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Prepossessing Pipeline

Prepossessing Pipelines:
Data sources gets modified. Use of wide range of different
operations, we look at:

> table
> join
P> aggregate project
> filter
> split

Prepared for use in machine learning



Operations

Translation of operations often line by line:

SELECT ... FROM healthcare_histories th1 INNER JOIN

data = patients mergehistories, on=[ssn') healthcare_patients th2 ON th1."ssn" = to2."ss”

T

SELECT "age_group", AVG("complications") AS
"mean_complications"
FROM block_mlinid2_1
GROUP BY "age_group"

complications = data.groupby('age_group').aga(
mean_complications=('complications’, 'mean’))

&

SELECT ..., th1 histories_ctid,
th1.patients_ctid, th2."mean_complications"
FROM block_mlinid2_1 tb1 INNER JOIN block_mlinid3_2 th2
ON tb1."age_group" = th2."age_group"

data = data.merge(complications, on=['age_group?)

T

SELECT *, ("complications" > (1.2 * "mean_complications"))
AS label
FROM block_mlinid4_3

data['label'] = data['complications] > 1.2 *
data['mean_complications']

RN

Figure 1: Translations




Why translation?

Advantages:
Performance benefits ?
Easy readable code
Enables in-memory performance

Eliminates the overhead of function calls
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Need to materialise subresults

Disadvantages:

v

Need to materialise subresults.

» Existing libraries can't be used



Operations
Focus on Basic Panda Function begins with:

>
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Read from CSV

Merge/Join

Selection and Projection
Arithmetic/Boolean Operations
Group-By and Aggregation
Drop Null Values

Replace

Row-Wise Operations



Operations

Typical Scikit-Learn Functions:
» Simple Imputer
» One-Hot-Encoder
» Standard Scaler:

5.2.3 Standard Scaler. The standard score® z of a sample | € X

is calculated as z(l) = % The mean and standard

deviation is calculated in the fitting step (Listing 17) and reused
for any other transformation.

1 SELECT (("label™ - (SELECT AVG("label™) FROM origin)))
2 / (SELECT STDDEV_POP("label") FROM origin) AS "label"
FROM origin

Figure 2: Runtime Analysis
» KBins Discretizer
» Binarize




BIAS
Bias is as a systematic error leading to irrational preferences or
aversions. Can be reproduce and amplified when using machine
learning. Difference between technical and introduced biases.

Technical Bias:

Appears in SQL and python scripts. Often after a preprocessing
pipeline missclassifies data.

Introduced Bias:

Systematic error, whether through dataset with already existing
problems or appearing in process. Materialising View/CTE hepls
detecting them. It's possible to use Mlinespect to detect them.



mlinespt framework

Provides two checks:
> NolllegalFeature verifies that none of the used features in
provided dataset are contained in blacklist of illegal feature
names
» NoBiasIntroducedFor targets pre-existing and technical biases

Mlinspect looks at data pipelines created with pandas and
scikit-learn.

Mlinspect is designed to understand the semantics of preprocessing
operations of popular Python frameworks from the data science
space like scikit-learn and pandas.



Datasets

Uses two different datasets for training and testing. We look at
four different pipelines which differ in tupel size and used
operations.

» healthcare

> compas

» adult simple
» adult complex

All use pandas and scikit-learn operations. The instrumentation
based on captured function calls described so far is independent of
the specific library.



) + inspaction

) pandas b) + scikit-learn

s e

urs e

Runtime [ms]

sedun

ARy

10.000 100000 1,000,000 1000 100,000 1000 100,000
Size [Tuples]

—=— Original o PostgreSQL VIEW -®  Umbra CTE
-®  PostgreSQL CTE & PostgreSQL MATERIALIZED VIEW -® - Umbra VIEW

Figure 3: Runtime Analysis
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Figure 4: Runtime Analysis



Sources

https:
//www.cidrdb.org/cidr2021/papers/cidr2021_paper27.pdf
https://ubc-cs.github.io/cpsc330/lectures/05_
preprocessing-pipelines.html#

https:
//openproceedings.org/2023/conf/edbt/paper-168.pdf
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