A closer look at Machine Learning Pipelines in
Python and SQL

Christian Fuchs

14 June 2023

Outline

Preprocessing Pipelines

Between python commands and SQL commands
Biases

Mlinespect Framework

Datasets

vVvyvyVvVvYyypy

Runtime comparison

Prepossessing Pipeline

Prepossessing Pipelines:
Data sources gets modified. Use of wide range of different
operations, we look at:

> table
> join
P> aggregate project
> filter
> split

Prepared for use in machine learning

Operations

Translation of operations often line by line:

SELECT ... FROM healthcare_histories th1 INNER JOIN

data = patients mergehistories, on=[ssn') healthcare_patients th2 ON th1."ssn" = to2."ss”

T

SELECT "age_group", AVG("complications") AS
"mean_complications"
FROM block_mlinid2_1
GROUP BY "age_group"

complications = data.groupby('age_group').aga(
mean_complications=('complications’, 'mean’))

&

SELECT ..., th1 histories_ctid,
th1.patients_ctid, th2."mean_complications"
FROM block_mlinid2_1 tb1 INNER JOIN block_mlinid3_2 th2
ON tb1."age_group" = th2."age_group"

data = data.merge(complications, on=['age_group?)

T

SELECT *, ("complications" > (1.2 * "mean_complications"))
AS label
FROM block_mlinid4_3

data['label'] = data['complications] > 1.2 *
data['mean_complications']

RN

Figure 1: Translations

Why translation?

Advantages:
Performance benefits ?
Easy readable code
Enables in-memory performance

Eliminates the overhead of function calls

vVvYyyvyy

Need to materialise subresults

Disadvantages:

v

Need to materialise subresults.

» Existing libraries can't be used

Operations
Focus on Basic Panda Function begins with:

>

vVvVvyVvVvVvVvVvyYyy

Read from CSV

Merge/Join

Selection and Projection
Arithmetic/Boolean Operations
Group-By and Aggregation
Drop Null Values

Replace

Row-Wise Operations

Operations

Typical Scikit-Learn Functions:
» Simple Imputer
» One-Hot-Encoder
» Standard Scaler:

5.2.3 Standard Scaler. The standard score® z of a sample | € X

is calculated as z(l) = % The mean and standard

deviation is calculated in the fitting step (Listing 17) and reused
for any other transformation.

1 SELECT (("label™ - (SELECT AVG("label™) FROM origin)))
2 / (SELECT STDDEV_POP("label") FROM origin) AS "label"
FROM origin

Figure 2: Runtime Analysis
» KBins Discretizer
» Binarize

BIAS
Bias is as a systematic error leading to irrational preferences or
aversions. Can be reproduce and amplified when using machine
learning. Difference between technical and introduced biases.

Technical Bias:

Appears in SQL and python scripts. Often after a preprocessing
pipeline missclassifies data.

Introduced Bias:

Systematic error, whether through dataset with already existing
problems or appearing in process. Materialising View/CTE hepls
detecting them. It's possible to use Mlinespect to detect them.

mlinespt framework

Provides two checks:
> NolllegalFeature verifies that none of the used features in
provided dataset are contained in blacklist of illegal feature
names
» NoBiasIntroducedFor targets pre-existing and technical biases

Mlinspect looks at data pipelines created with pandas and
scikit-learn.

Mlinspect is designed to understand the semantics of preprocessing
operations of popular Python frameworks from the data science
space like scikit-learn and pandas.

Datasets

Uses two different datasets for training and testing. We look at
four different pipelines which differ in tupel size and used
operations.

» healthcare

> compas

» adult simple
» adult complex

All use pandas and scikit-learn operations. The instrumentation
based on captured function calls described so far is independent of
the specific library.

) + inspaction

) pandas b) + scikit-learn

s e

urs e

Runtime [ms]

sedun

ARy

10.000 100000 1,000,000 1000 100,000 1000 100,000
Size [Tuples]

—=— Original o PostgreSQL VIEW -® Umbra CTE
-® PostgreSQL CTE & PostgreSQL MATERIALIZED VIEW -® - Umbra VIEW

Figure 3: Runtime Analysis

Graphs

- Original - PostgreSQL MATERIALIZED VIEW
- PostgreSQL VIEW - Umbra VIEW
5000
4000 —
)
1=
— 3000
-5
E
= 2000
=3
[==
1000
T T T

adult complex adult simple compas healthcare

Figure 4: Runtime Analysis

Sources

https:
//www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
https://ubc-cs.github.io/cpsc330/lectures/05_
preprocessing-pipelines.html#

https:
//openproceedings.org/2023/conf/edbt/paper-168.pdf

 https://www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
 https://www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
https://ubc-cs.github.io/cpsc330/lectures/05_preprocessing-pipelines.html##
https://ubc-cs.github.io/cpsc330/lectures/05_preprocessing-pipelines.html##
https://openproceedings.org/2023/conf/edbt/paper-168.pdf
https://openproceedings.org/2023/conf/edbt/paper-168.pdf

