
DT-DB4MLKD-B
Moderne Datenbanksysteme für maschinelles Lernen und

Wissensentdeckung
Silentium!

Run–Analyse–Eradicate the Noise out of the DB/OS Stack
University of Bamberg
Bamberg, Germany

johann-martin.hoefer@uni-bamberg.de

ABSTRACT
This is a rework of the original Silentium!-Paper for the DT-DB4MLKD-
B Seminar. When multiple tenants compete for resources, database
performance tends to suffer but sub-millisecond latencies are cru-
cial. This paper studies how to make query latencies deterministic
in the face of noise, showcases controlled experiments with with
an in-memory database engine in a multi-tenant setting, where
noisy interference from the system stoftware stack is successfully
eradicated to the point of running close to bare-metal on the under-
lying hardware. It is shown that query latencies comparable to the
database engine running as the sole tenant, but without noticeably
impacting the workload of competing tenants is achievable. This
paper discusses these results in context of building a custom OS
for database workloads and point out the adequate quality of an
existing and expertly configured OS.

Keywords: Low-latency DB; bounded-time query processing;
DB-OS co-engineering; tail latency

1 INTRODUCTION
The OS is often regarded as a critical factor in scalable service stack
development. While a general-purpose OS provides hardware sup-
port, drivers and system abstractions, they are a cause of jitter in
network bandwidth, disk I/O and CPU [Ar09; SDQ10; Xu13].This
also affects cloud-hosted database engine (DBE) performance [Ki15].
While historically, database and operating-systems research have
been highly interwoven, the communities have parted ways in the
past, and are just now rediscovering potential synergy effects (e.g.
[Ca20; Mü20]). This has sparked immense interest in devising novel
system architectures [KSL13].This however is connected to large
efforts of creation and maintenance. So here we look at established
OS solutions for ow-latency/high determinism workloads, as they
arise in real-time scenarios and similarly in cloud settings where
latency effects can lead to systemic problems [DB13]. Therefore
the employment, root-cause identification, analysis and addressing
of existing open-source components is logical. By vertical, cross-
cutting engineering, the stack is tailored towards the needs of DBEs,
eradicating interference and reducing noise-induced latencies in
query evaluation. First results show purposeful employment of ex-
isting architectural measures effects jitter to a large degree. These re-
sults are obtained through controlled experiments with in-memory
DBE running multi-tenant software stack scenarios with a focus
on DBEs as a specific use case where deterministic latencies are
essential [BL01].

2 OVERVIEW
2.1 Sources of Noise
In this section and beyond, by the term kernel we refer not to
the database but to the operating systems kernel. The three main
sources of noise, as observed by an unprivileged user space work-
load (as compared to system services or the kernel) are (1) compet-
ing processes and system services (2) non-disableable CPU perfor-
mance optimisations such as caches or pipelines and (3) contention
of implicitly shared resources (memory bus etc). Such systemic
noise is often undistinguishable from intrinsic noise of the appli-
cation (run-time variations through data-dependent code paths
or application-specific optimisations etc.) Processes and system
services Multi-tasking operating systems manage M scheduleable
entities competing for N processors, with M>N. Linux uses a com-
pletely fair scheduling (CFS) [Ma10] policy for regular processes
and supports round robin and FIFO (soft) real-time scheduling.
Kernels can pre-empt most userland activities and place threads
into the schedule that perform on behalf of the kernel (e.g. to sup-
port cross-CPU migration) and enjoy higher priority than regular
processes whether they are governed by real-time policies or not.
This factor interplay creates noise compared to uninterrupted, con-
tinuous flow of execution of a single job. CPU Noise Even given
uninterrupted code execution, pipelined and superscalar execution
may lead to temporal divergence to straightforward execution of
assembly instructions. Caching mechanisms (foremost cache hier-
archy interacting with memory references) cause varying latencies
in accessing memory, effectively adding noise. Shared Resources
Executing Workloads are not entirely isolated from another, but
interact via shared resources, accessed via system buses. While de-
terministic from a system-global view, delays caused by competing
requests manifest as noise viewed from the individual process.

doi:10.18420/btw2021-21


2.2 Experimental System Configurations

Figure 1: DBE Scenarios

System software stack configurations are visualized in Figure 1.
In No Load a single DBE executes on an otherwise quiet system
while the payload is pinned to one CPU to avoid perturbations.
Standard system services and kernel threads required by the OS
proper can execute on all CPUs, including the CPU dedicated to
the database workload.

In Load additional tenants (through synthetic workloads) put the
system at capacity while the database task can still be pre-empted
by the kernel, or by incoming interrupts.

In Shielding the CPU distributes all existing tasks and kernel
threads to the rest of the system and thus prevents use of the
shielded CPU by any non explicitly assigned processes. Main mem-
ory, buses, cashes etc. remain shared resources though.The kernel
can also still pre-empt the running userland task (for instance when
timers expire) and then latencies can arise from administrative du-
ties performed, or in system calls issued by the task.

The strongest form of isolation considered is Partitioning based
on the Jailhouse hypervisor [Ra17]. Jailhouse can partition system
hardware resources by establishing independent and strictly iso-
lated computing domains through leveraging underlying system
architecture, including essential virtualisation mechanism for sys-
tem partitioning. It comes at a negligible performance overhead, as
it does neither (para-)virtualise or emulate resources, nor schedule
its partitions (guests) among CPUs. This architecture can find ap-
plication in multi-tenant database scenarios, described in [MKN12].
For Bare-Metal Operation(s), which data centers, cloud and high
performance data processing systems often employ due to them
benefiting from bounded tail latencies, an ARM core and a x86
server class CPU are used for experimentation. This is to build a
realistic database deployment that reduces systemic noise, stem-
ming from multicore effects, to the bare minimum (long pipelines,
large caches, and strong interference on buses) allowing for the
exploration of intrinsic variations with the database workload. The
in-memory database engine DBToaster [Ko14], a portable serverless
DBE running on C++/STL with no other libraries or system services,
can be deployed by moderate effort without having to rely on an
OS proper. To allow the STL to run properly the DBE is ported to
RTEMS (real-time executive for multiprocessor systems) [BS14]. To
reduce operating system noise as far as possible, we essentially
limit RTEMS to providing only a console driver, and execute the
database engine in a single thread, which eliminates the need for a
scheduler. This configuration is supposed to reduce any OS noise

to the bare minimum, and is comparable to a bare-metal, main-loop
style binary.

3 EXPERIMENTS
The experiments are conducted with the in-memory DBEDBToaster,
which compiles SQL queries to C++, which in turn is compiled to
the target platform. Resulting in a single-threaded DBE executable,
incrementally updating a SQL view given a tuple stream, making
it a low refresh latency SQL-to-code compiler. Typical application
would include stream processing, such as algorithmic trading, net-
work monitoring or clickstream analysis. To be able to discuss the
run-time results properly the focus is on a subset of queries. In
particular, queries that display high levels of intrinsic variability in
latency, or variance in computational effort due to nested correlated
sub-queries and multi-joins, are excluded, as they aren’t suited for
stream processing.

The queries considered are listed in Figure 2. The Finance queries
are the incremental countone, designed as a baseline, the queries
axfinder(AXF) and pricespread(PSP) which each compute a join, a
selection, aggregation and for AXF also a group-by on the input
stream. To execute these queries on hardware limited by memory,
thee base data set of 100 tuples is iterated over 5000 times, thus
yielding 500.000 data points. The TPC-H queries are generated with
dbgen set to a scale factor 4. Queries Q6, Q1 and Q11a from Figure 2
are used. The queries perform selections, aggregations, and in the
case of Q11a also a join.

Figure 2: SQL queries used in the experiments

The execution platform for the experiments for the x86 architec-
ture is a Dell PowerEdge T440 with a single 12 core Intel®™ Xeon®™
Gold 5118 CPUs and 32 GiB of main memory. For Linux, kernel
version 5.4.38 as baseline. Symmetric multithreading (SMT) is de-
activated on the target, as is Intel®™ Turbo Boost®™. The CPU is
configured to the highest possible P-State (performance setting) that
guarantees a stable core frequency of 2.29 GHz. For the shielding
scenario CPU namespaces are used that can be dynamically recon-
figured during system operation. For the Jailhouse setup a single
CPU and 1GiB of main memory from Linux is released and assigned
to a new computational domain. There RTEMS + DBToaster binary
runs parallel to Linux. To partition last-level caches an exclusive 5
MiB of Level 3 Cache to the RTEMS + DBToaster domain are assigned.
This mitigates noise (cache pollution) of neighboured CPUs, as the
Level 3 Cache is shared across all cores [In15] For theARM reference
platform a BeagleBone Black with single-core Sitara AM3358, 32 bit
ARM Cortex-A8 processor and 512 MiB main memory are used.



DT-DB4MLKD-B
Moderne Datenbanksysteme für maschinelles Lernen und Wissensentdeckung
Silentium!
Run–Analyse–Eradicate the Noise out of the DB/OS Stack

DBToaster logs a time-stamp for every N input tuples processed.
Allowing for the computation of the latency per N input tuples
processed averaged over N tuples. Two time measurements are
used. First time stamps are obtained by POSIX API, allowing for
nanosecond resolution, but creating considerable overhead in the
microsecond range. Second, through DBToaster a x86 time stamp
counter (TSC) is used to count ticks. All tuples are pre-load prior
to stream processing to exclude noise caused by I/O. To simulate
tenant load 6 synthetic workloads are used via stress-ng.

4 EXPERIMENT RESULTS
4.1 Finance Queries

Figure 3: Noise and Determinism in Finance Query Latencies

Visualized in Figure 3 are the observed latencies for processing
each out of the 500.000 input tuples. Red triangles mark minima and
maxima for each scenario. All measure points deemed "extreme",
whichmeans exceeding the 99.95-percentile or falling below the 0.05-
percentile are coloured grey. All other data points are considered
normal and coloured ochre. And as a consistency check a red line
is computed as a sliding mean window over 1.000 tuples. While for
performance measurements outliers have no noticeable influence,
they are of paramount importance for real-time, bounded latency
scenarios. Almost all latencies are centred around the sliding mean
value. Important to note is, that a few outliers exceed the mean by
a factor of about four. Maximum observed latency is essential for
application and cannot be compensated by the fact, that this does
not happen on average.

The average performance of the simulated other tenants is es-
sentially identical regardless of measurement setup. This shows
improved determinism for a given workload does not necessarily
decrease average throughput for non-real-time loads. While there
is no direct relation to query complexity and noise, there is a re-
lation between query complexity and average performance. This
is visible in Figure 3 by comparing the coountone to the axfinder
and the pricespread mean average. As the complexity rises from
left to right, so do the latencies. The horizontal bands observable in
Figure 3s latencies can be attributed to DBToasters main execution
paths. Two main execution paths emerge as the consequence of
the orderbook adapter, which distinguishes between the two types
of input data, bids and asks. Also when the internal dynamic data

structures of DBToaster grow in size, additional DBToaster-intrinsic
latencies incur. Vertical spreading around these bands is a visual
noise measure.

By comparing against the “Load” scenario, it is apparent that
the isolation mechanisms substantially reduce the observed jit-
ter typically to the level of an otherwise unloaded system. The
strongest isolation, shielding+FIFO, even beats the No Load scenario
in terms of maximum values. The amount of noise decreases in
order Load/Shield, Load/FIFO, and Load/Shield/FIFO. While the mea-
surements show a noticeable reduction of noise when using more
advanced isolation techniques, the reduction of maximal latencies
comprises only a factor of two.

4.2 Noise and Determinism in TPC-H Queries

Figure 4: TPC-H Queriy Latencies

TPC-H query latency measurement observations are identical to
Finance Queries, the behaviour of the queries under high load differs
considerably from the No Load and isolated case. The difference
in maximal latencies comprises more than three decimal orders
of magnitude. While such high variance has grave consequences
for real-time systems, it is not even observable when throughput
measurements are averaged.

4.3 The Role of CPU Noise

Figure 5: Span of observations relative to median query la-
tency of finance queries on bare-metal, on a high-end (x86)
and low-end (ARM) CPU

To a major extent, the previous experiments concern the control
of noise introduced by the operating system and the presence of
other tasks that compete for CPU time and other shared resources.
Especially in the scenario using CPU isolation and combined with



a real-time scheduling policy it eliminates a substantial fraction of
this noise. It is prudent to ask how much of the remaining noise
is caused by the executing CPU itself, and can thus be seen as an
effective lower bound on any systemic noise.

To achieve this, a run as close to bare-metal as possible is needed,
to reduce the OS overhead. These measurements are performed on
an ARM processor, deemed powerful enough to execute reasonable
database operations, but that uses substantially fewer performance
optimisations than x86 server-class CPU s (and, thus, suffers from
less intrinsic noise). The choice for an ARM CPU is not just driven
by simplicity, though: Processors of this type are the most frequent
choice in embedded systems and IoT devices, where low latency
data processing is a common requirement (for instance sensor-
based systems that derive action decisions by combining previously
measured values stored in a database with current data points). The
measurements are therefore representative for this large class of
systems that is expected to gain even more importance in future
applications. Of course, measurements on CPUs with drastically
different capabilities cannot be directly compared. Instead, it is
important to consider the relative difference between average and
maximal latencies, and the span within measurements.

The summary for a second set of measurements shown in the
bottom part of Fig5 represents bare-metal results obtained on the
x86 CPU, but this time driven by an RTEMS kernel running inside a
Jailhouse cell. Since the system is equipped with a total of 12 cores
(compared to the single-core ARM), and only one of the cores is
needed to run the database workload, the measurement is extended
with an additional aspect that quantifies the aptitude of the setup
to decouple latency-critical database operations performed by one
tenant from other, perhaps throughput-oriented operations per-
formed by other tenants. The spread is, as Figure 5 shows, almost
identical between the scenarios.

Figure 6: Latency time series for finance queries on an
RTEMS-based near bare-metal CPUprovided by the Jailhouse
hypervisor

This is also reflected in the time series shown in Figure 6, which
demonstrates that the results of the two configurations do not
deviate in any substantial way. Since the isolation provided by
Jailhouse does not only address execution timing, but also extends
to other security and privacy related aspects of database workload
processing, we deem this configuration a suitable basis for multi-
tenant systems with strong separation guarantees.

5 CONSEQUENCES & CONCLUSION
The experimental results show, that building a database stack on
vanilla Linux with custom settings can achieve competitiveness
close to bare-metal. The main source of noise in the experiments
was due to interruptions to measure time and noise itself.

This suggests, that it may be unnecessary design a DB-aware OS
from scratch. Extending and enhancing existing systems may be
more pragmatic. Research on novel OS for DBE is remains valid, but
the study for actual reasons behind noise observed with existing OS
is important. Only through the identification and understanding of
root causes can solutions be found. In other fields of study, such as
embedded real-time systems similar problems to the multi-tenant
DBE use are researched and may give insight needed and promising
solutions (almost) ready to deploy. It is important to note, that only
CPU noise was eradicated in this experiment and I/O noise was
deliberately ignored. Disk-based DBE will probably require more
invasive changes to the existing software stack as well as extended
support for disks and their management.

Through proper use of standard mechanisms of a OS proper,
database query latencies comparable to running an in-memory
DBE on raw hardware are achievable, but the point where mea-
suring time becomes the largest source of noise is already at hand.
By leveraging techniques established for mixed-criticality systems
applied to the database domain e.g. shielding one workload (the
DBE) without impairing the other workloads the challenges ahead,
such as in-memory DBE disk support extension, might be tackled.



DT-DB4MLKD-B
Moderne Datenbanksysteme für maschinelles Lernen und Wissensentdeckung
Silentium!
Run–Analyse–Eradicate the Noise out of the DB/OS Stack
REFERENCES
[0000] Mauerer W.; Ramsauer R.; Edson R.; Lucas F.; Lohmann D.;
Scherzinger S.: Silentium! Run–Analyse–Eradicate the Noise out
of the DB/OS Stack, K.-U. Sattler et al. (Hrsg.): Datenbanksysteme
für Business, Technologie und Web (BTW 2021), Lecture Notes in
Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 397-421

[Ar09] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.;
Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia,
M.: Above the Clouds: A Berkeley View of Cloud Computing, tech.
rep., University of California at Berkeley, 2009.

[BL01] Buchmann, A. P.; Liebig, C.: Distributed, Object-Oriented,
Active, Real-Time DBMSS: We Want It All - Do We Need Them (at)
All? In. Annual Reviews in Control, pp. 147–155, 2001.

[BS14] Bloom, G.; Sherrill, J.: Scheduling and Thread Manage-
ment with RTEMS. SIGBED Rev. 11/1, pp. 20–25, 2014.

[Ca20] Cafarella, M. J.; DeWitt, D. J.; Gadepally, V.; Kepner, J.;
Kozyrakis, C.; Kraska, T.; Stonebraker, M.; Zaharia, M.: DBOS: A Pro-
posal for a Data- Centric Operating System. CoRR abs/2007.11112/,
2020.

[DB13] Dean, J.; Barroso, L. A.: The Tail at Scale. Commun. ACM
56/2, pp. 74–80, 2013.

[In15] Intel Corporation: Improving Real-Time Performance by
Utilizing Cache Allocation Technology,

https://www.intel.com/content/dam/www/public/ us/en/docume
nts/white-papers/cache-allocation-technology-white- paper.pdf

(last accessed February 2021), 2015.
[Ki15] Kiefer, T.; Schön, H.; Habich, D.; Lehner, W.: A Query, a

Minute: Evaluating Performance Isolation in Cloud Databases. In:
Performance Characterization and Benchmarking. Traditional to
Big Data, pp. 173–187, 2015.

[Ko14] Koch, C.; Ahmad, Y.; Kennedy, O.; Nikolic, M.; Nötzli, A.;
Lupei, D.; Shaikhha, A.: DBToaster: Higher-Order Delta Processing
for Dynamic, Fre- quently Fresh Views. VLDB J. 23/2, pp. 253–278,
2014.

[KSL13] Kiefer, T.; Schlegel, B.; Lehner, W.: Experimental Eval-
uation of NUMA Effects on Database Management Systems. In:
Datenbanksysteme für Business, Technologie und Web (BTW) 2025.
BTW’13, pp. 185–204, 2013.

[Ma10] Mauerer, W.: Professional Linux Kernel Architecture.
John Wiley and Sons, 2010.

[MKN12] Mühe, H.; Kemper, A.; Neumann, T.: The Mainframe
Strikes Back: Elastic Multi-Tenancy Using Main Memory Database
Systems On a Many-Core Server. In: Proceedings of the 15th Inter-
national Conference on Extending Database Technology. EDBT’12,
pp. 578–581, 2012.

[Mü20] Mühlig, J.; Müller, M.; Spincyk, O.; Teubner, J.: mxkernel:
A Novel System Software Stack for Data Processing on Modern
Hardware. Datenbank-Spektrum 20/3, pp. 223–230, 2020.

[Ra17] Ramsauer, R.; Kiszka, J.; Lohmann, D.; Mauerer, W.: Look
Mum, no VM Exits! (Almost). In: Proceedings of the 13th Annual
Workshop on Operating Systems Platforms for Embedded Real-
Time Applications (OSPERT ’17). 2017.

[SDQ10] Schad, J.; Dittrich, J.; Quiané-Ruiz, J.-A.: Runtime Mea-
surements in the Cloud: Observing, Analyzing, and Reducing Vari-
ance. PVLDB Endow. 3/1, pp. 460– 471, 2010.

[Xu13] Xu, Y.; Musgrave, Z.; Noble, B.; Bailey, M.: Bobtail: Avoid-
ing Long Tails in the Cloud. In: 10th USENIX Symposium on Net-
worked Systems Design and Implementation. NSDI’13, pp. 329–341,
2013.


	1 Introduction
	2 Overview
	2.1 Sources of Noise
	2.2 Experimental System Configurations

	3 Experiments
	4 Experiment Results
	4.1 Finance Queries
	4.2 Noise and Determinism in TPC-H Queries
	4.3 The Role of CPU Noise

	5 Consequences & Conclusion

