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 Introductory remarks 
 

This booklet was written for students doing quantitative research for a term paper or a final thesis in 
linguistics. It aims to explain the usage of a number of simple descriptive and inferential tools for data 
analysis. Four commonly occurring types of research design are illustrates and serve as examples throughout 
the text. In principle, the information given here should equip you with everything you need for the 
statistical analysis of your data (if your research design does not differ from the ones illustrated here). The 
appendix shows you how to carry out calculations by hand. To make things easier for students, an Excel 
module was created to accompany this text. It makes calculations and plotting easier (copy-and-paste) and is 
available on the server of the Chair of English Linguistics. Everything you see in here, you can do in Excel 
(including some Excel innovations, such as the dot plot and the boxplot proper).  
Please consider this a working version of the booklet as well as the Excel module. Feedback on errors and 
lack of clarity is very much welcomed to improve future versions. 
 

Lukas Sönning 
November 2015 
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 1. Basic concepts 
 

 1.1. Populations and samples 
 

Researchers are interested in making statements that apply to populations – however, we only study 
samples and use this knowledge to learn about the population we are interested in. 
 
Population: Collection of entities we are interested in and want to make generalizations about 
  Usually far too large to be studied exhaustively (this is especially true for language) 
 

Sample: A much smaller collection of units from the population which we use to make generalizations 
→ A sample should be representative of the population 
→ It should be selected randomly (i.e. each unit has an equal chance of being chosen) 

 
 

Estimation → Based on a sample we can make estimates about the population  
→ The accuracy of our estimates depends on the size and representativity of the sample 

 
 

 1.2. Variables 
 

Definition in plain words: Something we can observe 
Something that takes on different values/levels 

 
▶  Scales of measurement 
 

Variables are classified in terms of scale of measurement, which basically expresses what type of 
information we get. We can distinguish 5 types for linguistic research.  
 

Symbol Scale of measurement Description Example 

 Count/Frequency Frequency of an event Frequency of a word in a corpus 

 Binary Only 2 levels Sex,  

 Nominal 3 or more levels Native language, hair color 

 Ordinal Ordered levels Questionnaire scales (agree...disagree) 

 Quantitative Measurements Age, reaction time, test score 

 
▶  Role in research design: Factor vs. outcome 
 

We can also classify variables depending on the role they play in our research design. Unfortunately, several 
synonymous terms exist for each type. 
 

FACTOR 
Variable that (we think) helps explain the 

behaviour/distribution of the outcome 
(Synonyms: independent variable, predictor) 

explains/ 
 

is related to 

OUTCOME 
Variable whose behavior/distribution  

we investigate or wish to explain  
(Synonyms: dependent variable, response) 

 
▶  Operationalization 
 

This fancy word refers to how we decide to measure a variable (e.g. specifying what to count, what to 
measure, how to measure it, etc.). Abstract (or latent) variables are more difficult to operationalize (e.g. 
PRONUNCIATION PROFICIENCY). Concrete variables are easier to operationalize (e.g. AGE, VERB TENSE). Note 
that variables can be operationalized in different ways. For example, LENGTH OF SUBJECT can be 
measured in terms of (i) number of words, (ii) number of morphemes, (iii) number of syllables, or (iv) 
number of characters. Look at how other studies have measured the variable you are interested in. This will 
make it easier for you to compare your results to those obtained in previous research. 



 2. Descriptive statistics 
 

The tools offered by descriptive statistics are important in that they allow you to understand your data and to 
communicate your results. They thus serve as a medium of communication between data and researcher as 
well as between researcher and audience (readers/listeners). There are two types of tools for descriptive data 
analysis: (i) statistical measures, which summarize the information in your data using numbers and (ii) 
plots (=graphs, diagrams), which offer different ways of looking at and presenting data. What you need to 
bear in mind is that statistical measures reduce your data to a single number; plots can retain much more 
information if needed and therefore tell you much more about your data.  
 
 

 2.1. Statistical measures 
 

Note 1. When reporting statistical measures you should round (a lot). Do not report too many decimal 
places; maybe round them away completely (especially for percentages). They distract the eyes and make it 
much harder (for you and your audience) to compare the relevant digits. Decimal places also create the 
illusion of precise measurements; this is usually not the case (see section on inferential statistics). 
 

Note 2. In the following we are going to distinguish between two types of comparisons which are often 
involved in (corpus) linguistic data analysis. Sometimes we investigate several items, e.g. different words or 
units such as constructions, collocations, lexical bundles, etc. For example, we may be interested in the 
frequency of the top 20 adverbs in spoken English. We are then comparing different items (adverbs) in the 
same group (spoken English). The term group is used in a general sense here to be applicable to different 
research designs. If we compare the frequency of adverbs in spoken vs. written English, we would say we 
are comparing two groups – the two “groups” being different language modes (in practical terms, two 
different (sub-)corpora).  
 
  Frequency data 
 

▷  Simple frequencies 
 

The absolute number of occurrences observed (or counts) is called the raw frequency. Counts are usually 
expressed as a relative frequency, such as “per hundred” (%), “per thousand”, or “per million”. A relative 
frequency makes it possible to compare counts across different studies or samples. In corpus linguistics this 
is important, since the size of (sub-)corpora often differs. A typical measure in corpus linguistics is per 
million words (or per thousand words). 
 
▷  Comparing two frequencies 
 

Frequencies are usually compared using a ratio (e.g. 1.6 – word X occurred 1.6 times more often in corpus 
A than in corpus B). This is called a frequency ratio. It is better to always use relative frequencies for the 
calculation of such a ratio. Beware that the ratio changes depending on which frequency you divide by 
which. A ratio of 4.0 (4/1) corresponds to a ratio of 0.25 (1/4). Note that 4.0 may sound like a larger 
difference to some people than 0.25.  
 

Technical note: The log ratio does not suffer from these drawbacks (see section 4.3 for an example and explanation). 
 
 
  Binary and nominal data 

 

▷  Simple proportions/percentages 
 

Binary and nominal data are usually communicated using relative frequencies in the form of percentages 
(per 100) or proportions (per 1). For example, if we sample 200 instances of the verb learn in the simple 
past form, and 180 out of 200 of those occurrences were in the regular form (learned vs. learnt), we would 
summarize this finding saying that 180/200 occurrences were regular, which is a proportion of 0.9 or a 
percentage of 90 percent. Given this number we automatically know that 20/200 or 0.1 or 10 percent of the 
occurrences were irregular. You can always convert proportions to percentages (multiply by 100) if you 
prefer this way of reading the data. 



▷  Comparing two proportions/percentages 

We usually use the difference of proportions (or percentages) to compare two groups. For example if we 
observe that (in simple past contexts) learn occurs in the regular form 90% of the cases in American English, 
but only in 60% of the cases in British English, we can express this difference as 0.3 or 30 percent. It does 
not matter which category we focus on. For the irregular verb form, the difference between 10% (AmE) and 
40% (BrE) is the same. 
 
 
  Quantitative data 
 

Note 1. While it is strictly speaking not appropriate to treat ordinal data in the same way as quantitative data, 
this is typically what researchers do. One argument against doing so is that the distance between the ordinal 
categories is not necessarily equal. A typical type of ordinal data in linguistics comes from questionnaires, 
where the response to items is usually indicated on a 3(+)-point scale (e.g. a 5-point scale: “I strongly 
agree”, “I agree”, “Undecided”, “I disagree”, “I strongly disagree”). When designing the questionnaire, try 
to create response categories that are as equidistant as possible – then you can justify the use of the 
following methods. 
 

Note 2. The classic statistical measures for quantitative variables (mean and standard deviation) have one 
important weakness: They are very easily influenced by outliers. Outliers are unusual measurements in that 
they have a very high or very low value compared to the other measurements in the sample. Outliers 
commonly occur with variables that are bounded by zero (i.e., they only have positive values). Examples are 
duration and reaction time. You can detect outliers with the help of a boxplot (see below). If there is an 
unusually high number of outliers (more than 5-10 percent of the data) it is better to use robust statistical 
measures such as the median and the trimmed mean or the interquartile range. Another simple option is to 
compare the mean and the median (described below) – if they differ considerably, outliers are present. 
 
▷  A single sample 
 

Statistical measures for quantitative data are divided into measures of location and measures of spread. 
Measures of location tell us where the “typical” (i.e. the most representative) score of the sample lies. 
Measures of spread are just as important. They tell us how much the scores vary in the sample. Variation is 
frequently ignored when presenting and discussing results. However, it deserves the same amount of 
attention as the commonly discussed measures of location. These two types of measures always go hand in 
hand – both should be reported and interpreted. 
 
Measures of location 
 

Mean   M The average of the scores 

Median  Mdn The score in the middle: half of the scores are higher, and half are lower 

Trimmed mean Mtr The highest and lowest 20% of the scores are removed. Then you calculate the  
mean of the remaining 60% of the scores (20% trimming is common). 

 

Measures of spread 
 

Standard deviation SD If you add and subtract 1 standard deviation to the mean, you get an interval.  
Roughly 2/3 of the scores in the sample are in this interval. In other words, 

around 2/3 of the scores are less than 1 SD away from the mean. 

Interquartile range IQR The interquartile range contains the middle 50 % of the scores. See below  
(boxplots) for an explanation. 

 
▷  Comparing two groups  
 

An easy-to-interpret measure for comparing two groups is the difference between their 
means/medians/trimmed means.  
 

Technical note: Another option are standardized measures (r-family or d-family measures), which make it easier to 
compare results across different variables and/or studies, especially if measurements are made on different scales.  



▷  Association between two quantitative variables 
 

The association between two quantitative variables is measured with a correlation coefficient r. Correlation 
coefficients may be unfamiliar to many people. They can range between -1 and +1, which reflects the 
strength (0 vs. 1) and the direction (+ vs. -) of an association. A positive association means: the higher the 
X, the higher the Y. This might be the case when comparing motivation with level of pronunciation 
proficiency – subjects with a higher motivation will on average also have higher proficiency. A negative 
association, on the other hand, means: the higher the X, the lower the Y (or vice versa). This might be 
observed if we measure exam anxiety and exam score. Other things being equal, students that feel more 
nervous and worried about an exam might perform worse than the more relaxed and confident ones.  
To get a feel for the correlation coefficient, it is best to look at pictures of data. The following plots show a 
few examples for a number of values for the correlation coefficient.  
 

Negative association  Positive association 
-.7 -.5 -.3 -.1  .1 .3 .5 .7 

    
 

 

    

    

 

    
 
Sometimes, benchmark values are used to interpret a correlation coefficient as indicating a small (.1), 
medium (.3) or large (.5) effect (Cohen 1988). It is generally better to interpret the size of an effect by 
comparing it with the (i) the effect of other variables and/or (ii) the results obtained in other studies dealing 
with the same or a similar phenomenon. If no such information is available, these benchmarks may be used.  
 
▷  Association between two quantitative variables: Comparing two groups 
 

It is also possible to compare the correlation coefficients of two groups (or two studies). This comparison is 
usually expressed as the difference of the correlation coefficients. 
 
▷  Effect of outliers 
 

Like the mean and the standard deviation, the correlation coefficient is very sensitive to outliers. It is thus 
essential to check whether there are problems with outliers. Before calculating a correlation coefficient, 
inspect the two variables (i) separately using boxplots and (ii) together in a scatterplot (see below). If there 
are no unusual patterns in the data, you can go ahead and calculate the (Pearson) correlation coefficient 
(Excel function KORR). If the data look problematic, you should use Spearman’s correlation coefficient, 
which is robust against outliers. The appendix explains how to calculate it.  
 

 
 

 2.2. Plots 
 

Note 1. Data visualization is a broad and fascinating subject. In the following, I will try to put major 
recommendations into a nutshell. One thing you should keep in mind is that there is often more than one 
way of looking at/showing your data. It makes sense to try out different arrangements of the variables in the 
graph and alternate between combining groups in a single display and showing them separately. Different 
arrangements can show different aspects of the data. Avoid information overload.  
 

Note 2. You may be unfamiliar with some of the chart types (especially dot plots and boxplots). The Chair 
of English Linguistics provides a free Excel module (accessible on the server), which makes it easy to create 
such charts by copy-and-pasting your data into a prefabricated spreadsheet. 
 



  General guidelines 
 

No pie charts.  Pie charts make it difficult for the human eye to judge and compare percentages. The bar 
chart and the dot plot always outperform the pie. 
 

No 3-D effects.
  

3-D charts are a waste of ink and more difficult to read than ordinary bar charts. 
 

Be minimalistic.
   
 

It is generally recommended to try and reduce the amount of ink so the relevant data-
based information is foregrounded. Reduce the number of tick marks, do not use grid 
lines (or very lightly colored ones). Also reduce the size of the chart to a sensible level. 
 

Avoid color. Color should only be used if it serves a purpose. It usually doesn’t – grey scales can do 
the job just as well. Your plot should be pretty because of the interesting data it shows. 
Avoiding color will: (i) save printing costs, (ii) make sure black-and-white reproductions 
(print, copy) are unambiguous (converted to greyscales some colors may not be 
distinguishable), (iii) allow you to use color in a presentation to highlight things 
 

Order. This is in fact an underestimated and underutilized recommendation. If the 
groups/categories/ items you plot do not have a natural/logical order, then you should 
order them based on some aspect of the data, for example value (see examples below). 

 
  Frequency data: Bar charts and dot plots 
 

Frequency data can be shown using bar charts and dot plots. While bar charts are encountered very often, 
dot plots have a few important advantages. When comparing frequencies of several items (here: frequency 
of top 20 adverbs in spoken English) bar charts yield acceptable results. Note the horizontal format, which 
ensures readability of the labels (adverbs). The items have been ordered. 
 

  
 
If we wish to compare two groups (corpora), bar charts are arguably less suitable. The minimalistic design 
of dot plots manages to keep clear vision and makes it easier to see patterns and focus on just one group 
while mentally filtering out the other. The plots below compare the frequency of adverbs in spoken vs. 
written English. Again, a horizontal format is chosen and the words are ordered. There are different options 
for ordering here. We could order them based on the frequency of spoken and written combined, the 
frequency of written or the frequency of spoken. Here the same ordering as above was chosen.  
 

  



When comparing frequencies we usually use a ratio to 
express the comparison in numbers. We can add this 
information to the plot easily by adding a second panel 
on the right. It shows the ratio for spoken vs. written 
English for each of the 20 adverbs. We can immediately 
see that right sticks out; well, there and really also 
appear to be very typical for spoken English. 
 

Adding a second panel that expresses comparisons is in 
fact a powerful plotting strategy and very much 
recommended. It offers a further ordering option: we 
could order the adverbs according to frequency ratio. 
  
There are obviously different choices for plotting symbols in dot plots. What is most important is that the 
groups (here: spoken vs. written) remain visually distinguishable. Two sets of symbols can be 
recommended: if there is no overplotting (i.e. frequencies in the same line are never exactly the same), you 
can use (● and ○). The symbols chosen here (+ and ○) have the advantage that both are visible if 
overplotting occurs. The use of the more salient filled circle (●) is reserved for showing the magnitude of 
interest. Here this is the frequency ratio of spoken vs. written. 
 
  Binary and nominal data: Bar charts and dot plots 
 

Percentages are usually shown using bar charts (no pie charts!). Bar charts are a good choice when there 
are only a few groups/items to compare. For binary data (which we focus on here), the use of stacked bar 
charts makes sense if we only look at one group. The following plots show the occurrence of regular and 
irregular verb forms in the simple past in BrE newspaper texts (data from Levin 2009). If we focus on one 
of the categories (e.g. regular verb forms) we can also use a simple bar chart or a dot plot. The axis 
should unambiguously indicate which category is plotted. Note that the verbs are ordered by “regularity”. 
 

 

   
 

 
As soon as we compare two groups, for example BrE vs. AmE, stacked bar charts are a poor choice. We 
should instead focus on one category (here: regular verb forms) and use a grouped bar chart or a dot plot. As 
in the example above, the grouped bar chart is very busy. This happens when comparing a larger number of 
items, which is typically the case in corpus linguistics. By append a second panel to the dot plot we can 
directly show the comparison between the varieties, which is simply the difference between the proportions 
(of regular verb forms). An interesting pattern emerges. 
 

  



  Quantitative data: Boxplots and scatterplots 
 

Single-number summaries (such as the mean and the standard deviation) discard a lot of information in 
quantitative data. A very useful chart type for showing the distribution of scores in a sample is the boxplot. 
It gives a wealth of information: central tendency is indicated by the median (in our version of the boxplot 
as a black dot). The box extends from the lower to the upper quartile. These scores cut off the bottom 25% 
and the top 25% of the scores, respectively. The box shiows the interquartile range. It contains the middle 
50% of the data. Unusually large or small scores, so-called outliers, are identified and plotted separately as 
individual open circles. Boxplots are a very useful tool to check whether there is a problem with outliers and 
whether a robust measure of location and spread should be chosen to summarize the data.  
 

The following figure illustrates the boxplot. There are 13 scores in the sample, which range from 1 to 21. 
The ordered scores are shown in the upper part of the display. The median divides the ordered scores into 
two equal halves. The median, the upper quartile and the lower quartile divide the scores into four parts with 
a roughly equal number of scores. Between the upper and lower quartile we thus (roughly) find the central 
50% of the scores. 
 
 

  
 
 
A further advantage of boxplots is that they make it very easy to compare two or more groups in the same 
plot. They enable us to contrast groups in terms of central tendency (comparison of the medians) and 
variability (comparison of the boxes). You can create such boxplots via copy-and-paste in the Excel module. 
 
Scatterplots can be used to inspect 
the association between two 
quantitative variables. You should use 
open circles as plotting symbols, so 
overlapping data points are still 
distinguishable. A grid is usually not 
necessary and may distract from the 
pattern in the point cloud.  

  
 
We can compare two groups by 
plotting them into the same panel 
using different plotting symbols or 
colors. Here the use of color often 
makes a plot more readable. Another 
strategy is to plot groups into different 
panels. Make sure the axes have the 
same range when showing the plots on 
the same page/slide. 
  
 



  Time as a variable: Line plots 
 
 

Line plots are the best choice when showing trends 
over time or quasi-time differences such as age 
groups or developmental stages. Line plots usually 
do not need color: vary the plotting symbols (○ ● +) 
and line types ( ---- ...... ___ ). What makes line plots 
much easier to read is when the lines are labeled 
directly in the plot. You should avoid a legend (if 
possible). It also makes sense to use hierarchical 
labeling (as in the example on the right). The plot on 
the right shows the diachronic change in frequency 
of direct vs. indirect quotes in two newspapers (data 
from Biber and Gray 2013). 
 

 

 
 
 
 
 
 
 
 
 

 3. Inferential statistics: Confidence intervals 
 

As was mentioned above, researchers are usually interested in arriving at more general statements that do 
not only apply to the specific sample(s) they have collected but more generally, to the underlying 
population. The statistical measures, differences and ratios we calculate based on our sample(s) are only 
estimates of the true state of affairs in the population. Every estimate is connected with a certain degree of 
uncertainty. Confidence intervals express this uncertainty and help us judge the precision of our estimate. 
You have to understand 4 key concepts to know what inferential statistics is all about and how confidence 
intervals are used and interpreted. 
 
 

 3.1. Basic concepts 
 

  Sample vs. population 
 

Researchers study samples to make statements about populations. For example, a study investigating the 
development of pronunciation skills in German learners of English may analyze the speech of 60 learners. 
However, the goal would be to generalize to all German learners. If we want to go from statements about 
our sample to statements about a population we need the tools provided by inferential statistics. 
 
  Sample statistic vs. population parameter 
 

The statistical measures, differences and ratios we calculate based on our sample(s) are called sample 
statistics. The true value in the population we are trying to estimate is called a population parameter. We 
thus use sample statistics to advance our knowledge of population parameters, which we can never know for 
certain. A sample statistic is our best guess at the population parameter. Sample statistics are typically 
indicated with Roman letters, population parameters are denoted by Greek letters.  
 
  Sampling variation 
 

Sampling variation is the researcher’s enemy. If we keep drawing samples from a population and calculate a 
sample statistic, this sample statistic will vary from sample to sample, and thus from study to study. 
Sampling variation is always involved when samples are used – we just don’t see it because we have only 
drawn one of the many possible samples from this population. Sampling variation can be illustrated via 
simulation. Such simulations are a useful didactic tool. However, for illustrative purposes they assume that 
we know the true population parameter. This is not the case in reality. Think of the simulations as something 
that some higher power might witness when watching researchers down on earth doing their job. The 
diagrams below each show sample statistics from 50 different random samples drawn from the same 
population and estimating the same population parameter, in this case a proportion/percentage.  



The true proportion is .4 (40%). There is 
variation between the 50 samples in both 
plots. This is called sampling variation. 
The histograms on the bottom show the 
distribution of the sample statistics. 
The crucial difference between the two 
plots is that in the left plot the size of all 
samples was 20 and the right plot it was 
100. The sampling variation in the right 
plot is much smaller. This is because 
larger samples produce sample 
statistics that are on average closer to 
the true population parameter. 
Remember that your study produces one 
of those dots, and it is very likely that 
you over- or underestimate the true 
population parameter. 
 

  
  Confidence intervals 
 

Confidence intervals (CIs) take into account sampling variation and tell us how much we can rely on our 
estimate, i.e. our sample statistic. It is again easiest to explain confidence intervals via simulation. We will 
take the two examples from above and show new estimates (sample statistics) with 95% CIs.  
 

The confidence intervals in the left plot 
are much wider, which indicates the lack 
of precision of these estimates. Sample 
statistics based on small samples are less 
precise than those based on bigger 
samples. The idea behind a 95% 
confidence interval is the following: if 
we keep on sampling (or simulating), 
then in the long run 95% of the 
confidence intervals will capture the true 
population parameter. You can see that 
in each plot 2 out of 50 intervals miss the 
true value of 0.4. These are shown in 
grey. Of course, it is possible to use other 
levels of confidence. The interpretation 
changes accordingly. Due to convention, 
the 95% level is used most frequently. 

  
 

 3.2. Interpretation of confidence intervals 
 

In practice, you would calculate and report a confidence interval for the statistical measures that give a 
quantitative answer to your research question(s). Depending on your research design this could be a relative 
frequency/proportion/mean/correlation coefficient/frequency ratio/proportion difference /mean difference/ 
difference between correlation coefficients. The appendix explains how confidence intervals for these 
measures are calculated. The Excel module, however, makes such calculations much easier. 
 

But let us now focus on a very important question: How do we interpret a 95% confidence interval? There 
are several ways of interpreting it, which foreground different aspects. Note that it is strictly speaking not 
correct to say that the 95% CI contains the population parameter with a probability of 0.95 (95%). A 
compromise is to say that we are 95% confident that the parameter captures the true parameter. Here are 
three interpretations: 



  Interpretation 1: Plausible values for the population parameter 
 

The 95% CI covers a range of values. We can say that these values are plausible values for the population 
parameter. In other words, based on our sample and a confidence level of 95%, we cannot reject these values 
as candidates for the population parameter. 
 
  Interpretation 2: Precision of our estimate 
 

We can interpret the 95% CI as indicating the precision of our estimate. If it is wide, our estimate is not very 
precise and thus not very useful. If the 95% CI is narrow and covers a small range of values, we know that 
our sample statistic is precise and thus a reliable estimate of the population parameter. 
 
  Interpretation 3: Relationship to statistical significance (p-values) 
 

If the 95% CI does not include a certain value X, then – assuming we would have carried out a null 
hypothesis significance test – the difference between the sample statistic and the value X would have been 
statistically significant. For the comparison of groups (for example, with a frequency ratio, a difference of 
proportions, or a mean difference), this means that if the 95% CI does not include 0 as a plausible value, the 
difference between the groups is also statistically significant. CIs thus imply the result of a significance test. 
 
 

 3.3. Reporting confidence intervals 
 

Confidence intervals are reported in the text using square brackets, with the confidence limits separated by 
a semicolon. If you are consistent in the level of confidence reported (e.g. 95%) it is enough to mention the 
level of confidence when reporting the first confidence interval. 
 

Example: “The adverb well occured 8.7 times more often in spoken than in written  
English, 95% CI [6.0; 12.5]. The frequency ratio for very was 2.4 [1.6; 3.8].”  

 

In plots, confidence intervals are shown using error bars. Dot plots are arguably the best choice for 
showing sample statistics and their confidence intervals. What you need to pay attention to is the fact that 
error bars in diagrams may show different things. Sometimes they are used to show the standard 
deviation or the standard error (which is in fact a 68% confidence interval). Therefore you always need to 
explain what the error bars in your charts show. 
 
 

 3.4. Understanding confidence intervals: Some properties 
 

  Symmetry 
 

Don’t be surprised if a confidence interval is not symmetric around the point estimate. 
 

Sample statistic Symmetric? Notes (technical) 
Single sample   

Relative frequency No Approaches symmetry when n → ∞ 
Proportion/percentage No Only when p = .5 (50%) 
Mean Yes  
Correlation coefficient No Only when r = 0 

Comparing groups   
Frequency ratio No Symmetric on the log scale 
Proportion difference No  
Mean difference Yes  
Difference between correlation coefficients No  

 
 
 



  Width of confidence intervals: Effect of sample size 
 

Above we saw that larger samples yield more precise estimates. The following plots show the relationship 
between sample size and the width of a 95% CI for two proportions (on the left: 0.2 = 20% and 0.66 = 66%) 
and two relative frequencies (on the right: 1000 pmw and 2500 pmw). As you can see, the gain in precision 
is especially notable in the range of small sample sizes. For proportions, gains are large up to a sample size 
of 40 to 50, then the increase in precision levels off. The same is true for relative frequencies. Precision 
increases substantially for a sample size up to 15,000 to 20,000. 
 

  
 
  Width of confidence intervals: Effect of confidence level 
 

By convention, confidence intervals usually report a 
95% level of confidence. If we require a higher level 
of confidence, the interval will be wider.  
The relationship between level of confidence and CI 
width is shown in the plot on the right for a relative 
frequency (pmw). The relationship has the shape of a 
trumpet. Higher levels of confidence come at an 
increasingly higher price in terms of precision/width. 
The 68% confidence interval corresponds to the 
standard error. If you see a plot showing +/- 1 
standard error, you will know that you can interpret 
this interval as a 68% confidence interval.  
 
  Separate confidence intervals for groups: Interpretation of overlap 
 

It is best to analyze and communicate targeted comparisons by calculating and showing a measure that 
reflects this specific comparison. This may be a frequency ratio, a proportion difference, or a difference 
between means, accompanied by a 95% CI. Confidence intervals were created for this purpose, i.e. to show 
the precision of a single sample statistic, taking into account sampling variation. Sometimes, however, we 
are only provided with 95% CIs for two group individually. A common misconception when comparing two 
such confidence intervals is that the difference between two groups is not statistically significant if the error 
bars overlap. This is not true. In fact, if the overlap is moderate (up to half of the average arm length), the p-
value for the comparison would be p < .05. For CIs that do not overlap, it would be p < .01. 
 
This rule is restricted to cases when there are only 2 
groups involved. If we look at several CIs simultaneously 
(e.g. for 3 or more groups), we should not be tempted to 
compare them and make statements about statistical 
significance. Each CI answers one specific question and 
thus serves one and only one purpose: to indicate the 
precision of a point estimate (sample statistic). 

 

 



 4. The new statistics in practice: Effect sizes and confidence intervals 
 

 4.1. The new statistics vs. significance testing 
 

We briefly mentioned the practice of null hypothesis significance testing (NHST) above. This approach to 
the analysis and presentation of research results has been heavily criticized in the past. From a CI-
perspective, NHST only asks whether – based on our sample – X (most often 0) is a plausible value for the 
population parameter. In NHST you perform a test that outputs a p-value. A p-value smaller than .05 is 
interpreted as signifying a statistically significant result.  
 

Consider the comparison of two groups. If the p-value is below .05, the difference between the groups is 
claimed to be “statistically significant”. The problem with the p-value is that is combines two types of 
information: the magnitude of the difference found and the precision of this estimate. We know that larger 
samples yield higher precision, so a small p-value might reflect a large sample, not necessarily a large 
difference. We surely would like to know, because otherwise the adjective significant is misleading. 
 

The “new statistics” take a different approach to the interpretation of research results. We first look at the 
difference and then construct a CI to see how precise our estimate of this difference is. The focus is where it 
ought to be: on the observed difference. As mentioned above, the result of a NHST is implied by a 95% CI.  
 

A more general name for statistics such as the frequency ratio, the difference of proportions, the difference 
between means and the correlation coefficient, is effect size. The term covers a wide range of statistical 
measures and has been defined as “a quantitative reflection of the magnitude of some phenomenon that is 
used for the purpose of addressing a question of interest” (Kelley and Preacher 2012: 140). 
 
 

 4.2. Why the new statistics are better 
 

o The new statistics are in fact not new – most of the methods they apply have been around as long as 
NHST. What would be new is if they were used more widely by researchers. 

 

o The new statistics speak a language we understand, and which our audience understands. While some 
types of effects sizes may seem cryptic to student researchers, the ones outlined above (frequency ratio, 
difference of proportions, mean difference) are easy to understand and interpret. Some practice is 
probably needed with the correlation coefficient.  
 

o The idea behind a confidence interval is much more intuitive and easier to understand than the idea 
behind NHST and statistical significance. All you need to know is (i) how to interpret the statistical 
measure you are focusing on and (ii) how to interpret the confidence interval.  
 

o Since the focus is on the effect size at every stage of the analysis, there is less danger of misinterpreting 
a result that is significant in the statistical sense as one that is meaningful in the practical sense.  

 

o Effect sizes and confidence intervals give us much more information than a p-value. They tell us about 
the magnitude of an effect and its precision, not just whether it exists or not.  

 

o Effect sizes and confidence intervals also make it easier to compare results across studies and to 
summarize the state of research on a topic. We can compare the effect we have found to those obtained in 
other studies. This is likely to yield a more substantial discussion of results. 

 

o The synthesis of results in the literature is much more informative when focusing on effect sizes with 
confidence intervals then by merely counting votes (statistically significant vs. not statistically 
significant). A graphical presentation of the effect sizes obtained in previous studies will lead to more 
informed comparisons, raise new questions and provide a solid basis for the interpretation and 
contextualization of the results of your study.  

 

o This is in fact the point at which meta-analysis starts. Meta-analysis aims at combining the evidence 
reported in different studies into a more precise estimate of the phenomenon of interest. Meta-analysis 
usually uses dot plots to provide a graphical summary of the existing evidence. Such plots are called 
forest plots. 

 
 



 4.3. Application to corpus data  
 

Dot plots are very suitable for showing error bars. Appending a panel to directly show differences or ratios 
appears to be a fruitful method for the analysis and presentation of corpus data. This method was proposed 
by Sönning (2014), but he does not know whether he was the first to do so. In any case, it deserves wide 
usage in corpus linguistics and can now be easily applied using the Excel module. 95% CIs can be added to 
the appended panel to show how precise the estimate of the differences/ratios are. 
 
  Binary data: Proportions/percentages 
 

The plot on the right shows the proportion of 
regular simple past forms for 11 verbs in two 
varieties: British and American English (data 
from Levin 2009). The left panel shows the 
proportion for each variety, the right panel 
plots the difference between the proportions. 
The error bars show 95% confidence intervals. 
 

Such two-fold comparisons are typical for 
corpus data: we compare (i) items, here: 11 
verbs and (ii) groups, here: 2 varieties.  
 

Two further example of this use of dot plots with binary variables shall be given here. The data are from 
Crawford (2009) and Mondorf (2009). The interested reader is referred to the original research articles. 
 

  
 
This example for binary data includes time as a variable (data from Schlüter 2009). Line plots are suited best 
for showing such diachronic trends. The underlying variable on the y-axis is binary (preceded by my vs. 
mine), and we are comparing three groups, here three different phonetic contexts (before C, V, or <h>). 
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  Frequency data 
 

Two-fold comparisons are also 
typical for corpus-based frequency 
data. The plot on the right uses the 
adverb example from above, 
comparing the frequency of the top 
20 adverbs in spoken and written 
English. It is possible to append 
more than one panel thus ex-
pressing the comparison in different 
ways. For frequency data, we might 
append panels showing frequency 
differences and frequency ratios. In 
the plot below, the frequency ratio 
and the log ratio are shown.   
 

The log ratio is another measure for frequency comparisons. It has one disadvantage and two important 
advantages. The disadvantage is that most people (and audiences) are unfamiliar with the log scale. It helps 
to show the original (unlogged) ratios on the upper axis of the panel. This was done here. The panel on the 
right shows the log2 ratio (i.e. logarithms of the ratio with base 2). A log ratio of 2 corresponds to a ratio of 
22 = 2 x 2 = 4. A log ratio of 4 corresponds to a ratio of 24 = 2 x 2 x 2 x 2 = 16. The ratios can be read off the 
top axis of the panel: well is around 8 times as frequent in spoken compared to written English. The 
advantages outweigh the disadvantages. Original ratios have a skewed distribution: the majority of  scores 
is squashed into the left side of the plot, a few large ratios dominate the plot and thus mess up the 
resolution. This makes it is harder to compare the smaller ratios. Further, ratios below 1 (here: adverbs that 
were more frequent in written English) are always crammed into the interval [0;1] and thus overlooked. The 
choice of which frequency to divide by which has drastic consequences for the story the plot tells. This is 
clearly undesirable. Log ratios do not suffer from these drawbacks. Ratios in both directions receive equal 
weight and resolution is no longer a problem.  
 

The log ratio has recently been proposed as a measure for use in keyness analyses to avoid sole reliance on 
test statistics derived from NHST, such as the Log-likelihood ratio test (Hardie 2014). This is clearly a 
welcome impulse. Keyness analyses would arguably also profit from the graphical methods presented here, 
as they combine descriptive and inferential information, with the visual presentation uncovering unexpected 
patterns and facilitating cross-item comparisons in terms of keyness. It then appear reasonable to apply a 
data-based ordering of the items used for keyness analysis, either according to value (if we are only 
interested in items that are more frequent in corpus A) or according to absolute value (if we are also 
interested in which items are underrepresented in corpus A). Different ways of ordering are likely to reveal 
different aspects of the data and should be a common strategy at the stage of data anylsis. 
 
 

 5. Further reading 
 

The information provided in this booklet should be enough to help you calculate CIs for the most frequently 
encountered simple research designs. The Excel module makes calculations and plotting much easier.  
 

Thompson (2002), Schmidt (1996) - Short articles on why researchers should abandon NHST and how they 
would benefit from a change towards the use of effect sizes and confidence intervals. 
 

Altman et al. (2000) - Simple explanations on how to calculate CIs for a wide range of statistics. 
 

Cumming (2012) - Probably the best book on the ideas behind the new statistics. It is accompanied by 
Excel applications that allow you to explore ideas and concepts interactively. The focus is on quantitative 
data. This book inspired me in preparing this talk. Includes an introduction to meta-analysis. 
 

Kline (2013) - The definite reference on the debate about statistics reform in the behavioral sciences. 
Includes modern applications such as robust statistical measures and an introduction to Bayesian statistics. 
 

Grissom and Kim (2012), Ellis (2010) - Two great references on effect sizes. Grissom and Kim 2012 is 
much more detailed and technical. 



 6. Constructing confidence intervals 
 

 6.1. Frequency data 
 

  Confidence interval for a (relative) frequency 

The confidence interval is calculated using the raw frequency k. The confidence limits you calculate are then 
also in raw (absolute) counts. Afterwards, you can convert them to a relative frequency (such as per million 
words). The upper and lower limits of the 95% CI for a raw frequency are: 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =  �1.96 + √𝑘 + 0.02�
2
 

 
𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =  �1.96 + √𝑘 + 0.96�

2
 

 
Source: Bégaud et al. 2005 

R: function poisson.test() 
 
  Confidence interval for the ratio of two relative frequencies (rates) 

Frequencies are typically compared using a ratio. We can compute a confidence interval for the ratio of two 
frequencies a and b in samples of size M and N, respectively. The upper and lower limits of the 95% CI for 
the ratio of the two relative frequencies (rates) are calculated as follows: 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =  
𝑁

2𝑀𝑏2
× �2𝑎𝑏 + 1.962(𝑎 + 𝑏) − 1.96 × �(𝑎 + 𝑏)[4𝑎𝑏 + 1.962(𝑎 + 𝑏)]� 

 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =  
𝑁

2𝑀𝑏2
× �2𝑎𝑏 + 1.962(𝑎 + 𝑏) + 1.96 × �(𝑎 + 𝑏)[4𝑎𝑏 + 1.962(𝑎 + 𝑏)]� 

 
 

Source: Graham et al. 2003; Siev 1994 
R: function riskscoreci() in the package PropCIs 

 
 

 6.2. Proportions (Binary variables) 
 
  Confidence interval for a proportion (percentage) 

For a binary variable, we can express the distribution of observations by giving the proportion (or 
percentage) of one of the two categories C1 and C2. The choice of category will not influence the results. If 
12 out of 20 observations were in category C1, we could give the proportion as 0.6 (or 60%). Statisticians 
use the generic terms “successes” (here: 12) and “failures” (here: 8). The following method calculates the 
95% confidence interval for this proportion. 
 

Symbols: r observed number of successes (here: 12) 
   q observed proportion of failures (here: 8/20 = 0.4) 
   n total number of observations (here: 20) 
 
First calculate three quantities:     𝐴 = 2𝐿 + 1.962 𝐵 = 1.96�1.962 + 4𝐿𝑟         𝐶 = 2(𝑛 +  1.962) 
 
The 95% confidence interval is then: 𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = �𝐴−𝐵�

𝐶   𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = �𝐴+𝐵�
𝐶  

 
Source: Newcombe and Gardner 2000 

R: function scoreci() in the package PropCIs 



  Confidence interval for the difference of proportions (or percentages) 

If you compare two groups and the dependent variable is binary, a simple and easy-to-understand method is 
to look at the difference between the proportions. Again, the choice of which category to compare does not 
influence the results. You can calculate a 95% CI for the difference of proportions as follows. First you find 
the upper and lower confidence interval limits of the proportion in each group using the method described 
above. It does not matter which group is group 1 or group 2 as long as you are consistent. This yields: 
 

l1 lower limit for group 1  u1 upper limit for group 1 
l2 lower limit for group 2  u2 upper limit for group 2 

 
Symbols: p1 proportion of “successes” in group 1 

   p2 proportion of “successes” in group 2 
   D difference of proportions (p1 – p2) 
 
The confidence interval for the difference of proportions is then: 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝐷 + �(𝑈2 − 𝑙2)2 +  (𝑢1 − 𝑈1)2 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝐷 −  �(𝑈1 − 𝑙1)2 +  (𝑢2 − 𝑈2)2 
 

Source: Newcombe and Gardner 2000 
R: function diffscoreci() in the package PropCIs 

 
 6.3. Quantitative data 

 

Overview 
 

 Central tendency   Correlation 
Data Single group Comparing groups  Single group Comparing groups 

Normal Mean + CI Difference between 
means + CI 

 

Pearson correlation 
coefficient + CI 

Difference between Pearson 
correlation coefficients + CI 

Non-
normal 

Median + CI 
Trimmed mean + CI 

Difference between 
trimmed means + CI 

 

Spearman correlation 
coefficient + CI 

Difference between Spearman 
correlation coefficients + CI 

 
  Confidence interval for the mean 

To calculate the 95% confidence interval for the mean we first need to calculate the standard error. It is best 
to let Excel calculate the standard deviation (Function: STABW.N) for us. Here is the formula for the 
standard error: 

𝑆𝑆 =
𝑆𝐷
√𝑛

 

 
The 95% confidence interval is then given by the following formulas.  
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝐿𝑎𝑛 − (𝑙 × 𝑆𝑆) 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝐿𝑎𝑛 + (𝑙 × 𝑆𝑆) 
 
The value t depends on the sample size n, more precisely on df which here is (n – 1). You can take an 
approximate value from the following table: 
 
df 6 8 10 12 14 16 18 20 25 30 35 40 50 >60 
t 2.45 2.31 2.23 2.18 2.15 2.12 2.10 2.09 2.06 2.04 2.03 2.02 2.01 2 

 
R: function t.test() 



  Confidence interval for the median 

It is fairly easy to calculate a confidence interval for the median. Calculate two values A and B: 
 

𝐴 =  𝑛
2
− �1.96 × √𝑛

2
�   𝐵 =  1 + 𝑛

2
+ �1.96 × √𝑛

2
� 

 
where n is the sample size. Round A and B to the nearest whole number. Order the observations (values) in 
your sample. The Ath and Bth observations form the 95% CI for the median.  
 
 
  Confidence interval for the 20% trimmed mean (Tukey-McLaughlin method) 

Trimmed means are not used very frequently (yet). However, they have a number of advantages compared 
to e.g. medians (for us, a practical advantage is the fact that it easier to calculate a CI for the difference 
between two trimmed means than it is to calculate a CI for the difference between two medians). 
 

We first need to calculate a trimmed mean. It is common practice to use 20% trimming. Order the scores 
from lowest to highest. Remove the highest 20% and lowest 20% of the scores as follows: Multiply your 
sample size by 0.2 and round the result down to the nearest whole number A. Remove the A highest and A 
lowest scores and calculate the mean of the remaining 60% of the scores. 
 

Then you need to calculate what is called the Winsorized variance. Excel can do this for you, but you first 
need to prepare the scores – you need to “Winsorize” them. Basically, you do the same as before when you 
calculated a trimmed mean. However, you don’t remove the highest 20% and lowest 20% of the scores, but 
you replace them with the highest or lowest score that remains after trimming, respectively. Then you use 
the Excel function VAR.P to calculate the variance of these Winsorized scores sWin

2. Take the square root to 
obtain the Winsorized standard deviation sWin. Then you calculate the standard error of the trimmed mean as 
follows: 

𝑆𝑆𝑇𝑇 =
𝑠𝑊𝑊𝑛

0.6√𝑛
 

 
The 95% confidence interval for the 20% trimmed mean is then given by the following formulas.  
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑡𝑡 − 𝑆𝑆𝑇𝑇(𝑙 × 𝑛𝑡𝑡) 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑡𝑡 + 𝑆𝑆𝑇𝑇(𝑙 × 𝑛𝑡𝑡) 
 
where ntr is the number of scores that remain after trimming and the value for t depends on the sample size 
(more precisely, df, here: n – 1), which you can look up in the table above. 
 

Method: Tukey-McLaughlin method (Tukey and McLaughlin 1963) 
R: function trimci() in the package WRS 

 
 
  Confidence interval for the difference between two means 

Two groups can be compared by looking at the difference between the means. The following method for 
calculating a 95% CI for the difference between means not only relies on normally distributed measurements 
but also on equal dispersion/variability in each group. Compare the standard deviations of the two groups 
and boxplots to decide whether this assumption is met. If the dispersion of scores in the two samples does 
not differ drastically you can go ahead using this method. Otherwise use the method for trimmed means 
described below. First calculate a pooled standard deviation:  
 
 Symbols: n1 sample size group 1   M1 mean group 1 
   n2  sample size group 2   M2 mean group 2 
   s1 standard deviation group 1 
   s2 standard deviation group 2 



𝑠𝑝𝑝𝑝𝑝𝑝𝑝 = �
(𝑛1 − 1)𝑠12 + (𝑛2 − 1)𝑠22

𝑛1 + 𝑛2 − 2
 

 
Then you calculate a standard error for the difference between the two means: 
 

𝑆𝑆𝐷𝑊𝐷𝐷 = 𝑠𝑝𝑝𝑝𝑝𝑝𝑝 × �
1
𝑛1

+
1
𝑛2

 

 
The 95% confidence interval for the difference between the means MDiff (M1 – M2): 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝐷𝑊𝐷𝐷 − (𝑙 × 𝑆𝑆𝐷𝑊𝐷𝐷) 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝐷𝑊𝐷𝐷 + (𝑙 × 𝑆𝑆𝐷𝑊𝐷𝐷) 
 
The value t depends on the sample sizes. Refer to the table above, where approximate values are given. In 
this case df is determined by n1 + n2 – 2.  

R: function t.test() 
 
 
 
 
  Confidence interval for the difference between trimmed means (Yuen-Welch procedure) 

First you need to calculate the Winsorized variance for both groups as explained above. Then you calculate 
an error variance w for each group: 
 

𝐿1 = 𝑠𝑊𝑊𝑊
2 (𝑛1−1)

𝑛𝑡𝑡1(𝑛𝑡𝑡1−1)
  𝐿2 = 𝑠𝑊𝑊𝑊

2 (𝑛2−1)
𝑛𝑡𝑡2(𝑛𝑡𝑡2−1)

 
 
where sWin

2 is the Winsorized variance, n is the sample size in the respective group, ntr is the number of 
scores that remain after trimming. Then calculate the standard error for the difference between the trimmed 
means (Mtr1 – Mtr2): 

𝑆𝑆𝐷𝑊𝐷𝐷𝑡𝑡 = �𝐿1 − 𝐿2 
 
The 95% confidence interval is then: 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑡𝑡1 − 𝑀𝑡𝑡2 − 𝑆𝑆𝐷𝑊𝐷𝐷𝑡𝑡 × 𝑙 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑡𝑡1 − 𝑀𝑡𝑡2 + 𝑆𝑆𝐷𝑊𝐷𝐷𝑡𝑡 × 𝑙 
 
The value t depends on the sample size, more precisely df. The calculation of the correct df is a bit more 
complicated for this method: 

𝑑𝑑 =
(𝐿1 + 𝐿2)2

𝐿12
𝑛𝑡𝑡1 − 1 + 𝐿22

𝑛𝑡𝑡2 − 1

 

 
Look up the t value in the table above and plug it into the formula. 
 

Method: Yuen-Welch procedure (Yuen 1974) 
R: function yuen() in the package WRS 

 
 



  Confidence interval for the Pearson correlation coefficient 

You can calculate the Pearson correlation coefficient in Excel with the function KORR. To obtain a 95% CI 
for the correlation coefficient you first obtain a value Z: 
 

𝑍 =
1
2
𝑙𝐿𝑙𝑝 �

1 + 𝐿
1 − 𝐿

� 
 
Then you calculate two values F and G: 
 

𝐹 = 𝑍 − 1.96
√𝑛−3

  𝐺 = 𝑍 + 1.96
√𝑛−3

 
 
The confidence interval limits are: 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =
𝐿2𝐹 − 1
𝐿2𝐹 + 1

 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 =
𝐿2𝐺 − 1
𝐿2𝐺 + 1

 
 
 
 
  Confidence interval for the Spearman correlation coefficient 

Spearman’s correlation coefficient is the Pearson correlation coefficient of the ranked scores in both groups. 
You first rank the scores in each group separately and then use the function KORR to calculate the 
correlation coefficient of the ranks in Excel. A confidence interval for Spearman’s correlation coefficient is 
then calculated the same way as described above for Pearson’s correlation coefficient. 
 
 
 
  Confidence interval for the difference between two correlation coefficients 

If you compare two groups, or the results of your study with those obtained in another you can simply 
calculate the difference between the correlation coefficients. First you calculate a 95% confidence interval 
for each correlation coefficient separately using the instructions above. This yields: 
 

l1 lower limit for group 1  u1 upper limit for group 1 
l2 lower limit for group 2  u2 upper limit for group 2 

 
Symbols: r1 correlation coefficient in group 1 

   r2 correlation coefficient in group 2 
   D difference between the correlation coefficients (r1 – r2) 
 
The 95% confidence interval for the difference D (r1 – r2) is then: 
 

𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝐷 −  �(𝐿1 − 𝑙1)2 +  (𝑢2 − 𝐿2)2 
 

𝑈𝑈𝑈𝐿𝐿 𝑙𝑙𝑙𝑙𝑙 = 𝐷 + �(𝑢1 − 𝐿1)2 +  (𝐿2 − 𝑙2)2 
 

Method: Zou 2007 
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