
If book is by Jones, don’t care about the ratings

System evolves to new state in polyrepresentation space (2
combinations not allowed any more)

X
X
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Polyprepresentation

What does that mean?

Only two assumed IN
cases left:

1 Smith/good
2 Jones/don’t care

Cannot be expressed as
combination of single
representations

Bad book by Smith only
retrieved due to
relationship to Jones!
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Polyprepresentation

QIA Summary

We showed how we can express polyrepresentation in a mathematical
framework inspired by quantum mechanics:

Presented IN space

Modelled different example representations

Combined representations in polyrepresentation space
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Polyprepresentation

QIA Conclusion

QIA framework
User’s IN as ensemble of vectors
Documents as subspaces
User interaction and feedback
Term space, query construction
Can compete in an ad hoc scenario

Polyrepresentation
Different non-topical representations as subspaces
Polyrepresentation space as tensor space to calculate cognitive
overlap
“Don’t care” dimension for weighting of representations
Non-separate states reflect interdependencies
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Polyprepresentation

QIA Extensions

Queries in sessions [Frommholz et al., 2011]
Use geometry and projections to determine type of and handle
follow-up query (generalisation, information need drift,
specialisation)

Summarisation [Piwowarski et al., 2012]
QIA interpretation of LSA-based methods

Query algebra for the QIA framework [Caputo et al., 2011]
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Quantum-inspired IR Models

Quantum Probability Ranking Principle

Quantum Interference (again)

Recall the double slit experiment

Probability amplitudes instead of
probabilities to model interference

Derived the interference term

I = ϕ1ϕ2+ϕ2ϕ1

= 2 ·
Æ

bPr1(x)
Æ

bPr2(x) ·cos(θ1−θ2)

to compute

bPr12(x) = bPr1(x)+ bPr2(x)+ I
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Probability Ranking Principle

Probability Ranking Principle (PRP): Rank according to
decreasing Pr(R|d ,q)
Which document to present next?

argmax
d∈B

(Pr(R|d ,q))

B: candidate documents not presented yet

Assumes relevance judgements are independent, no
dependencies between documents

Potentially does not suit tasks considering novelty and diversity
well!
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Quantum Probability Ranking Principle
Double Slit Analogy

IR analogy to double slit experiment
User is “particle”
Each slit corresponds to a
document
Event that particle passes through
slit: user analyses document
Screen measures user satisfaction
(proportional to bPr(R|d ,q))

Which document to present next
(after user saw dA)?

argmax
dB∈B

�

bPr(R|dB,q)+ IdAdB

�

4.4 Ranking Documents within the Analogy

dB

dA

pdAdB

dA

pdAdB

......dB1
dBn�1dBi

dB?

B

Figure 4.6: The IR analogous of the situation pictured in Figure 4.5.

pdAdB
: there is no reason for which to expect that pdAdBi

= pdAdBj
, 8dBi

, dBj
2 B.

A question now arises: which document (slit) dB 2 B should be selected such

that, once coupled with document (slit) dA, the probability pdAdB
is maximised?

Answering this question corresponds to define a criteria for selecting documents

such that, once coupled with the already ranked document, the likelihood of de-

livering maximum satisfaction to the user is maximised. In terms of the physical

experiment, this would correspond to selecting slits among the set of available

ones such that the likelihood of hitting the detector panel (at a particular loca-

tion) is maximised.

Di↵erent probability theories provide di↵erent answers to the previous ques-

tion. Therefore, the pair of documents that are obtained when using Kolmogoro-

vian probability theory to model our analogy may be di↵erent from those obtained

when using quantum probability theory. In the following we examine these two

88

(taken from [Zuccon, 2012])
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Quantum Probability Ranking Principle
Assumptions

1 Ranking is performed sequentially

2 Empirical data is best described by quantum probabilities

3 Relevance of documents not assessed in isolation;
documents that have been ranked before influence future
relevance assessments
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Quantum Probability Ranking Principle (qPRP)

Let A (where A=∅ is also considered) be the set containing the
documents that have been already retrieved until rank i−1 and let B
be the set of candidate documents for being retrieved at rank i . In
order to maximise its effectiveness, an Information Retrieval system
has to rank document dB ∈ B at rank i if and only if

bPr(R|dB,q)+ IdAdB ≥ bPr(R|dC ,q)+ IdAdC ,

for any dC ∈ B. IdAdB is the sum of the quantum interference terms
produced considering all the pairs composed by dB and each already
retrieved document dA ∈A (similarly for IdAdC ).
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Quantum Probability Ranking Principle

Quantum Probability Ranking Principle

Each document would be selected according to

argmax
dB∈B

 

bPr(R|dB,q)+
∑

dA∈A
IdAdB

!

Documents may interfere (at relevance level) with already
presented ones

Encodes dependencies between documents
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Quantum Probability Ranking Principle

qPRP: Interference Term
Estimation

Recall

IdAdB = ϕdAϕdB +ϕdBϕdA

= 2 ·
Æ

bPr(R|dA,q)
Æ

bPr(R|dB,q) ·cos(θAB)

(with cos(θAB) = cos(θdA−θdB))
Interference governed by the phase difference θAB between
ϕdA ∈ C and ϕdB ∈ C

Destructive: cos(θAB)< 0
Constructive: cos(θAB)> 0

Estimate IdAdB with similarity function fsim

cos(θAB)≈ βfsim(dA,dB)

β ∈ R: normalisation, sign of interference
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Quantum Probability Ranking Principle

qPRP: Evaluation

Different similarity functions applied in diversity task (TREC 6,7,8
and ClueWeb B)

qPRP outperformed PRP and (sometimes) a Portfolio Theory
setting (but no parameter tuning required)

Kullback-Leibler divergence performed best

Pearson’s correlation coefficient seems most robust
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Quantum Probability Ranking Principle

qPRP: Evaluation
Further Experiments

Comparison with PRP, Maximal Marginal relevance (MMR),
Portfolio Theory (PT) and interactive PRP (iPRP)
Ad hoc task

PRP best performing ranking approach when independence
assumption hold

Diversity task
PRP often outperformed by PT, iPRP and qPRP
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Quantum Probability Ranking Principle

qPRP: Discussion

Kolmogorovian probabilities (in PRP) adequate when using
independence assumption (ad hoc task)

Quantum probabilities seem good choice if documents are not
independent and interfere (diversity task)

qPRP reduces to PRP if phases are perpendicular
(cos(θAB) = 0)

Integration into QIA framework possible
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Further Work and Software

Further Selected Works

Quantum probability in context [Melucci, 2008]
Effective query expansion with quantum interference
[Melucci, 2010b]
Semantics and meaning [Widdows, 2004]
Entanglement and word meaning
[Bruza et al., 2009b, Bruza et al., 2009a]
Lattice structures and documents [Huertas-Rosero et al., 2009]
Quantum theory and search [Arafat, 2007]
Query expansion and query drift [Zhang et al., 2011]
Document re-ranking [Zhao et al., 2011]
Complex numbers in IR [Zuccon et al., 2011]
DB+IR: Commutative Quantum Query Language [Schmitt, 2008]
Further overview [Song et al., 2010]
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Further Work and Software

Software

Kernel Quantum Probability API by Benjamin Piwowarski
http://kqp.bpiwowar.net/
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Further Work and Software

Other Resources

http://www.quantuminteraction.org/home
A collection of useful links and resources in the context of the
Quantum Interaction series

http://www.mendeley.com/groups/496611/
quantum-and-geometry-ir/
Aiming at providing an updated list of quantum and geometry IR
research papers

You may also follow me on Twitter: @iFromm
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Discussion and Conclusion

Discussion
Quantum Theory and IR

The quantum formalism is a powerful ’language’ for IR – isn’t it?

We’ve seen some examples of quantum-inspired models (QIA,
qPRP)

Quantum probabilities may give us a hint of what is wrong with
existing approaches (but not always!) [Piwowarski et al., 2012]

But there is criticism: “Ornamental but not useful” (Kantor, who
hopes to be proven wrong) [Kantor, 2007]
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Discussion and Conclusion

Conclusion

Quantum probabilities

2 quantum-inspired approaches: QIA and qPRP

Further approaches
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