A closer look at Machine Learning Pipelines in Python and SQL

Christian Fuchs

Otto-Friedrich-Universitat Bamberg

Abstract

Preparing information is a necessary step in
training machine to compile tasks with a high
successrate. This data often has different sources
and is in better cases already stored in database
systems, which are controlled by a DBMS. It’s
common to extract the data and through multi-
ple operations first prepare, then train and exam-
ine the data after the machine learning happens.
Often libraries compatible with Python are rec-
ommended to compile these operation. Preferred
is Python Panda a library, which combined oper-
ation specialise to prepare and combine data. In
the following we look at different may disruptions
and appearing problems in the steps of preparing
data, at countermeasures and in the end compare
the systems of compiling pipelines in Python and
in SQL and similar Queries.

1 Introduction

In prepossessing pipelines data is gathered through
risking biases and the amount of time often is the most
damaging element to make modifying of data more
difficult and disrupt the use we gain from compiling
data. Both fails can happen whether code is compiled
in Python or in SQL. In SQL to fight biases it’s often
necessary to inspect intermediate results between
operations through View and CTE, which then has an
negative impact on the runtime, in Python there is the
framework mlinespct, which brings two operation to
identify biases, especially technical biases and works
well with not too complex panda operations. This
difference will be looked in section two, we analyze how
biases appear, how to differentiate them and what
operations helps us to still filter the data without
appearing biases. Why translation?

Expected Advantages:
e Performance benefits
e Easy readable code

e Enables in-memory performance

Lhttps://openproceedings.org/2023/conf/edbt /paper-168.pdf
2https://streamsets.com/blog/python-vs-sql

e Eliminates the overhead of function calls

Expected Disadvantages:

o Need to materialise subresults.

e Existing libraries can’t be used

2 Prepossessing Pipeline

Prepossessing Pipelines are steps of operations to
manipulate and comprehend data sets before using
them in training methods. Therefor it is often taking
big datasets in following comparisons it’s between 2000
to 9771 tuples every tuple containing information. E| To
measure the performance it’s necessary to take a look
at different pipelines starting with various amounts of
tuples and with a different number of compiling steps.
After the last step finished it becomes possible to
compare all tuples with each other and to compare
runtime. By comparing results we cancel out biases,
both Python and SQL have often different ways to get
to a train set. ”Blue Elephants inspecting Pandas”
especially looks at the panda library, which is through
frameworks possible to be replaced without writing
SQL Code.

Correctness is verified by comparing the intermediate
results, in this steps it’s possible to detect biases and
have an overview of amount of data gained. Often the
SQL snippets, are longer, but genuinely easier to
understand as the python functions seen on the left.
Both functions are compiling the same operations and
work on the same datasetsﬂ Still both codes snippets
access databases and manipulate, SQL in this case
allowing the user to specify what to do rather than
caring about optimisation details. Often the following
operations are used in preprocessing piplines:

e join
e aggregate
o filter

e split

[N \ / N\
7
i - nat b ey "\| SELECT... FROM healthcars_histories th INNER JOIN
data = patients merge{itores, on=[ssr) 1/ healthcare_patients tb2 ON tb1."ssn'" = th2."ssn’
(A A / N
?/ SELECT "age_group", AVG("complications') AS
complications = data.groupby('age_group').agg(\ "mean_complications”
mean_complications=('complications', 'mean’)) —1/ FROM block_mlinid2_t
GROUP BY "age_group"
\
N A r
4) SELECT ..., t1 histories_ctid,
- ot = | \ tb1.patients_ctid, th2."'mean_complications"
data = data merge{complicaions, on=[age_goupl) | ” ep oy ek i, 1 o1 INNER JOIN block miinic3 22
ON th1."age_group" =th2."age_group"
5\)
/ot gt 120 |\ SELECT" Cconpicons > 12" mian conpicairs)
. -) ahe
data[mean_complications]) FROM block_minid4 3

Figure 1: Translation ”Blue Elephants Inspecting Pandas” 2020

In the above graphic it shows typical steps in a pre-
possessing pipeline in Python as well as in SQL. It’s
possible to translate the operation one by one. In the
SQL Code to look at steps between the SELECTS is nec-
essary before compiling the next operation. The panda
framework enables the following operations:

e Read from CSV

e Merge/Join

e Selection and Projection

e Arithmetic/Boolean Operations
e Group-By and Aggregation

e Drop Null Values

e Replace

e Row-Wise Operations

3https://github.com/pandas-dev/pandas/tree/main /scripts

In a runtime comparison we see, with an increasing num-
ber of tuples all database systems execute the addi-
tional inspection steps fasterﬂTherefor we look at differ-
ent ways to order the steps of the pipeline and to compile
them. On the one side it’s possible to translate each func-
tion call, but in order to reduce dependencies it helps to
gather all operation, which lead to current result. One
the other side it helps to have a first overview over nec-
essary functions to safe possible time lost and prevent
redundancies. The different runtimes are going to be
compared in graphs in section three. El

Lookup table help to map the panda functions, which
often are named different to their counterparts in SQL.
Not only the function get translated, but SQL maps the
information contained in queries and tuples. It’s impor-
tant to keep the list of identifiers containing tuple iden-
tifiers, that biases detection can work efficiently.

4https://openproceedings.org/2023/conf/edbt /paper-168.pdf pagedl

2.1 Operations

In comparison to the panda function, machine learning
functions can be more complex and often have arithmetic
operations. Still it’s possible to translate following Sci-
Kit Learn Functions, which often are used after the pre-
possessing and help train machine learning: Typical Sci
kit-Learn Functions:

1. Simple Imputer
2. One-Hot-Encoder
3. Standard Scaler:
4. KBins Discretizer
5

. Binarize

503 St S, The sttt sl €

W The mean and stndard

. :
sl o) = =

Gevaion i calouated nthe fiting st (Lisig 1) and revsed
for any other ransfonmation

SELECT (("label" - (SELECT AV('label") FRON origin)))
[(SELECT STODEV_POR("Label ") FRON origin) AS "Label"
FROR origin

Figure 2: Scaler in SQL
”Blue Elephants Inspecting Pandas” 2020
The translation of all those features is described on

page 47. [

2.2 Biases

Biases often appear in prepossessing pipelines and
having an impact on those pipelines and the different
outcome. There is to be differentiated between two
different types of biases the technical and the
introduced bias.

e Technical Bias: Appears in SQL and python
scripts. Often after a preprocessing pipeline miss-
classifies data.

e Introduced Bias: Systematic error, whether
through dataset with already existing problems or
appearing in process.

Materialising View/CTE helps detecting them. It’s
possible to use Mlinespect to detect them.

2.3 mlinespt framework

Provides two checks:

e NolllegalFeature: Verifies that none of the used
features in provided dataset are contained in
blacklist of illegal feature names

e NoBiasIntroducedFor: Targets pre-existing and
technical biases

Mlinspect looks at data pipelines created with pandas
and scikit-learn.

Mlinspect is designed to understand the semantics of
preprocessing operations of popular Python frameworks
from the data science space like scikit-learn and pandas.

il

3 Performance test

3.1 Datasets

On the basis of three different datasets four different
pipelines get tested, partly just prepossessing pipelines,
partly pipelines developed for training and testing.
Look at following pipelines: healthcare, compas, adult
simple and adult complex. They differ in tuple size and
used operations. Except adult complex, all use pandas
and scikit-learn operations. While healthcare works on
the smallest dataset with just 889 tuples, the adult
dataset contains up to 9771 tupels. The
instrumentation based on captured function calls
described so far is independent of the specific library.
Just comparing panda operation no view/CTE needs to
be shown, as all operations are only executed once.

3.2 Graphs

To prove translation is possible the results of different
Pipelines is shown in the following graph. In the
Analysis we differentiate between the runtimes by only
panda operations, additionally Sci-kit-learn operations
and additionally inspection operations. A look at the
four datasets results show that database systems
perform data prepossessing faster than using
dataframes in pandas.

Shttps://openproceedings.org/2023/conf/edbt /paper-168.pdf paged?
Shttps://www.cidrdb.org/cidr2021/papers/cidr2021 ,aper27.pdf page3

a) pandas b) + scikit-learn) + inspection
1,000,000 E— E - E
E E S E
10,000 &~ E Ve s | E &
E = | E - ~o| E =
L s il e il g
= | E P = =
= T = f/.‘ Feo _ _
100 E— - E— = e ~
= =, E ey FE R - — i
ER ool re s BT po=c— ==
el E
10,000 =— —
E F ®
B
1,000 5— L =
E E :
[I =
100 =— - =
E E=
iy [T o
E 10 = —
- E E
E = = =
=}
= 100,000 =— E— E
£ = = =
10,000 5— = E
E E E g
- N - 3
2
1,000 T E E— B
100 Eg E‘ - -
Eo— £* o
100,000 £ =
10,000 =— - —
E - E E
, e X 2
1,000 =R - - . y E— 2
E - - . g . E]
E 7 e e 8-
100 E— . R o= = gt S SR E—
St E
o o F
100 1.000 10,000 100,000 1,000,000 1.000 100,000 1,000 100,000
Size [Tuples]
~® Original ~® PostgreSQL VIEW -® Umbra CTE
-® PostgreSQL CTE ~® PostgreSQL MATERIALIZED VIEW -® - Umbra VIEW

Figure 3: Runtime Analysis
”Blue Elephants Inspecting Pandas” 2020

4 Conclusion

After the Inspection of prepossessing pipelines in SQL,
covering the frameworks panda and sci-kit and a
runtime comparison, the advantage of python code be
translated into SQL is visible. Therefor even with using
supplemented tools for the mlinspect framework and
with utilizing of CTE and View SQL improves the
working with machine learning pipelines. It’S necessary
to prevent the occurrences of technical biases and use
modern data systems like Umbra to maximize
performance improvement. Further success would be to
prevent PostgreSQL to lose time due to additional data
loading and extraction. This is eliminated when all
computations happen inside database systems. E] Still
the out-performance between PostgreSQL and original
inspection is significant, therefor it’s worth to further
follow the lead of translation of Python code into
PostgreSQL.

Thttps://openproceedings.org/2023/conf/edbt/paper-168.pdf page51

5 Sources
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
https://ubc-cs.github.io/cpsc330/lectures/05_preprocessing-pipelines.html#
https://openproceedings.org/2023/conf/edbt/paper-168.pdf

https://streamsets.com/blog/python-vs-sql/#Performance

 https://www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
https://ubc-cs.github.io/cpsc330/lectures/05_preprocessing-pipelines.html#
https://openproceedings.org/2023/conf/edbt/paper-168.pdf
https://streamsets.com/blog/python-vs-sql/#Performance

	Introduction
	Prepossessing Pipeline
	Operations
	Biases
	mlinespt framework

	Performance test
	Datasets
	Graphs

	Conclusion
	Sources

