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Since the goal of Kumaigorodski et al. is to saturate the bandwidth of modern
interconnects in terms of CSV parsing, this paper represents a summary of
their work as they build a new parser for GPUs. First showing why their
main concept is to "simplify control flow at the expense of additional data
passes"[2]. And then explaining their parsing concept, which allows parallel
processing on GPUs by introducing independence between the processing
units. This independence is achieved by setting some fixed parameters in a
convection-like manner, on which each unit then can rely in the ongoing
process. A further clue of their algorithm is that they used early context
detection to convert the input data from a row-based to a columnar format
[2]. This allows them to take advantage of the fact that a column normally
contains only a single data type, which excels their parser during deserial-
ization due to the application of vectorization. After explaining the concept
of the parser, their results on the implementation of their new algorithm are
shown and compared to others, where the key takeaway is that they indeed
achieve their main goal of saturating modern interconnects with a CSV
parser. This finally leads Kumaigorodski et al. to the conclusion, that this
will"[...] enable new opportunities to speed-up query processing in databases
and stream processing frameworks".

1 INTRODUCTION
Although more efficiently parsable data formats exist, Comma-
seperated values (CSV) format continues to be promoted by open
data portals. And thus making it one of the most widely used data
formats for data exchange. This data exchange is done via disk or
most likely via the network. Therefore, loading the data into the
memory of a system consists of two steps. Namely Device I/O and
file format parsing [2].
Due to the technical progress in I/O devices, the former has be-

come so much faster than the latter, that it created the so-called
data loading bottleneck, as described by Kumaigorodski et al.. As
they point out in their paper, "Fast CSV Loading Using GPUs and
RDMA for In-Memory Data Processing", novel InfiniBand NICs are
capable of transferring data at up to 100 GB/s. Transferring data
from main memory into GPU memory is currently up to 63 GB/s
using Nvidia’s NVLink 2.0 [2].

The fact that Zeuch et al.’s work showed that CPU-based parsers
fail to saturate such high data transfer rates by a hugemargin, makes
it relevant to think about alternative approaches. Since there already
exists a GPU-based parser by Stehle and Jacobsen, called ParPaRaw,
that is able to saturate PCIe 3.0 with a bandwidth of 12.3 GB/s, as
they accomplished a maximum of 14.2 GB/s. What now remains to
be done is to saturate the above-stated faster interconnects. So the
authors’ primary goal is to do so by really taking advantage of the
GPU’s ability to do processing in parallel [2].

With this in mind, the following is a round-up of the work of Ku-
maigorodski et al., first describing the main challenges of designing
a fast GPU-based parser. From there, explaining the concept of their
new algorithm. After that, an evaluation is given and thereby their

Fig. 1. Schematicall structure of an Nvidia-"Tesla"-like GPU (Own illustra-
tion based on [4])

results are shown and discussed. Finally, a conclusion of their work
is drawn.

2 CHALLANGES OF A GPU-BASED PARSER
In order to understand the challenges of building a CSV parser for
GPUs, it is necessary to know the structure of a GPU, which is
schematically shown in Figure 1. A GPU consists of a GPU memory,
also called VRAM, and, in the case of the Nvidia Tesla used by the
authors for the evaluation later on, of 80 streaming multiprocessors
(SMs) [4]. As Figure 1 shows each thread block, also called warp,
has its own registers and consists of up to 32 threads. Each of these
threads can access these registers making it easy to exchange data
within a warp. Exchanging data from warp to warp, on the other
hand, is slow because it has to be done through the VRAM, which
takes more cycles for storing and accessing.
So parallelism on a GPU means the processing of thread blocks

by each SM at the same time. And in doing so, each warp executes
the same instruction on the data within the threads it contains. This
is the so-called Single Instruction Multiple Threads (SIMT) principle.
And exactly here lies one of the main challenges of the parser under
development. Usually, parsers have a rather complex control flow,
which is expressed in many branches that, for example, query the
given data type in order to process it accordingly. These branches
would then force a warp to execute different instructions on its
contained threads. As a result of that, some threads would stall,
causingwhat is known aswarp divergence, slowing down the process
as a whole [1]. Things get even worse when a warp is dependent
on one that will be computed a few cycles from now. What follows
is that these situations should be avoided. Therefore, each warp
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Fig. 2. Conceptual overview of the CSV parsing algorithm (Own illustration
based on [2])

must run independently and according to the SIMT principle in
order to achieve a fast parser. This causes the authors to formulate
the simplification of "control flow at the expense of additional data
passes" [2] as their main idea for the parsers concept.

3 CONCEPT OF THE NEW CSV PARSER ALGORITHM
Figure 2 outlines the steps of their designed algorithm to realize
this. For the following explanation of the parsers concept, it is
assumed that the CSV file is already in GPU memory. To give a
more concise approach to the algorithm, we will start by working
backward from the end to the beginning, and then, having already
seen some fundamental ideas, continue the other way around to
reveal some more details.
So the last step in Figure 2 "deserialize tapes" means converting

the input data into concrete data structures for further processing. To
do so efficiently they, beforehand, introduced these tapes. Tapes are
simply buffers holding the row-based CSV input data in columnar
format. And thereby taking advantage of the fact that normally
columns only contain a single type of data, which then can be
processed by the warps using the already mentioned SIMT principle.
To set these tapes up, however, they first had to find out which
field of the input data belongs to which column. For that purpose,
they "create[d] [the] FieldsIndex" array, which is also stored in GPU
memory and thus is accessible by every warp at every time. By
using the modulo function on the index of the current field each
thread is then able to independently compute the corresponding
column.
So starting from the very beginning now, what Kumaigorodski

et al. did at first to get this FieldsIndex array is to "split [the CSV input
file] into [self-contained, equal-sized] chunks", compare Figure 2.
This also represents the first step towards parallelization, as each
warp gets exactly one of these chunks. By equalizing the size of the
chunks, they accomplished at least the following three things at
once. First, they achieved that each warp gets the same amount of
data and thus the same workload, so they all finish at the same time.
Second, they achieved independence between the warps. Because
when a warp knows that it is processing chunk 𝑥 , it also knows
exactly which characters of the entire input data it contains by
simply calculating 𝑥 · 𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 . And third, they avoided doing a
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Fig. 4. Building the column-based tapes (Own illustration based on [2])

data pass at least for now, by splitting the input file at these fixed
offsets.

But by splitting the input data in this way, they were still nowhere
near knowing which field belongs to which column. So what they
then did is "count[ing] the delimiters in [the] chunks" in a first pass
over the data. And right after that they accumulated these delimiter
numbers to form the prefix sum for each chunk, which is shown
in Figure 3. This costs very little as it is again not a data pass but
just an operation on an array. By obtaining these prefix sums, it is
now possible to allocate the necessary memory for the FieldsIndex
array in GPU memory, since the prefix sum directly reveals the
total number of fields in the input file. And what it also does is that
each warp now knows exactly how many fields there were in the
chunks before it, and therefore also knows where to write into the
FieldsIndex array that is to be filled in next. Not only does the warp
know where to write to the array, but it also knows what to write
by relying on the fixed and equal chunkSize.
As can be seen in Figure 2 the next step is to fill the FieldsIndex

array by writing the character-offset of the first character of each
field into the FieldsIndex array at the corresponding position. So
looking at Figure 3 now, writing the number 74 at index 12 means
that field 12 starts at character 74 of the entire input file. The length
of each field can then be inferred by looking at the starting character
within the successor in the array and subtracting one from that
number because of the delimiter in between.

What can be done sequentially, but still in the same data pass as
filling the FieldsIndex array, is the creation of the aforementioned
tapes. This is because now, immediately after the array for a field
has been filled in, it is finally known to which column this field
belongs and it can be directly assigned to its tape accordingly. The
creation of the, in terms of data type, homogenous tapes is shown in
Figure 4. What Figure 4 also reveals is that fields that do not fully fill
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Fig. 5. Impact of chunkSize on int_444 (Own illustration based on [2])

their corresponding tapeWidth are right-padded with NULL-Bytes.
This is not a problem in the following, since strings terminate with
a NULL-Byte and thus get recognized correctly. After this is done,
we are back at the last step of the algorithm namely "deserialize
tapes", which then takes another data pass on its own. So overall
three passes over the data are needed to parse the file.

But as already can be inferred from the title of the paper the goal of
the authors was not to build a parser for files that are already in GPU
memory, but for files that get streamed from either main memory
or a remote data host. With that in mind, they extended their above-
described algorithm with a concept for streaming. And in doing
so not only did they get the benefit of simply streaming the files,
but they were also able to parse files that would otherwise not fit
into the GPU’s memory. What this furthermore enables is an earlier
start of the parsing process. As it now is possible to start before the
whole file is loaded into GPU’s memory and thus "reducing overall
latency" [2]. Streaming is done by simply dividing the input data
into partions before copying it to GPU memory. These partitions
have a fixed and equal streamingPartitionSize and can therefore be
processed independently, similar to the chunks before, but on a
higher level of abstraction.

4 EVALUATION AND DISCUSSION
For the evaluation of the implementation of their parsing algo-
rithm, the authors used threemachines. Two identical ones equipped
with Nvidia Tesla V100-PCIe GPUs capable of doing the RDMA-
GPUDirect part. And onewith anNvidia Tesla-SXM2 for theNVLink-
related evaluations. In terms of datasets, they used a real-world
dataset (NYC Yellow Taxi Trips) and a standardized dataset (TPC-H
Lineitem) to obtain realistic, reproducible results and to compare
their parser with others. They also used a synthetic dataset (int_444)
for optimizing the tuning parameters before doing so [2].

4.1 Tuning Parameter
As stated in section 3, each chunk is processed by a single warp. So
the chosen chunkSize dictates how much workload a warp has to
cope with. As this means "an increasing size requires more hardware
resources per warp" [2], one can see in Figure 5 that at a chunkSize
above 2048 bytes, the throughput drops due to the overloading of
the warps. Initially, a low throughput is also present at very small
chunkSizes of about 128 bytes, because of "the overhead associated
with scheduling, launching, and processing new [...] warps" [2]. As a
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Fig. 6. Performance of input size on int_444 (Own illustration based on [2])
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Fig. 7. Impact of streamingPartionSize on int_444 (Own illustration based
on [2])

result of that, the processing at these small chunkSizes happens to be
more sequential than parallel. Thus, Kumaigorodski et al. concluded
that the sweet spot between the two above-stated effects lies at a
chunkSize of 1024 bytes, as the throughput dose peak around this
value, as evident in Figure 5. However, what is most striking about
Figure 5, is the very high throughput of up to 90 GB/s achieved on
this homogeneous, easy-to-parse int_444 dataset of unsigned short
values residing in GPU memory.

Figure 6 shows how the performance goes up with an increasingly
larger input file, due to a better utilization of parallelism. Parallelism
is poorly exploited when the inputSize is not much larger than the
chunkSize, because some warps are simply unloaded in this case.
These situations could be avoided by using a very small chunkSize
for inputSizes this small [1]. What Figure 6 moreover shows is that
the throughput actually increases very quickly with respect to the
size of the input, and is already very high at 100 MB.

Now having seen with Figure 6 how poor the performance is on
small inputSizes, it becomes clearer why the authors earlier decided
on the smaller chunkSize of 1024 bytes rather than 2048 bytes, as
the throughput peaks between this two values in Figure 5.

Figure 7 shows how performance ramps up as streamingPartion-
Size increases, due to similar effects as it previously did on increasing
inputSizes. While one machine’s throughput continues to increase
until it reaches a maximum of 48.3 GB/s, the other machine’s maxi-
mum throughput is limited to 11 GB/s by PCIe 3.0. So what can be
concluded from Figure 7 is that PCIe 3.0 is the bottleneck for end-to-
end parsing, as it is unavoidable in the author’s hardware setup for
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Fig. 9. On-GPU performance on NYC Yellow Taxi Trips (Own illustration
based on [2])

streaming via the network. As previously stated, the parser is able to
reach a throughput of up to 90 GB/s on this int_444 dataset residing
in GPU memory. And thus it is expected to saturate NVLink 2.0,
which it fails to do "due to the limited amount of DMA copy engines,
and due to the overhead from data and buffer management required
for streaming. This", so Kumaigorodski et al. further explain, "leads
to delays, as transfers and compute are not fully overlapped".

4.2 Results
Figure 8 shows the comparison of the performance in parsing a real-
world dataset between this parser, called CUDAFastCSV, and other
parsers, both GPU-based and CPU-based. Note that in this case,
the dataset is initially in main memory of the host and therefore
needs to be streamed to the respective parsing device. As Figure 8
demonstrates, and as already stated in section 1, the performance
of CPU-based parsers on such a large dataset (1.9 GB) is far from
that of GPU-based parsers. Especially since the results of the CPU-
based parsers are more comparable to the NVLink version of CUD-
AFastCSV as they are hardware-wise not limited by the PCIe bus.
Moreover, and since this is a real-world dataset containing some
complex to-parse fields, it is worth noting that both ParPaRaw and
CUDAFastCSV were able to saturate PCIe 3.0. But since it is not
apparent from this graph whether ParPaRaw was limited by PCIe
3.0, Kumaigorodski et al. did another evaluation with the dataset
initially residing within GPU memory to see if this was the case.
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Fig. 10. Streaming performance on NYC Yellow Taxi Trips (Own illustration
based on [2])

The results of that are shown in Figure 9 and it is now apparent
that ParPaRaw actually was limited by PCIe 3.0 before as it is now
able to parse at a throughput of 16.2 GB/s. But what Figure 9 also
shows is that CUDAFastCSV is actually 3.7x faster than ParPaRaw
using the same parsing device. "The reason [for that] is that we",
as Kumaigorodski et al. try to explain this big margin, "are able
to reduce the overall amount of work, as we do not need to track
multiple state machines, and our approach is [thus] less processing-
intensive".

What remains to be done is to measure the end-to-end streaming
performance of CUDAFastCSV from a remote streaming host via
RDMA and GPUDirect, which also internally uses the PCIe bus for
connecting the network-interface-card (NIC)with the GPU’s memory.
The results of that, streaming the NYC Yellow Taxi Trips dataset used
above, are shown in Figure 10, next to some baselines copied from
these previous evaluations. What can be seen from that is that
CUDAFastCSV also saturates the PCIe bus on remote streaming.
However, the performance is slightly worse than with input data
residing in the host’s main memory, for reasons that are unclear
and have already been reported by other researchers in the past [3].
Note that the presentation of the evaluations of the TPC-H Lineitem
dataset has been omitted in this summary, as it merely underpins
the results shown so far.

5 CONCLUSION
As pointed out in section 1, the author’s goal was to build a CSV
parser that could saturate modern interconnects such as InfiniBand
NICs with bandwidths up to 100 GB/s. As seen in section 4, this goal
was achieved to that extent as their parser CUDAFastCSV achieved
a throughput of 90 GB/s on a homogenous, ease-to-parse dataset on
their used hardware setting. But as Kumaigorodski et al. go on to ex-
plain, NVLink 2.0 allows two GPUs to compute in parallel, so scaling
up too much higher throughputs is thus possible. And so, with the
author’s enthusiastic proclamation "[...] that in the future, loading
data directly onto the GPU will free up computational resources on
the CPU, and will thus enable new opportunities to speed-up query
processing in databases and stream processing frameworks" [2], we
conclude our roundup.
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