

UPLIFT: Parallelization Strategies for Feature Transformations in Machine Learning Workloads

Arnab Phani, Lukas Erlbacher, Matthias Boehm

Liia Sharipova Presenter for DT-DB42-M Seminar

Agenda

- Background
- UPLIFT System Architecture
- FTBench Benchmark
- Experiments

Feature Transformations

ML Life Cycle Steps:

Business and Data Understanding Model Data Monitoring and Engineering Maintenance ML Model Model Deployment Engineering ML Model Evaluation

Data Preprocessing Steps:

Feature Transformations

- Common Feature Transformations:
 - Numerical: Normalization, <u>Binning (Bin)</u>, Aggregation, Scaling
 - Categorical Transformations: <u>Recoding (RC)</u>, <u>Dummy-coding (DC)</u> (one-hot encoding), and <u>Feature Hashing (FH)</u>
 - Modality-specific Transformations:
 - Texts: Bag of words, Word embeddings
 - Images: Cropping, Rotating, Contrast adjusting

Transformation	Build Input	Build Output	Apply Output
Recoding	Nominal	Dictionaries	Integer
Feature Hashing	Nominal	None	Integer
Binning	Numeric*	Bin boundaries	Integer
Pass-through	Numeric*	None	Numeric
Dummy-coding	Integer	Offsets	Sparse vectors

Table 1: Common Multi-pass Transformations.

Feature Transformations

- **Binning (Bin)** converts continuous or numerical data into categorical ex.(18-30 -> Young)
 - Equi-width binning (BinW) equal range
 - Equi-height binning (BinH) equal amount
- Recoding (RC) modifying the values of a variable to create a new representation that better aligns with the requirements ex.(Young -> 1, Middle-aged -> 2)
- Dummy-coding (DC) represent categorical variables as <u>binary</u> or "dummy" variables in ml
 ox (Color > "loRed":1 "loRlue":0 = "loCreen":0)

ex.(Color -> "IsRed":1, "IsBlue":0, "IsGreen":0)

• Feature Hashing (FH) applies hash function to each feature, which maps the original feature values to a fixed number of hash buckets or indices

Challenges of Feature Transformations

- 1. Large number of **output columns**
- 2. Many distinct items per column (up to millions)
- 3. **Sparsity and cardinality skew** (proportion of zero or empty values) (tens to millions)
- 4. **Expensive string processing** (ex. hashing and parsing)
- 5. Ultra-sparse outputs (ex. dummy-coding)
- 6. Larger-than-memory output data (e.g., due to replicated embeddings)
- 7. Wide diversity of transformations
 - a. Feature Engineering to find the best combination of FT

Existing Approaches

- Caching and reuse of pre-processing operations
- Interleaving element-wise transformations with data loading
- Static parallelism (row/column-wise)

Good runtime for simple transformations but are **suboptimal for complex**, **multi-pass transformation workflows**, and **challenging data characteristics** (many features/distinct items).

UPLIFT System Architecture

- UPLIFT creates and optimizes fine-grained task graphs
- Rule-based Optimizer
 - Rewrites according to data, hardware, and operation characteristics
 - Increase fine-grained parallelism by row partitioning
- Cache-conscious Runtime Techniques
- Integrated in Apache SystemDS

Figure 1: Task Graph for Adult Dataset.

Task-graph Construction

UPLIFT reads the transformation specification(JSON configuration) as input and create general and encoder-specific tasks

Task Types:

- 1. **Build** scans an assigned feature of the input data frame and creates the necessary metadata
- 2. **Output Allocation -** creates and allocates the output matrix
- 3. **Metadata Allocation -** creates and allocates a frame for materializing all encoder's meta data

Figure 1: Task Graph for Adult Dataset.

Task-graph Construction

4. **Apply -** reads a feature from the input frame, encodes it using the metadata, and writes the encoded values into the output matrix

5. **Sparse Row Compaction** - compacts sparse rows in-place by removing the zeros (Missing values), shifting the non-zero entries, and updating offsets

6. **Metadata Collection** - serializes the metadata into a frame

Figure 1: Task Graph for Adult Dataset.

Task-graph Construction

- Create Metadata : ex. Distinct items, bin boundaries
- Pre-allocate output and metadata frame
- Allows concurrent writes and metadata collection
- For CSR (Compressed Sparse Rows) matrix pre-fill row pointers
- Encode input using metadata
- Compacts sparse rows by removing zeros
- Metadata Collection

Rule-based Optimizer

- Reduce Bottlenecks
 - remove unnecessary synchronization barriers, concurrent build, output dimensions are known prior to the build tasks
- Row Partitioning
 - additionally partition a column into multiple row-ranges and assign a task to each block of rows
- Number of Partitions
 - increasing the number of row partitions (tasks operating on row ranges) increases memory overhead
 - finds a good number of partitions for each feature
 - reduce the degree of parallelism if the total memory estimate exceeds the memory budget.

Example of Optimized Task Graphs

Figure 2: Three Examples of Optimized Task Graphs.

Feature Transformation Benchmark - FTBench

Foster Research on Feature Transformations

- Datasets
 - Publicly available and synthetic datasets
 - Sources: UCI, Kaggle, AMiner
 - Datasets to capture choke points (previously reported challenges)

• Use Cases

- Domains and modalities (numerical, categorical, text, and time series)
- Data and transformation characteristics (#distincts, distribution of distinct values, #bins, string lengths, and sparsity)
- Workload types (batch and mini-batch)
- Scale factors for selected use cases

Feature Transformation Benchmark - FTBench

ID	Dataset	Input Shape	Transformations	Significance	Output Shape
T1	Adult	$32K \times 15$	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K × 130
T2	KDD 98	95K × 469	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	$95K \times 6K$
T 3	Criteo	$10M \times 39$	DC (26)	Skewed & large #distinct: 10-1.4M	$10M \times 5.8M$
T4	Criteo	$10M \times 39$	Bin (13), RC+Scale(26)	Scaled binning & #distinct	$10M \times 39$
T 5	Santander	$200K \times 200$	Bin+DC (200)	Equi-height with small #bins	$200 \text{K} \times 2 \text{K}$
T 6	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-width	$48M \times 10$
T 7	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-height	$48M \times 10$
T 8	HomeCredit	$31K \times 122$	DC (16)	Popular use case	$31K \times 245$
T 9	CatInDat	$3M \times 24$	FH+DC (24)	Feature hashing for large #rows	$3M \times 24K$
T10	Abstract	$281K \times 3$	Count Vectorizer	Bag-of-Words w/ large #distinct	$281K \times 25M$
T11	Abstract	$100 \text{K} \times 1 \text{K}$	Embedding (dim = 300)	Embedding large #words	$100 \text{K} \times 300 \text{K}$
T12	Synthetic	$100 \text{K} \times 100$	Bin (50), RC (50)	Mini-batch transformation	$100 \text{K} \times 100$
T13	Synthetic	$10M \times 10$	RC (10)	Varying strlen: 25-500	$10M \times 10$
T14	Synthetic	$100M \times 4$	RC (4)	Varying #distinct: 100K-1M	$100M \times 4$
T15	Criteo	5M × 39	Various Combinations	End-to-end feature engineering	Scalar

Table 2: Overview of FTBENCH Datasets and Use Cases.

Feature Transformation Benchmark - FTBench

ID	Dataset	Input Shape	Transformations	Significance	Output Shape
T1	Adult	$32K \times 15$	Bin+DC (5), DC (9), PT (1)	Popular dataset	32K × 130
T2	KDD 98	95K × 469	Bin (334), DC (135), Scale (469)	Skewed #distinct: 50-900	$95K \times 6K$
T3	Criteo	$10M \times 39$	DC (26)	Skewed & large #distinct: 10-1.4M	$10M \times 5.8M$
T4	Criteo	$10M \times 39$	Bin (13), RC+Scale(26)	Scaled binning & #distinct	$10M \times 39$
T5	Santander	$200 \text{K} \times 200$	Bin+DC (200)	Equi-height with small #bins	$200K \times 2K$
T6	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-width	$48M \times 10$
T7	Crypto	$48M \times 10$	Bin (10)	Large #bins (100K), equi-height	$48M \times 10$
T 8	HomeCredit	$31K \times 122$	DC (16)	Popular use case	$31K \times 245$
T9	CatInDat	$3M \times 24$	FH+DC (24)	Feature hashing for large #rows	$3M \times 24K$
T10	Abstract	$281K \times 3$	Count Vectorizer	Bag-of-Words w/ large #distinct	$281K \times 25M$
T11	Abstract	$100 \text{K} \times 1 \text{K}$	Embedding (dim = 300)	Embedding large #words	$100 \text{K} \times 300 \text{K}$
T12	Synthetic	$100 \mathrm{K} \times 100$	Bin (50), RC (50)	Mini-batch transformation	$100 \text{K} \times 100$
T13	Synthetic	$10M \times 10$	RC (10)	Varying strlen: 25-500	$10M \times 10$
T14	Synthetic	$100M \times 4$	RC (4)	Varying #distinct: 100K-1M	$100M \times 4$
T15	Criteo	$5M \times 39$	Various Combinations	End-to-end feature engineering	Scalar

Table 2: Overview of FTBENCH Datasets and Use Cases.

Experimental Setting

- Hardware/Software: Ubuntu 20.04.1, single AMD EPYC 7302 CPU @3.0-3.3 GHz (16 physical/ 32 virtual cores), OpenJDK 11, Python 3.8
- Compare **UPLIFT** with **Apache SystemDS (Base), SKlearn, other** (Spark, Dask, Keras, Tensorflow)
- **Datasets:** FTBench benchmark

Micro Benchmarks

• Speedup of UPLIFT with increasing #threads

Dataset: 5M x 100 (100K #distinct each) Transformations

RC = Recoding DC = Dummy coding FH = Feature hash (k = 10K)

- RC improves up to **10x at 16 physical** cores
- DC produces **10M columns** (ultra-sparse) but equally well
- FH smaller bc memory-bandwidth bound

Micro Benchmarks

• Impact of partitions

(d) #Build/#Apply Partitions

Dataset: 100M x 4 (1M #distinct each)

Transformations: RC = Recoding DC = Dummy coding BinW = Equi-width binning BinH = Equi-height binning

- FH = Feature Hash
 - Performance improves up to 8/16 partitions
 - FH is robust to partitioning (no metadata)
 - UPLIFT optimizer also picks 8/16

FTBench Implementations

• Small dataset (T1 Adult Dataset)

Baselines:

Base = SystemDS default config **KerasNp** = Keras build w/ Numpy. unique

- Base, SKlearn are **32x/52x** faster than Keras
- UPLIFT further improves by 6x
- Dask, Spark's static parallelization schemes are ineffective for smaller datasets
- UPLIFT is **10x faster** than Spark.ml

FTBench Implementations

• Large Datasets

- UPLIFT is consistently **faster** than Base and Sklearn
- On Criteo(T3) Spark is 2.5x faster than Sklearn
- For T3, UPLIFT is 3x faster than Spark
- Dynamic parallelization schemes significantly improve across different data characteristics

FTBench Implementations

• Varying Data Characteristics

Conclusions

- **UPLIFT** as a parallel feature transformation framework with **fine-grained task scheduling**
- **Optimization** based on data, workload and hardware characteristics
- **UPLIFT** showed **good improvements** compared to static parallelization
- During the development of UPLIFT, FTBench already proved to be very useful
- UPLIFT is fully integrated in Apache SystemDS

Future:

- **Runtime Backends:** Extending UPLIFT to distributed, data-parallel operations, federated backends (learning process occurs across multiple devices or servers). Now only local operations on CPUs
- **Optimizer Guarantees:** UPLIFT doesn't yet provide <u>guarantees</u> on finding cost-optimal plans, or ensuring <u>not to exceed the given memory budget</u>
- *Implementations* for more baseline ML systems