
UPLIFT: Parallelization Strategies 
for Feature Transformations

in Machine Learning Workloads

Liia Sharipova
Presenter for DT-DB42-M Seminar

Arnab Phani, Lukas Erlbacher, Matthias Boehm



Agenda
● Background
● UPLIFT System Architecture
● FTBench Benchmark
● Experiments



Feature Transformations
ML Life Cycle Steps: Data Preprocessing Steps: 



Feature Transformations
● Common Feature Transformations:

○ Numerical: Normalization, Binning (Bin), Aggregation, Scaling
○ Categorical Transformations: Recoding (RC), Dummy-coding (DC) (one-hot encoding), 

and Feature Hashing (FH)
○ Modality-specific Transformations:

■ Texts: Bag of words, Word embeddings
■ Images: Cropping, Rotating, Contrast adjusting



Feature Transformations
● Binning (Bin) converts continuous or numerical data into categorical 

ex.(18-30 -> Young)
○ Equi-width binning (BinW) - equal range
○ Equi-height binning (BinH) - equal amount

● Recoding (RC) modifying the values of a variable to create a new 
representation that better aligns with the requirements
ex.(Young -> 1, Middle-aged -> 2)

● Dummy-coding (DC) represent categorical variables as binary or "dummy" 
variables in ml
ex.(Color -> "IsRed":1, "IsBlue":0 , "IsGreen":0 )

● Feature Hashing (FH) applies hash function to each feature, which maps the 
original feature values to a fixed number of hash buckets or indices



Challenges of Feature Transformations
1. Large number of output columns
2. Many distinct items per column (up to millions)
3. Sparsity and cardinality skew (proportion of zero or empty values) (tens to 

millions)
4. Expensive string processing (ex. hashing and parsing)
5. Ultra-sparse outputs (ex. dummy-coding)
6. Larger-than-memory output data (e.g., due to replicated embeddings)
7. Wide diversity of transformations

a. Feature Engineering to find the best combination of FT



Existing Approaches
● Caching and reuse of pre-processing operations
● Interleaving element-wise transformations with data loading
● Static parallelism (row/column-wise)

Good runtime for simple transformations but are suboptimal for complex, 
multi-pass transformation workflows, and challenging data characteristics 
(many features/distinct items).



UPLIFT System Architecture
● UPLIFT creates and optimizes fine-grained 

task graphs
● Rule-based Optimizer

○ Rewrites according to data, hardware, and operation 
characteristics

○ Increase fine-grained parallelism by row partitioning
● Cache-conscious Runtime Techniques
● Integrated in Apache SystemDS



Task-graph Construction
UPLIFT reads the transformation 
specification(JSON configuration) as input and 
create general and encoder-specific tasks

Task Types:
1. Build - scans an assigned feature of the input 

data frame and creates the necessary 
metadata

2. Output Allocation - creates and allocates 
the output matrix

3. Metadata Allocation - creates and allocates 
a frame for materializing all encoder’s meta 
data



Task-graph Construction

4. Apply - reads a feature from the input frame, 
encodes it using the metadata, and writes the 
encoded values into the output matrix

5. Sparse Row Compaction - compacts sparse 
rows in-place by removing the zeros (Missing 
values), shifting the non-zero entries, and 
updating offsets

6. Metadata Collection - serializes the 
metadata into a frame



Task-graph Construction
● Create Metadata : ex. Distinct items, bin boundaries
● Pre-allocate output and metadata frame
● Allows concurrent writes and metadata collection
● For CSR (Compressed Sparse Rows) matrix pre-fill row pointers 
● Encode input using metadata
● Compacts sparse rows by removing zeros
● Metadata Collection

 



Rule-based Optimizer
● Reduce Bottlenecks

○ remove unnecessary synchronization barriers, concurrent build, output dimensions are known 
prior to the build tasks

● Row Partitioning
○ additionally partition a column into multiple row-ranges and 

assign a task to each block of rows
● Number of Partitions

○ increasing the number of row partitions (tasks operating on row ranges) increases memory 
overhead

○ finds a good number of partitions for each feature
○ reduce the degree of parallelism if the total memory estimate exceeds the memory budget.



Example of Optimized Task Graphs



Feature Transformation Benchmark - FTBench
Foster Research on Feature Transformations

● Datasets
○ Publicly available and synthetic datasets
○ Sources: UCI, Kaggle, AMiner
○ Datasets to capture choke points (previously reported challenges)

● Use Cases
○ Domains and modalities (numerical, categorical, text, and time series)
○ Data and transformation characteristics (#distincts, distribution of distinct values, #bins, string 

lengths, and sparsity)
○ Workload types (batch and mini-batch)
○ Scale factors for selected use cases



Feature Transformation Benchmark - FTBench



Feature Transformation Benchmark - FTBench



Experimental Setting
● Hardware/Software: Ubuntu 20.04.1, single AMD EPYC 7302 CPU @3.0-3.3 

GHz (16 physical/ 32 virtual cores), OpenJDK 11, Python 3.8
● Compare UPLIFT with Apache SystemDS (Base), SKlearn, other (Spark, 

Dask, Keras, Tensorflow)
● Datasets: FTBench benchmark



Micro Benchmarks
● Speedup of UPLIFT with increasing #threads

Dataset: 5M x 100 (100K #distinct each) 
Transformations

RC = Recoding
DC = Dummy coding
FH = Feature hash (k = 10K)

● RC improves up to 10x at 16 physical 
cores 

● DC produces 10M columns (ultra-sparse) 
but equally well 

● FH smaller bc memory-bandwidth bound



Micro Benchmarks
● Impact of partitions Dataset: 100M x 4 (1M #distinct each) 

Transformations:
RC = Recoding
DC = Dummy coding
BinW = Equi-width binning
BinH = Equi-height binning 
FH =  Feature Hash

● Performance improves up to 8/16 
partitions

● FH is robust to partitioning (no metadata) 
● UPLIFT optimizer also picks 8/16



FTBench Implementations
● Small dataset (T1 Adult Dataset)

Baselines:
Base = SystemDS default config
KerasNp = Keras build w/ Numpy. unique

● Base, SKlearn are 32x/52x faster than Keras
● UPLIFT further improves by 6x
● Dask, Spark's static parallelization 

schemes are ineffective for smaller 
datasets

● UPLIFT is 10x faster than Spark.ml



FTBench Implementations
● Large Datasets

● UPLIFT is consistently faster than Base and 
Sklearn

● On Criteo(T3) Spark is 2.5x faster than Sklearn 
● For T3, UPLIFT is 3x faster than Spark
● Dynamic parallelization schemes 

significantly improve across different data 
characteristics



FTBench Implementations
● Varying Data Characteristics



Conclusions
- UPLIFT as a parallel feature transformation framework with fine-grained task scheduling
- Optimization based on data, workload and hardware characteristics
- UPLIFT showed good improvements compared to static parallelization
- During the development of UPLIFT, FTBench already proved to be very useful
- UPLIFT is fully integrated in Apache SystemDS

Future:

● Runtime Backends: Extending UPLIFT to distributed, data-parallel operations, federated 
backends (learning process occurs across multiple devices or servers). Now only local 
operations on CPUs

● Optimizer Guarantees: UPLIFT doesn’t yet provide guarantees on finding cost-optimal 
plans, or ensuring not to exceed the given memory budget

● Implementations for more baseline ML systems


