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Situation Normal

[ recently bought an electronic kitchen scale. It has a glass platform
and an Easy To Read Blue Backlit Display. My purchase was not
symptomatic of a desire to bake elaborate desserts. Nor was | intend-
ing my flat to become the stash house for local drug gangs. I was
simply interested in weighing stuff. As soon as the scale was out of
its box I went to my local bakers, Greggs, and bought a baguette. It
weighed 391g. The following day I returned to Greggs and bought
another baguette. This one was slightly heftier at 398g. Greggs is a
chain with more than a thousand shops in the UK. It specializes in
cups of tea, sausage rolls and buns plastered in icing sugar. But I
had eyes only for the baguettes. On the third day the baguette
weighed 399g. By now I was bored with cating a whole baguette
every day, but I continued with my daily weighing routine. The
fourth baguette was a whopping 403g. I thought maybe I should
hang it on the wall, like some kind of prize fish. Surely, T thought,
the weights would not rise for ever, and I was correct. The fifth loaf
was a minnow, only 384g.

In the sixteenth and seventeenth centuries Western Europe fell in
love with collecting data. Measuring tools, such as the thermometer,
the barometer and the perambulator — a wheel for clocking
distances along a road — were all invented during this period, and
using them was an exciting novelty. The fact that Arabic numerals,
which provided effective notation for the results, were finally in
common use among the educated classes helped. Collecting
numbers was the height of modernity, and it was no passing fad;
the craze marked the beginning of modern science. The ability to
describe the world in quantitative, rather than qualitative, terms
totally changed our relationship with our own surroundings.
Numbers gave us a language for scientific investigation and with
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that came a new '
came a new confidence that we could have a deeper under

standing of how things really are,
5 Ivsj'as ﬁndm-g'my daily ritual of buying and weighing bread every
otning surprisingly pleasurable. I would return from Greggs witl
a skip in my step, eager to see just how many grams m li"?ru 't I
would be. The frisson of expectation was the same as 3;16 ‘fielt' y
when‘ you check the football scores or the financial markets — 'I‘H'?T
genuinely exciting to discover how your team has done or h ; L\'
stocks have performed. And so it was with my baguettes o
; t:;;: :fl(;lt;l?ttfn ky)e‘hind my da.ily :crip to the bakers was to chart
ags e weights were distributed, and after ten baguettes
could see that the lowest weight was 380g, the highest was 410
ar?d one of the weights, 403g, was repeated. The spread was 'gi
wide, I thought. The baguettes were all from the same shop, co Ciui:t
.same amount, and yet the heaviest one was almost 8 pe . il i
ier than the lightest one. i
I carried on with my experiment. Uneaten i i
kitchen. After a month or so, I made friends witiiidrrgileiliﬂp;onm?l}f
énz?nager of Greggs. He thanked me for enabling him to Jincrease hi;
aily stock of baguettes, and as a gift gave me a pain au chocolat.
aloitgutrle;s fasl;:linaEFE to X}Tatch how the weights spread themsel.ves
e table. Although I could not predic -
bagu?tte would weigh, when taken E:)ollecttijlcl);v :ﬂ L[;let:riy i
deﬁmt-ely emerging. After 100 baguettes, [ stopped the ex erimwas
by which time every number between 379g and 422 Lljlad Bem,
covered at least once, with only four exceptions: 2 i

i
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% had. er:iﬁ')arked on the bread project for mathematical reasons, yet
noticed interesting psychological side-effects. Just before Weigf’ling
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| ponder the coloury length, girthand
rably between days. | began to
Id say co mysclf

cach loal, I would loolcatitan
texture — which varied quite conside
consider myself a connoisseur of baguettes, and wou
with the authority of a champion boulanger, ‘Now, this is a heavy
one’ or ‘Definitely an average loaf today’. I was wrong as often as I
was right. Yer my poor forecasting record did not diminish my
belief that I was indeed an expert in baguette-assessing. It was, 1
reasoned, the same self-delusion displayed by sports and financial

pundits who are equally unable to predict random events, and yet

build careers out of it.
Perhaps the most disconcerting emotional reaction I was having

to Greggs baguettes was what happened when the weights were
cither extremely heavy or extremely light. On the rare occasions
when I weighed a record high ora record low I was thrilled. The
weight was extra special, which made the day seem extra special,
as if the exceptionalness of the baguette would somehow be
cransferred to other aspects of my life. Rationally, I knew that it was
inevitable that some baguettes would be oversized and some under-
sized. Still, the occurrence of an extreme weight gave me a high. It
was alarming how easily my mood could be influenced by a stick of
bread. I consider myself unsuperstitious and yet I was unable to
avoid seeing meaning in random patterns. [t was a powerful
reminder of how susceptible we all are to unfounded beliefs.

Despite the promise of certainty that numbers provided the scien-
tists of the Enlightenment, they were often not as certain as all that.
Sometimes when the same thing was measured twice, it gave two
different results. This was an awleward inconvenience for scientists
aiming to find clear and direct explanations for natural phenomena.
Galileo Galilei, for instance, noticed that when calculating distances
of stars with his telescope, his results were prone to variation; and
the variation was not due to a mistake in his calculations. Rather, it

was because measuring was intrinsically fuzzy. Numbers were not

as precise as they had hoped.
This was exactly what 1 was experiencing with my baguettes.

There were probably many factors that contributed to the variance
in weight — the amount and consistency of the flour used, the length
of time in the oven, the journey of the baguettes from Greggs’
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central bakery o my local store, the humidity of the air and so on
Likewise, there were many variables ;I”.(‘t'lvillg the resules l]'nu;
Galileo’s telescope — such as atmospheric conditions, the temperature
of the equipment and personal details, like how tired Galileo was
when he recorded the readings. 4

Still, Galileo was able to see that the variation in his results
obeyed certain rules. Despite variation, data for each measurc;
ment tended to cluster around a central value, and small errors from
this central value were more common than large errors. He also
noticed that the spread was symmetrical too — a measurement was
as likely to be less than the central value as it was to be more thatl;
the central value.

Likewise, my baguette data showed weights that were clustered
around a value of about 400g, give or take 20g on cither side. Even
though none of my hundred baguettes weighed precisely 400g
there were a lot more baguettes weighing around 400g than there1

were ones weighing around 380g or 420g, The spread seemed pretty
symmetrical too. :

The first person to recognize the pattern produced by this kind of
measurement error was the German mathematician Carl Friedrich

Gauss. The pattern is deseribed by the following curve, called the
bell curve:

Probability of outcome

L L 1
X

Qutcome

2
Gauss's graph needs some explaining. The horizontal axis describes
a set of outcomes, for instance the weight of baguettes or the distance
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ol stars, The vertical axis is the probability of those outcomes, A curve
plotted on a graph with chese parameters is known as a distribution.
1 shows us the spread of outcomes and how likely each is.

Ihere are lots of different types of distribution, but the most
hasic type is described by the curve opposite. The bell curve is also
linown as the normal distribution, or the Gaussian distribution.
Originally, it was known as the curve of error, although because of
its distinctive shape, the term bell curve has become much more
common. The bell curve has an average value, which I have marked
X, called the mean. The mean is the most likely outcome. The
(urther you go from the mean, the less likely the outcome will be.

When you take two measurements of the same thing and the
process has been subject to random error you tend not to get the
same result. Yet the more measurements you take, the more the
distribution of outcomes begins to look like the bell curve. The
outcomes cluster symmetrically around a mean value. Of course, a
graph of measurements won’t give you a continuous curve — it will
give you (as we saw with my baguettes) a jagged landscape of fixed
amounts. The bell curve is a theoretical ideal of the pattern
produced by random error. The more data we have, the closer the
jagged landscape of outcomes will fit the curve.

In the late nineteenth century the French mathematician Henri
Poincaré knew that the distribution of an outcome that is subject to
random measurement error will approximate the bell curve.
Poincaré, in fact, conducted the same experiment with baguettes
as I did, but for a different reason. He suspected that his local
boulangerie was ripping him off by selling underweight loaves, so
he decided to exercise mathematics in the interest of justice. Every
day for a year he weighed his daily kg loaf. Poincaré knew that if
the weight was less than lkg a few times, this was not evidence of
malpractice, since one would expect the weight to vary above and
below the specified 1kg. And he conjectured that the graph of bread
weights would resemble a normal distribution — since the errors in
making the bread, such as how much flour is used and how long the
loaf is baked for, are random.

After a year he looked at all the data he had collected. Sure
enough, the distribution of weights approximated the bell curve.
The peak of the curve, however, was at 950g. In other words,
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the averape weight was 0,950, nof Lkg as advertised, Poincaré’s
suspicions wete confirmed., ‘The eminent scientist was being diddled,
by an average of 50g per loaf; According to popular legend, Poincaré
alerted the Parisian authorities and the baker was given a stern
warning,

After his small victory for consumer rights, Poincaré did not let
it lie. He continued to measure his daily loaf, and after the second
year he saw that the shape of the graph was not a proper bell curve;
rather, it was skewed to the right. Since he knew that total random.-
ness of error produces the bell curve, he deduced that some
non-random event was affecting the loaves he was being sold.
Poincaré concluded that the baker hadn’t stopped his cheapskate,
underbaking ways but instead was giving him the largest loaf at
hand, thus introducing bias in the distribution. Unfortunately for
the boulanger, his customer was the cleverest man in France. Again,
Poincaré informed the police.

Poincaré’s method of baker-baiting was prescient; it is now the
theoretical basis of consumer protection. When shops sell products
at specified weights, the product does not legally have to be that
exact weight — it cannot be, since the process of manufacture will
incvitably make some items a little heavier and some a little lighter.
One of the jobs of trading-standards officers is to take random
samples of products on sale and draw up graphs of their weight. For
any product they measure, the distribution of weights must fall
within a bell curve centred on the advertised mean.

Half a century before Poincaré saw the bel] curve in bread, another
mathematician was seeing it wherever he looked. Adolphe Quételet
has good claim to being the world’s most influential Belgian. (The
fact that this is not a competitive field in no way diminishes his
achievements,) A geometer and astronomer by training, he soon
became sidetracked by a fascination with data — more specifically,
with finding patterns in figures. Tn one of his carly projects, Quételet
examined French national crime statistics, which the government
started publishing in 1825. Quételet noticed that the number of
murders was pretty constant every year. Even the proportion of
different types of murder weapon — whether it was perpetrated by a
gun, a sword, a knife, a fist, and so on — stayed roughly the same.
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Nowadays chis observacon is unremarkable — indeed, lllu' way we
P our i)lll)lil' insticucions relies on an .l|)|)rcci:1li0n.ui'; for cxamplc‘
crime rates, exam pass rates and accident rates, which we expect to
he comparable every year. Yet Quételet was the first person to notice
the quite amazing regularity of social phenomlena Wh_en populations
are taken as a whole. In any one year it was impossible to tell W}'lo
might become a murderer. Yet in any one year it was possible to predict
|.II"I“IV accurately how many murders would occur. Quételet was
troubled by the deep questions about personal responsib'{lity this
pactern raised and, by extension, about the ethics of pumshmentl.c
[l society was like a machine that produced a regular numbe.r o
murderers, didn’t this indicate that murder was the fault of society
and not the individual? 45
Quételet’s ideas transformed the use of the word statistics, whose
original meaning had little to do with numbers. The word was 1:15€d
to describe general facts about the state; as in the: t}‘fpe.of mfmma};
tion required by statesmen. Quételet turned statistics into a muc
wider discipline, one that was less about statecraft and more about
the mathematics of collective behaviour. He could not have 40116
this without advances in probability theory, which p}‘OVIdCd
techniques to analyse the randomness in data. In Brusselis in 1853
Quételet hosted the first international conference on StatIS?ICS. ?
Quételet’s insights on collective behaviour revcrbf:ratcd in other
sciences. If by looking at data from human populations you could
detect reliable patterns, then it was only a small leap' to reah%e tl;lt
populations of, for example, atoms also behav.cd with predictable
regularities. James Clerk Maxwell and Ludwig Boltzmann Wf:::rli
indebted to Quételet’s statistical thinking when they came up wit
the kinetic theory of gases, which explains that the pressure of a gas
is determined by the collisions of its molecules travelling randomly
at different velocities. Though the velocity of any individual molecule
cannot be known, the molecules overall behave in a predictable way.
The origin of the kinetic theory of gases is an inferest.mg excePU?In
to the general rule that developments in the social sciences are the
result of advances in the natural sciences. In this case, knowledge
flowed in the other direction. .
The most common pattern that Quételet fougd in alll of his
research was the bell curve. It was ubiquitous when studying data
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about human populations, Seis

L(?I}lt‘ by than they are now, so Quételet scoured the world for them
with the doggedness of a professional collector. For example, he
L,

came across a study published in the 1814 Lidinburgh Medical Journal

containi ‘ Scotti
ning chest measurements of 5738 Scottish soldiers. Quételet

drew up a graph of the numbers and showed that the distribution of

chest sizes traced a bell curve with a mean of about 40 inches. From
other sets of data he showed that the heights of men and v;fomen
also plot a bell curve. To this day, the retail industry relies on
Quételet’s discoveries. The reason why clothes shops s{ock more
mediums than they do smalls and larges is because the distribution
of human sizes cortesponds roughly to the bell curve, The most
recent data on the shoe sizes of British adults, for example, thro

up a very familiar shape: e
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Quételet died in 1874. A decade later, this side of the Channel, a
60-year-old man with a bald pate and fine Victorian whiskers cou,ld
frequently be scen on the streets of Britain gawping at women and
1'urflmaging around in his pocket. This was Francis Galton, the
eminent scientist, conducting fieldwork. He was measuring fe;nale
attractiveness. In order to discreetly register his opinion on passin
women he would prick a needle in his pocket into a cross—[s)hapeg
RIECE of paper, to indicate whether she was ‘attractive’, ‘indifferent’
or repellent’. After completing his survey he compiled a map of the

country based on looks. The highest-rated city was London and the
lowest-rated was Aberdcen.
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s ol data in those days were harder o

In ‘Cutting a Round Cake on Scientific Principles’ Galton marked intended cuts as
broken straight lines, and cuts as solid lines. This method minimizes exposing the
insides of the cake to become dry, which would happen if one cuts a slice in the
traditional (and, he concludes, ‘very faulty) way. In the second and third stages

the cake is to be held together with an elastic band.

Galton was probably the only man in nineteenth-century Europe
who was even more obsessed with gathering data than Quételet
was. As a young scientist, Galton took the temperature of his daily
pot of tea, together with such information as the volume of boiling
water used and how delicious it tasted. His aim was to establish how
to make the perfect cuppa. (He reached no conclusions.) In fact, an
interest in the mathematics of afternoon tea was a lifelong passion.
When he was an old man he sent the diagram above to the journal
Nature, which shows his suggestion of the best way to cut a tea-cake
in order to keep it as fresh as possible.

Oh, and since this is a book with the word ‘ntumber’ in its title,
it would be unsporting for me at this juncture not to mention
Galton’s ‘number forms™ — even if they have little to do with the
subject of this chapter. Galton was fascinated that a substantial
number of people — he estimated 5 per cent — automatically and
involuntarily envisaged numbers as mental maps. He coined the

term number form to describe these maps, and wrote that they
have a ‘precisely defined and constant position’ and are such that
individuals cannot think of a number ‘without referring to its own
particular habitat in their mental field of view’. What is especially
interesting about number forms is that they generally show up very
peculiar patterns. Instead of a straight line, which might be expected,
they often involve rather peculiar twists and turns.
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Number forms have the whifl of Victorian freakishness, perhaps
cvidence of repressed emotions or overindulgence in opiates. Yet a
century later they are researched in academia, recognized as a type
ol synaesthesia, which is the neurological phenomenon that occurs
when stimulation of one cognitive pathway leads to involuntary
stimulation in another. In this case, numbers are given a location in
space. Other types of synaesthesia include believing letters have
colours, or that days of the week have personalities. Galton, in fact,
underestimated the presence of number forms in humans. It is now
thought that 12 per cent of us experience them in some way.

But Galton’s principal passion was measuring. He built an
‘anthropometric laboratory’ — a drop-in centre in London, where
members of the public could come to have their height, weight,
strength of grip, swiftness of blow, eyesight and other physical
attributes measured by him. The lab compiled details on more than
10,000 people, and Galton achieved such fame that Prime Minister
William Gladstone even popped by to have his head measured. (It
was a beautifully shaped head, though low,” Galton said.) In fact,
Galton was such a compulsive measurer that even when he had
nothing obvious to measure he would find something to satisfy his
craving. In an article in Nazure in 1885 he wrote that while present
at a tedious meeting he had begun to measure the frequency of
fidgets made by his colleagues. He suggested that scientists should
henceforth take advantage of boring meetings so that ‘they may
acquire the new art of giving numerical expression to the amount of
boredom expressed by [an] audience’.

Galton’s research corroborated Quételet’s in that it showed chat
the variation in human populations was rigidly determined. He too
saw the bell curve everywhere. In fact, the frequency of the appear-
ance of the bell curve led Galton to pioneer the word ‘normal’ as the
appropriate name for the distribution. The circumference of a
human head and the size of the brain all produced bell curves,
though Galton was especially interested in non-physical attributes
such as intelligence. IQ tests hadn’t been invented at the time, so
Galton looked for other measures of intelligence. He found them in
the results of the admission exams to the Royal Military Academy
at Sandhurst. The exam scores, he discovered, also conformed to
the bell curve. It filled him with a sense of awe. ‘I know of scarcely
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.n}ylhin;" SO-apt to impress the imaginacon as the wonderful form
of cosmic order expressed by the [bell curvel,” he wrote, “The law
would have been personified by the Greeks and deified ii'[hc:f h‘-ll?i
km?wn of it. It reigns with serenity and in complete SC[iLCfFicélllc‘lll
amidst the wildest confusion. The huger the mob, and th; reater
the apparent anarchy, the morc perfect is its sway. It is the sug 8
law of unreason. , 2
Galron invented a beautifully simple machine that explains
the. mathematics behind his cherished curve, and he called l:i)t th‘
quincunx. ‘The word’s original meaning is the .. pattern of ﬁvC
dor.s on a die, and the contraption is a type of pinball machin in
whu:.h cach horizontal line of pins is offset by half a position ffoi‘z
the h_ne above. A ball is dropped into the top of the quincunx, and
then it bounces between the pins until it falls out the bottom il}t
rack of columns. After many balls have been dropped in, the sh;[))z

they make in the col
e ¢ columns where they have naturally fallen resembles

FIG.7.

o sl el @ om SRl

The quincunx,
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lsing, probability, we can understand what is going on. First, imagine
A quincunx with just one pin and let us say that when a ball hits che
pin the outcome is random, with a 50 per cent chance that it bounces
(o the left and a 50 per cent chance of it bouncing to the right. In
other words, it has a probability of L of ending up one place to the
left and a probability of = of being one place to the right.

Now, let’s add a second row of pins. The ball will either fall left
and then left, which I will call LL, or LR or RL or RR. Since moving
left and then right is equivalent to staying in the same position, the
|.and R together cancel each other out (as does the Rand L together),
so there is now - of a chance the ball will end up one place to the
left,2 chance it will be in the middle and L ic will be to the right.

Repeating this for a third row of pins, the equally probable options
of where the ball will fall are LLL, LLR, LRL, LRR, RRR, RRL,
RLR, RLL. This gives us probabilities of %— of landing on the far left,
» of landing on the near left, 2 oflanding on the near rightand — of

landing on the far right.

SR s e e
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In other words, if there are two rows of pins in the quincunx and we
introduce lots of balls into the machine, the law of large numbers
says that the balls will fall along the bottom such as to approximate
the ratio 1:2:1.

If there are three rows, they will fall in the ratio 1:3:3:1.

If there are four rows, they will fall in the ratio 1:4:6:4:1.
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usual meaning of ‘viticuloure’, grape cultiy
Latin for ‘vine’, and dates from around the s
many liberal intellectuals of the |
centuries supported eu
0 ‘breed’

ame time.) Even t'lmugh
ate nineteenth and early twencieth
genics as a way to improve society, the desire
cleverer humans was an idea that was soon distorted and
discredited. Tn the 1930s cugenics became synonymous with

murderous Nazi policies to create a superior Aryan race.

In retrospect, it is easy to see how ranking traits — such as intel-

ligence or racial purity - can lead to discrimination and bigotry.
Since the bell curve appears when human features are measured,
the curve has become synonymous with attempts to classify some
humans as intrinsically better than others. ‘The highest-profile
example of this was the publication in 1994 of 7pe Bell Curve by
Richard J. Herrnstein and Charles Murray, one of the most fiercely
debated books of recent years. The book, which owes its name to
the distribution of IQ scores, argues that IQ differences between
racial groups are evidence of biological differences. Galton wrote
that the bell curve reigned with ‘serenity and in complete self-
cffacement’. Its legacy, though, has been anything bur.

Another way to appreciate the lines of numbers produced by the

quincunx is to lay them out like a pyramid. In this form, the results
are better known as Pascal’s triangle.

sy

5 10 10 5

1

1
]
'

'

]

]

Pascal’s can be constructed much more simply than by working out

the distributions of randomly falling balls through a Victorian bean
machine. Start with a 1 in the first row,

and under it place two 1s so
as to make a triangle shape. Continue

with subsequent rows, always
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ation, comes from pitss,

10 | 10

8 |28|56|70|56]28]8

36 | 84 | 126|126 84 | 36

10 120 (210252 (210|120 10

330 | 462 | 462 | 330

12 | 66 | 220 7921924 (792 220 66 | 12
78 |286 1716[1716] 2861 78
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14 364 2002 3432 2002 364

16
16 | 120 | 560 {18204368|800811440|12870|11440[8008]43 68| 1820 560 | 120

Pascal’s triangle with only squares divisible by 2 in white.

f ever
placing a 1 at the beginning and end of the rows. The value o y
other position is the sum of the two numbeis :,1bovet lllt.ugh % 7y
i i Blaise Pascal, even tho
The triangle is named after ; e
i i an mathemati
i Indian, Chinese and Persia .
latecomer to its charms. : . e e
e was. Unlike
i f the pattern centuries before
cians were all aware o Lo
its prior fans, though, Pascal wrote a book abou}tl what ::e =
: i mathematic
le tri thmétique. He was fascinated by the
le triangle arithmétique. ted Enou
richness of the patterns he discovered. ‘It is a strangcla) thlinf 7%
: e #
fertile it is in properties,” he wrote, adding that in his boo
to leave out more than he could plil,t in. o
i Pascal’s triangle is tr ;
My favourite feature of il
each }rzumber have its own square, and colour all the O;i}:l nt e
i re
squares black. Keep all the even-number squares white. The

the wonderful mosaic above.
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Hang on minute, I hear you say. ‘This pattern looks familiar, uscal’s triangle with only

Correct. It is reminiscent of the Sierpinski carpet, the picce of math- squares divisible by 3 in white.
ematical upholstery from p. 105 in which a square is divided into
nine subsquares and the central one removed, with the same process
being repeated to each of the subsquares ad infinitum. The triangular
version of the Sierpinski carpet is the Sierpinski triangle, in which an
equilateral triangle is divided into four identical equilateral triangles,
of which the middle one is removed. The three remaining triangles
are then subject to the same operation — divide into four and remove
the middle one. Here are the first three iterations: {

Pascal’s triangle with only
squares divisible by 4 in white.

If we extend the method of colouring Pascal’s triangle to more
and more lines, the pattern looks more and more like the Sierpinski
triangle. In fact, as the limit approaches infinity, Pascal’s triangle
becomes the Sierpinski triangle.

Sterpinski is not the only old friend we find in these black-and-
white tiles. Consider the size of the white triangles down the centre
of Pascal’s triangle. The first is made up of 1 square, the second is
made up of 6 squares, the third is made of 28, and the next ones
have 120 and 496 squares. Do these numbers ring any bells? Three
of them — 6, 28 and 496 — are perfect numbers, from p. 265. The
occurrence is a remarkable visual expression of a seemingly unrelated
abstract idea.

Let’s continue painting Pascal’s triangle by numbers. First keep
all numbers divisible by 3 as white, and make the rest black. Then
repeat the process with the numbers that are divisible by 4. Repeat
again with numbers divisible by 5. The results, shown opposite, are all
symmetrical patterns of triangles pointing in the opposite direction
to the whole.

In the nineteenth century, another familiar face was discovered
in Pascals triangle: the Fibonacci sequence. Perhaps this was inevitable,

792 924

792

11440 8008 4368 1820 560 120 16

16 120 S60 1820 4368 3003 [1440

Pascal’s triangle with only
squares divisible by 5 in white.
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The gentle diagonals in Pascal’s triangle reveal the Fibonacci sequence.

as the method of constructing of the triangle was recursive — we

repeatedly performed the same rule, which was the adding of two
numbers on one line to produce a number o the next line. The
recursive summing of two numbers is exactly what we do to
produce the Fibonacci sequence. ‘The sum of two consecutive
Fibonacci numbers is equal to the next number in the sequence.
Fibonacci numbers are embedded in the triangle as the sums of
what are called the ‘gentle’ diagonals. A gentle diagonal is one that
moves from any number to the number underneath to the left and
then along one space to the left, or above and to the right and then
along one space to the right. The first and second diagonals consist
simply of 1. The third has 1 and 1, which equals 2. The fourth has
1 and 2, which adds up to 3. The fifth gentle diagonal gives us 1 + 3 +
=5, Theisixth i1 + 4+ 3 =8, So Bz we have generated 1, 1, 2, 3, 5,
8, and the next ones are the subsequent Fibonacci numbers in order.
Ancient Indian interest in Pascal’s triangle concerned combina-
tions of objects. For instance, imagine we have three fruits: a mango,
alychee and a banana. There is only one combination of three items:
mango, lychee, banana. If we want to select only two fruits,
do this in three different ways: mango and lychee, man
banana, lychee and banana. There are also
the fruit individually,

we can
go and
only three ways of taking
which is each fruit on its own. The final
option is to select zero fruit, and this can happen in only one way.
In other words, the number of combinations of three different fruits
produces the string 1, 3, 3, 1 — the third line of Pascal’s triangle.
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[ we had four objects, the number of ; ombinations ,WI,l-(.” “I;:,l:
none-at-a-time, individually, two-at-a 1|'|1w., _ll)11'uc--l;}t‘--.-1;%1lllie .We
(out-at-a-time is 1, 4, 6, 4, 1 — the lourtl? line of I ;1scaf s t;jm%a\;calas
can continue this for more and more objects and we see tf'a;thin 2
(riangle is really a.reference table for the arrangementbc? - ngs “ ,e
we hln‘d 7 items and wanted to know how many comhma T
could make of 7 of them, the answer is exactly thc—:' mt }E)Ofeftmost
ihe nth row of Pascal’s triangﬁs. (Nate}:l by C(-)tl};;inglm?h 2 E;OW) s

" any row is taken as the zerot positi row.
‘l-x;‘l):lnp}e? how many ways are there of grouping thﬁeetglrl;ts ir:i)i i
sclection of seven fruits? There are 35 ways, since the p

i n is 35. : :

s l?oW\: f:l\o;:,tz’s. move on to start combiniqng n-latl;lemaucazsoziefj).
Consider the term x + . What is (x + y)“.? It is the sarr:f;n ol
(x + y). To expand this, we need to rflultlply ea(f te; s
bracket by each term in tl;lf.: sec;:nd.? ?;),W v;recgf;:ymoc I:' ‘f;fe Czn e
‘3 A something here? ;

‘;a;e%;cyrr:rojrle' ci}:);;y. The coe[gﬁcients of the individual terms are the

rows of Pascal’s triangle.

(x4 9> =27 + 2xp + ¥ i
(x+y)5=x3+3x2y+3x{r+y
(e+ )t =5+ 4250y + 6%y + dxy” + ¥

bl
y y . 1
k) € 3 3
X 3 C]u .
u

g ] 3 3

than others (see diagram overleaf).
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Bell curves with different deviations.

Here’s an explanation for why we get different widths. If Galileo,
for example, measured planetary orbits with a twenty-first-century
telescope, the margin of error would be less than it he were using his
sixteenth-century one. The modern instrument would produce a
much thinner bell curve than the antique one. The errors would be
much smaller, yet they would still be distributed normally.

The average value of a bell curve is called the mean. The width is
called the deviation. If we know the mean and the deviation, then
we know the shape of the curve. It is incredibly convenient that the
normal curve can be described using only two parameters. Perhaps,
though, it is too convenient. Often statisticians are overly eager to
find the bell curve in their data. Bill Robinson, an economist who
heads KPMG’s forensic-accounting division, admits this is the case.
‘We love to work with normal distributions because [the normal
discribution] has mathematical properties that have been very well
explored. Once we know it’s a normal distribution, we can start to
make all sorts of interesting statements.”

Robinson’s job, in basic terms, is to deduce, by looking for
patterns in huge data sets, whether somcone has been cooking the
books. He is carrying out the same strategy that Poincaré used when
he weighed his loaves every day, except that Robinson is looking
at gigabytes of financial data, and has much more sophisticated
statistical tools at his disposal.

Robinson said that his department tends to work o the assump-
tion that for any set of data the default distribution is the normal
distribution. ‘We like to assume that the normal curve operates
because then we are in the light. Actually, sometimes it doesn’t, and
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ometimes we probably should be looking in the darle, | lll'llll-i ‘I-I-I‘[lllk'
financial markets it is true that we have assumed a Emrnml clllsm};u—
tion when perhaps it doesn’t work.” In recent years, 1.11 fact, tLe‘re a.zs
been a backlash in both academia and finance against the historic
reliance on the normal distribution.

When a discribution is less concentrated around the mean than
the bell curve it is called platykurtic, from the Greek WoFds.ﬁlm:‘ui
meaning ‘flat’, and kurtos, ‘bulging’. Con_veirsely, when a chstr'l Lfl-t.IO
is more concentrated around the mean it is called leptokumfs, .1(.)111
the Greek leptos, meaning ‘thin’. William Sealy G_osset, a staicllstnj,:rf
who worked for the Guinness brewery in Dubhn', drew the a.lll ed
memoire below in 1908 to remember which was which: a 1cluckl-(bl e
platypus was platykurtic, and the kissin(g kangaroc‘)cs were i}’)ti)h uLqu.
[e chose kangaroos because they are ‘noted for "Iepplng’ { 1{ot Cie\;
perhaps, with equal reason they shoul_d ‘be hares! ??sset cs1 ; f_ i
are the origin of the term zzil for describing the far-left and far-rig

ecti istribution curve.

‘“LC%;EZ;’ f:cj:cfmists talk of distributions thatl are fat-tailed oi
heavy-tailed, they are talking of curves thé’lt St?.w higher thlan norﬁla
from the axis at the extremes, as if Gossct.s an_lmal-s have. ?lrger t a:;
average tails. These curves describe distrl.buulons in whic - ex;relznr
events are more likely than if the distribution were nmma}l.d o.
instance, if the variation in the price of a share w'ere fat—tal'(; 'i(lt
would mean there was more of a chance of a draljnat.lc drop, 1;)1 1h<.:;
in price than if the variation were normally distributed. For ¢ 1a
reason, it can sometimes be reckless to assume a bell ’curve. (.)verl
fat-tailed curve. The economist Nassim Nicholas Taleb’s posmoz in
his bestselling book 7he Black Swan is that .We.hav? te.ndec.:l to under
estimate the size and importance of the tails in distribution curves.

Platykurtic and leptokurtic distributions.
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cargues that the bell curve is a historic ally defective model bec

fare, exereme events — such as a major scientific discovery like che

invention of the internet, or of a terrorist attack like 9/11. “Ihe
ubiquity of the [normal distribution] is not a property of the world,’
he writes, ‘but a problem in our minds,

stemming from the way we
look at it

"The desire to see the bell curve in data is perhaps most strongly
felt in education. The awarding of grades from A to E in end-of-year
exams is based on where a pupil’s score falls on a bell curve to which
the distribution of grades is expected to approximate, The curve is
divided into sections, with A representing the top section, B the
next section down, and so on. For the education system to run
smoothly, it is important that the percentage of pupils getting grades
A to E each year is comparable. If there are too many As, or too
many Es, in one particular year the consequences — not enough, or
too many, people on certain courses — would be a strain on resources,
Exams are specifically designed in the hope that the distribution of
results replicates the bell curve as much as possible — irrespective of

whether or not this is an accurate reflection of real intelligence.
(It might be as a whole, bur is probably not in all cases.)
It has even been argued that the reverence some scientists have
for the bell curve actively encourages sloppy practices. We saw
from the quincunx that random errors are distributed normally.
So, the more random errors we can introduce into measurement,
the more likely it is that we will get a bell curve from the data —
even if the phenomenon being measured is not normally distributed.
When the normal distribution is found in a set of data, this could

simply be because the measurements have been gathered too
shambolically.

Which brings me back to my baguettes. Were their weights really
normally distributed? Was the tail thin or far? First, a recap. I
weighed 100 baguettes. The distribution of their weights was shown
on p. 350. The graph showed some hopeful trends — there was a
mean of somewhere around 400g, and a more or less symmetrical
spread between 380 and 420g, If T had been as indefatigable as
Henri Poincaré, T would have continued the experiment for a year
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AUSC
it cannot anticipate the occurrence of, or predict the impace of; very

and had 365 (give or take days of bakery closure) \Wia"_illt,h | l_l,,
compare, With more data, the distribution wuul:..| have !wlcn C Lkngll.
Sall, my smaller sample was enough to get an idea of the _patte;ln
lnrming. I used a trick, compressing my res%dts b.y ridravxcfll;iftge
graph with a scale that grouped bague.tte weights in boun: g
rather than lg. This created the following graph:
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When I first drew this out I felt relief, as it really looked like 1’113:[/'
baguette experiment was producing a bell curve. My fatlcg app;af I
to be fitting the theory. A triumph for applied science! But Vﬁ eY
looked closer, the graph wasn't really like the bell curve ata l els,
the weights were clustered around a mean, but the curve was ¢ eaél };
not symmetrical. The left side of the curve was not as stee}llg_ as 2
right side. Tt was as if there was an invisible magnet stretching the
ittle to the left. ;

Curl‘rf:jljlléti;efore conclude one of two things. Either the weights
of Greggs' baguettes were not normally distr{buted, or they. werri
normally distributed but some bias had crept in to my f:lxﬁegnl;xeen
tation process. I had an idea of what the .blas might be. ; e}d de 5
storing the uneaten baguettes in my k1tchen,. ar.ld I ec11 6321
weigh one that was a few days old. To my surprise it was only 521g
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significantly lower than the lowes weight 1 had measured, Ie
dawned on me then chat baguette weight was not fixed because
bread gets lighter as it dries out. I bought another loaf and discov-
ered that a baguette loses about 15g between 8 a.m. and noon,
' Tt was now clear that my experiment was flawed. I had not taken
into account the hour of the day when I took my measurements.
It was almost certain that this variation was providing a bias to the
distribution of weights. Most of the time I was the first person in
the shop, and weighed my loaf at about 8.10 a.m., but sometimes |
got up late. This random variable was not normally discributed since
the mean would have been between 8 and 9 a.m., but there was no
tail before 8 a.m. since the shop was closed. The tail on the other
side went all the way to lunchtime.

"Then something else occurred to me. What about the ambjent
temperature? I had started my experiment at the beginning of
spring. It had ended at the beginning of summer, when the weather
was significantly hotter. I looked at the figures and saw that my
baguette weights were lighter on the whole towards the end of the
project. The summer heat, I assumed, was drying them out faster.
Again, this variation could have had the effect of stretching the
curve leftwards. G

My experiment may have shown that baguette weights approxi-
mated a slightly distorted bell curve, yet what T had really learned
was that measurement is never so simple. The normal distribution is
a theoretical ideal, and one cannot assume that all resules will
conform to it. I wondered about Henri Poincaré, When he measured
his bread did he eliminate bias due to the Parisian weather, or the
time of day of his measurements? Perhaps he had not demor;strated
that he was being sold a 950g loaf instead of a lkg loaf at all, but
had instead proved that from baking to measuring, a lkgj loaf
reduces in weight by 50g.

The history of the bell curve, in fact, is a wonderful parable about
the curious kinship between pure and applied scientists. Poincaré
once received a letter from the French physicist Gabriel Lippmann
who brilliantly summed up why the normal distribution was sc;
widely exalted: ‘Everybody believes in the [bell curve|: the experi-
menters because they think it can be proved by mathematics; and
the mathematicians because they believe it has been established by
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lirancis Galton devoted himself to science and exploration in the
way that only a man in possession of a large fortune can do. His
carly adulthood was spent leading expeditions to barely known
parts of Africa, which brought him considerable fame. A masterful
dexterity with scientific instruments enabled him, on one occasion,
to measure the figure of a particularly buxom Hottentot by stand-
ing at a distance and using his sextant. This incident, it seems, was
indicative of a desire to keep women at arm’s length. When a tribal
chief later presented him with a young woman smeared in butter
and red ochre in preparation for sex — Galton declined the offer,
concerned she would smudge his white linen suit.

Eugenics was Galton’s most infamous scientific legacy, yet it was
not his most enduring innovation. He was the first person to use
questionnaires as a method of psychological testing. He devised a
classification system for fingerprints, still in use today, which led to
their adoption as a tool in police investigations. And he thought up
a way of illustrating the weather, which when it appeared in 7he
Times in 1875 was the first public weather map to be published.

That same year, Galton decided to recruit some of his friends for
an experiment with sweet peas. He distributed seeds among seven
of them, asking them to plant the seeds and return the offspring.
Galton measured the baby seeds and compared their diameters to
those of their parents. He noticed a phenomenon that initially
seems countet-intuitive: the large seeds tended to produce smaller
offspring, and the small seeds tended to produce larger offspring.
A decade later he analysed data from his anthropometric laboratory
and recognized the same pattern with human heights. After meas-
uring 205 pairs of parents and their 928 adult children, he saw that
exceptionally tall parents had kids who were generally shorter than
they were, while exceptionally short parents had children who were
generally taller than their parents.

After reflecting upon this, we can understand why it must be the
case. If very tall parents always produced even taller children, and if
very short parents always produced even shorter ones, we would by
now have turned into a race of giants and midgets. Yet this hasn’t
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happened., Hluman populations may he getting taller o
due to becter nutrition and public f‘lk“.lllh" ik
heights within the population is still contained.
: Ga[tc‘on called this phenomenon ‘regression towards mediocrity
in here'dltary stature’. 'The conceprt is now more generally known ‘/
regression to the mean. In a mathematical context, regrezsion to tljz
mean is the statement that an extreme event is likely to be followed
by a less extreme event. For example, when I measured a Gre ;
baguette and got 380g, a very low weight, it was very likely that tgf S
next baguette would weigh more than 380g. Likewise, after ﬁncline
a 4.20 g baguette, it was very likely thar the following baguette WOLII(%
weigh less than 420g, The quincunx gives us a visual representatior
of the mechanics of regression. If a ball is put in at the top and th )
fa-lls to the furchest position on the left, then the next baE;l dr ezil
will probably land closer to the middle position — becaus i fi
the balls dropped will land in the middle positions e
Variation in human height through generations, ho
follows a different pattern from variation in baguette Weig,ht through
the week or variation in where a quincunx ball will land. We knog
from experience that families with above-average-sized p;;.rents ten‘zlf
o h.a’ve above-average-sized kids. We also know that the shortest
guy in the class probably comes from a family with adults of corre
.spondmgly diminutive stature. In other words, the height of a l:rlz
is not totally random in relation to the heighe of his pafents 01(':1 tlh
other hand, the weight of a baguette on a Tuesday rc;babl y
ranf:l(')m in relation to the weight of a baguette on a Mgndav %hﬂ
position of one ball in a quincunx is (for all practical url‘ ;
random in relation to any other ball dropped. e
In lorder to understand the strength of association between par
tal height and child height, Galton came up with another idga ?_I;“
plotted a graph with parental height along one axis and child he-i he
along the other, and then drew a straight line through the oiitt
that bf.:st ficced their spread. (Each set of parents was represenfed b ;
the ‘he%ght midway between mother and father — which he call c);
the ‘mid-parent’). The line had a gradient of 2. In other word fe
every inch tallerﬁthan the average that the mid-parent was, the cshilodi~
would only be + ofaninch taller than the average. For c;verv inch
shorter than the average the mid-parent was, the child would only

s o whole
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be * of an inch shoreer than che average. € adton called the gradi

ent of the line the coefficient of correlation. 'The coeflicientis a number
(hat determines how strongly two sets of variables are related.
Correlation was more fully developed by Galton’s protégé Karl
Pearson, who in 1911 set up the world’s first university statistics
department, at University College London.

Regression and correlation were major breakthroughs in scien-
tific thought. For Isaac Newton and his peers, the universe obeyed
deterministic laws of cause and effect. Everything that happened
had a reason. Yet not all science is so reductive. In biology, for
example, certain outcomes — such as the occurrence of lung cancer
— can have multiple causes that mix together in a complicated way.
Correlation provided a way to analyse the fuzzy relationships
between linked sets of data. For example, not everyone who smokes
will develop lung cancer, but by looking at the incidence of smoking
and the incidence of lung cancer mathematicians can work out your
chances of getting cancer if you do smoke. Likewise, not every child
from a big class in school will perform less well than a child from a
small class, yet class sizes do have an impact on cxam results.
Statistical analysis opened up whole new areas of research — in
subjects from medicine to sociology, from psychology to economics.
It allowed us to make use of information without knowing exact
causes. Galton’s original insights helped make statistics a respecta-
ble field: ‘Some people hate the very name of statistics, but I find
them full of beauty and interest,’ he wrote. “Whenever they are not
brutalized, but delicately handled by the higher methods, and are
warily interpreted, their power of dealing with complicated

phenomena is extraordinary.’

In 2002 the Nobel Prize in Economics was not won by an econo-
mist. Tt was won by the psychologist Daniel Kahneman, who had
spent his career (much of it together with his colleague Amos
Tversky) studying the cognitive factors behind decision-making.
Kahneman has said that understanding regression to the mean led
to his most satisfying ‘Burcka moment’. It was in the mid 1960s
and Kahneman was giving a lecture to Israeli air-force flight
instructors. He was telling them that praise is more effective than
punishment for making cadets learn. On finishing his speech, one
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ol the most experienced instructors stood up and told Kahneman
that he was mistaken, ‘The man s:
praised flight cadets for clean execution of some acrobatic manceu-
vre, and in general when they try it again, they do worse. On the
other hand, I have often screamed at cadets for bad execution, and
in general they do better the next time. So please don’t tell us that
reinforcement works and punishment does not, because the
opposite is the case.” At that moment, Kahneman said, the penny
dropped. The flight instructor’s opinion that punishment is more
effective than reward was based on a lack of understanding of
regression to the mean. Ifa cadet does an extremely bad manceuvre,
then of course he will do better next time — irrespective of whether
the instructor admonishes or praises him. Likewise, if he does an
extremely good one, he will probably follow that with something
less good. ‘Because we tend to reward others when they do well and
punish them when they do badly, and because there is regression to
the mean, it is part of the human condition that we are statistically
punished for rewarding others and rewarded for punishing them,
Kahneman said.

Regression to the mean is not a complicated idea. All it says is

that if the outcome of an event is determined at least in parc by

random factors, then an extreme event will probably be followed
by one that is less extreme. Yet despite its simplicity, regression
is not appreciated by most people. I would say, in fact, that regres-
sion is one of the least grasped but most uscfy] mathematical
concepts you need for a rational understanding of the world,
A surprisingly large number of simple misconceptions about
science and statistics boil down to a failure to take regression to the
mean into account.

Take the example of speed cameras. If several accidents happen
on the same stretch of road, this could be because there is one cause
— for example, a gang of teenage pranksters have tied a wire across
the road. Arrest the teenagers and the accidents wil] stop. Or there
could be many random contributing factors — a mixture of adverse
weather conditions, the shape of the road, the victory of the local
football team or the decision of a local resident to walk his dog,

Accidents are equivalent to an extreme event, And after an extreme

event, the likelihood is of less extreme events occurring: the random
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ud: ‘On many occasions | have

factors will combine in such a way as to resule in fewer '.lL‘l']fl[_'lj!]"-&.
Often speed cameras are installed at spots w?wrc l|1c;'c lcllv.m .)u“n
one or more serious accidents. Their purpose is to make 11ve15bg0
more slowly so as to reduce the number of crashes. Yes, the nur;)l er
of accidents tends to be reduced after speed cameras have eez
introduced, but this might have very little to do with the spees
camera, Because of regression to the mean, Wl’llethel‘ or not one 1151
installed, after a run of accidents it is already likely that there wi
be fewer accidents at that spot. (This is not an argumc}:lnt ?gfﬂns:
speed cameras, since they may indeed be effective. Rathér hlt ;i:tzn
argument about the argum;nt for speed cameras, whic
i s a misuse of statistics. : ;
dlsil/;?: t‘fzwourite example of regression to the mearlrt is hthe c:utrssrf1 eonf
Spores Hlustrated’, a bizarre phenorr'lenon by whic spor 2
suffer a marked drop in form immediately after appearing on :
cover of America’s top sports magazine. Thf-, curse is as old as the
first issue. In August 1954 baseball player l:,?ldle Mathews was on
the cover after he had led his team, the Mllwat.lkce Braves, t?hz
nine-game winning streak. Yet as soon as the Lssue.vxlf{asdon i
news-stands, the team lost. A week later Mathews picke kup
injury that forced him to miss seven games. The curse }Strfeag;ﬁf;
famously in 1957, when the magazine splashed on fneb e
“Why Oklahoma is Unbeatable’ after the Oklahoma foot da S
had nort lost in 47 games. Yet sure enough, on the Saturday a
publication, Oklahoma lost 7-0 to Notre Dame. P i
One explanation for the curse of Spores Illustrated is ¢ ebp C); B
logical pressure of being on the cover. The athlete Oﬁ tean; tz i
more prominent in the public eye, held up asftb € on favourité
It might be true in some cases that the pressure o . emgha g
is detrimental to performance. Yet most. of the time t. e curs he
Sports Hlustrated is simply an illustrz.mon of regression tof Ehe
mean. For someone to have earned their place on th.e cov;:r f) i
magazine, they will usually be on top form. ”l?hey};n;gh;t blzz licnaa
an exceptional season, or just won a champions 'lp.cnl i
record. Sporting performance is due to talent, but it is a Stl)mve o
on many random factors, such as whether your oppo.nf.:nts b
flu, whether you get a puncture, or whether the sun is 13 you y n.
A best-ever result is comparable to an extreme event, and regressio
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to the mean says chat after an extreme event the likelihood is of one
less extreme,

Of course, there are exceptions. Some athletes are so much better
than the competition that random factors have lictle sway on their
performances. They can be unlucky and still win. Yet we tend to
underestimate the contribution of randomness to sporting success.

In the 1980s statisticians started to analyse scoring patterns of

basketball players. They were stunned to find that it was completely
random whether or not a particular player made or missed a sho.
Of course, some players were better than others. Consider player A,
who scores 50 per cent of his shots, on average; in other words, he
has an equal chance of scoring or missing. Researchers discovered
that the sequence of baskets and misses made by player A appeared
to be totally random. In other words, instead of shooting he might
as well have flipped a coin.

Consider player B, who has a 60 per cent chance of scoring and
a 40 per cent chance of missing, Again, the sequence of baskets was
random, as if the player was flipping a coin biased 60—40 instead of
actually throwing the ball. When a player makes a run of baskets
pundits will eulogize him for playing well, and when he makes a
run of misses he will be criticized for having an off day. Yet making
or missing a basket in one shot has no effect on whether he will
make or miss it on the next shot. Each shot is as random as the flip
of a coin. Player B can be genuinely praised for having a 60-40
score ratio on average over many games, but praising him for any
sequence of five baskets in a row is no different from praising the
talent of a coin flipper who gets five consecutive heads. In both
cases, they had a lucky streak. It is also possible — if not entirely
probable — that player A, who is not as good overall at making
baskets as player B, might have a longer run of successful shots in a
match. This does not mean he is a better player. It is randomness
giving A a lucky streak and B an unlucky one.

More recently, Simon Kuper and Stefan Szymanski looked at
the 400 games the England football team has played since 1980.
They write, in Why England Lose: ‘England’s win sequence ... is
indistinguishable from a random series of coin tosses, There is no
predictive value in the outcome of England’s last game, or indeed in
any combination of England’s recent games. Whatever happened
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in one macch appears o have no bearing on whac will ||.||)|n'|1.in the
next one, ' The only thing you can predice is that over l|1‘c ma)'dmm to
long, term, England will win about ]];l'!‘itﬁ games outright. b
‘The ups and downs of sporting performance are often explaine
by randomness. After a very big up you might get a call from Sports
llustrated. And you are almost guaranteed that your performance

will slump.
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