
UPLIFT: Parallelization Strategies for Feature Transformations in
Machine Learning Workloads

Liia Sharipova
University of Bamberg
Bamberg, Germany

liia.sharipova@stud.uni-bamberg.de

ABSTRACT
Data Preprocessing is an important step in the Machine Learning
life-cycle, that improves the performance of the designed model.
Feature Transformation, which transforms raw data into numerical
matrices or tensors for training and learning, is a crucial part of Data
Preprocessing. Existing ML systems provide optimal performance
solutions for simple transformations but not complex, multi-pass
transformation workflows with challenging data characteristics. In
this paper, is introduces the UPLIFT framework, which focuses the
choice of parallelization strategies depending on data characteris-
tics. UPLIFT builds fine-grained task graph for transformation tasks,
optimizes the execution plan and executes it in a cache-conscious
manner. As a result of conducted experiments with the created
FTBench benchmark with transformations and datasets, UPLIFT
speedups the Feature Transformation process 9.27x on average
compared to modern ML systems.

1 INTRODUCTION
Machine learning (ML) has found applications across various fields
and industries, revolutionizing the way we approach problem-
solving, data analysis, and decision-making including healthcare
(Siddique and Chow, 2021), energy and economics (Ghoddusi et al.,
2019), transportation and logistics (Tsolaki et al., 2022), education
and other important domains. ML algorithms can handle various
types of data, depending on the specific task and algorithm be-
ing used comprised of structured attributes, images, speech, video,
graphs, and text(Molino et al., 2019). In this paper the overview
is given for the article about parallelization Strategies for Feature
Transformations in ML Workloads (Phani et al., 2022a) and created
the UPLIFT framework. The theory and challenges of Feature Trans-
formation in Section 1.1 are covered, provided the summary of the
suggested approach in Section 2 with UPLIFT architecture introduc-
tion, interpreted the experiment results in Section 3, discussed the
advantages and disadvantages of the approach, suggested future
works in Section 4.

1.1 Common Feature Transformations
Feature transformations in ML encompass various techniques tai-
lored for different types of data. Numerical transformations include
normalization, binning (Bin), aggregation, and scaling. Categorical
transformations involve recoding (RC), dummy-coding (DC) and
feature hashing (FH). Modality-specific transformations are applied
to text data using techniques like bag of words and word embed-
dings, while image data includes transformations such as cropping,
rotating, and contrast adjustment. Table 1 illustrates main Feature
Transformation types with build input and output types.

Figure 1: Task Graph for Adult Dataset (Phani et al., 2022a)

Binning (Bin) converts continuous or numerical data into cate-
gorical, e.g. age range 18-30 transforming into the category Young.
Equi-width binning (BinW) - equal range. Equi-height binning
(BinH) - equal amount.
Recoding (RC) modifying the values of a variable to create a new
representation that better aligns with the requirements, e.g. trans-
forming age Young into 1, age Middle-aged into 2.
Dummy-coding (DC) represent categorical variables as binary or
"dummy" variables in ML, e.g. transformation of Color into several
binary fields: IsRed, IsBlue, IsGreen.
Feature Hashing (FH) applies a hash function to each feature,
which maps the original feature values to a fixed number of hash
buckets or indices.

1.2 Challenges of Feature Transformations
Feature transformation inML presents several challenges, including
a large number of output columns, high cardinality, sparsity and
cardinality skew, expensive string processing, ultra-sparse outputs,
larger-than-memory data, and the need to explore a wide variety
of transformations. Overcoming these challenges requires efficient
resource management, advanced algorithms, and careful feature
engineering to find the optimal combination of transformations for
improved model performance.

1.3 Existing Approaches
Several existing approaches have been developed to address the
challenges associated with complex feature transformation work-
flows and challenging data characteristics. These approaches in-
clude:

• Caching and reuse of pre-processing operations: This ap-
proach involves caching intermediate results of pre-processing



Liia Sharipova

Table 1: Common Multi-pass Transformations (Phani et al., 2022a)

Transformation Build Input Build Output Apply Output
Recoding Nominal Dictionaries Integer

Feature Hashing Nominal None Integer
Binning Numeric* Bin boundaries Integer

Pass-through Numeric* None Numeric
Dummy-coding Integer Offsets Sparse vectors

Table 2: Overview of FTBench Datasets and Use Cases (Phani et al., 2022a)

ID Dataset Input Shape Transformations Significance Output Shape
T1 Adult 32K × 15 Bin+DC (5), DC (9), PT (1) Popular dataset 32K × 130
T2 KDD 98 95K × 469 Bin (334), DC (135), Scale (469) Skewed #distinct: 50-900 95K × 6K
T3 Criteo 10M × 39 DC (26) Skewed large #distinct: 10-1.4M 10M × 5.8M
T4 Criteo 10M × 39 Bin (13), RC+Scale(26) Scaled binning #distinct 10M × 39
T5 Santander 200K × 200 Bin+DC (200) Equi-height with small #bins 200K × 2K
T6 Crypto 48M × 10 Bin (10) Large #bins (100K), equi-width 48M × 10
T7 Crypto 48M × 10 Bin (10) Large #bins (100K), equi-height 48M × 10
T8 HomeCredit 31K × 122 DC (16) Popular use case 31K × 245
T9 CatInDat 3M × 24 FH+DC (24) Feature hashing for large #rows 3M × 24K
T10 Abstract 281K × 3 Count Vectorizer Bag-of-Words w/ large #distinct 281K × 25M
T11 Abstract 100K × 1K Embedding (dim = 300) Embedding large #words 100K × 300K
T12 Synthetic 100K × 100 Bin (50), RC (50) Mini-batch transformation 100K × 100
T13 Synthetic 10M × 10 RC (10) Varying strlen: 25-500 10M × 10
T14 Synthetic 100M × 4 RC (4) Varying #distinct: 100K-1M 100M × 4
T15 Criteo 5M × 39 Various Combinations End-to-end feature engineering Scalar

operations to avoid redundant computations. By reusing
pre-processed data, the runtime of subsequent transfor-
mations can be improved, especially for repetitive tasks.
(Derakhshan et al., 2020)

• Interleaving element-wise transformations with data load-
ing: This approach combines element-wise transformations
with data loading, enabling concurrent processing of data
while it is being loaded. This helps to reduce the overall
processing time and improve efficiency. (Phani et al., 2022b)

• Static parallelism (row/column-wise): Static parallelism di-
vides the data into fixed partitions, allowing for parallel
processing of rows or columns. This approach can provide
good runtime performance for simple transformations but
may be suboptimal for complex workflows that involve
multi-pass transformations and data with many features or
distinct items. (Meng et al., 2016)

Existing solutions have good runtime for simple transformations
but are suboptimal for complex, multi-pass transformation work-
flows, and challenging data characteristics (many features/distinct
items).

2 SUMMARY OF APPROACH
2.1 UPLIFT System Architecture
The UPLIFT framework serves as the foundation for a set of special-
ized built-in functions for transformation. These functions operate

on a data frame and a transform specification provided in the form
of a JSON configuration. They optimize and execute the transfor-
mations based on the specific characteristics of the input data. The
design of the UPLIFT framework draws inspiration from future-
based parallelization schemes and query-processing techniques
employed in column stores. One of the key features of the frame-
work is its ability to create and optimize finely-grained task graphs,
as demonstrated in Figure 1.

Taks types
(1) Build - scans an assigned feature of the input data frame

and creates the necessary metadata.
(2) Output Allocation - creates and allocates the output matrix.
(3) Metadata Allocation - creates and allocates a frame for

materializing all encoder’s metadata.
(4) Apply - reads a feature from the input frame, encodes it

using the metadata, and writes the encoded values into the
output matrix.

(5) Sparse Row Compaction - compacts sparse rows in place by
removing the zeros (Missing values), shifting the non-zero
entries, and updating offsets.

(6) Metadata Collection - serializes the metadata into a frame.

2.2 Rule-based Optimizer
Once the global task-graph is constructed, it undergoes optimiza-
tions. The optimization process begins by collecting a representative
sample of rows to estimate the number of distinct items (Haas and



UPLIFT: Parallelization Strategies for Feature Transformations in Machine Learning Workloads

Figure 2: Three Examples of Optimized Task Graphs (Phani
et al., 2022a)

Stokes, 1998) and gauge the memory requirements of the parallel
tasks. Leveraging these memory estimates, along with the data
characteristics and transformation specifications, the optimizer pro-
ceeds to rewrite the task-graph. This involves updating the task
array and the dependency map. By consolidating dependencies
within a single map, the process of introducing new rewrites is
simplified. The current set of rewrites primarily focuses on:

• Reducing Bottlenecks - remove unnecessary synchroniza-
tion barriers, concurrent build, and output dimensions are
known prior to the build tasks

• Row Partitioning - additionally partition a column into mul-
tiple row ranges and assign a task to each block of rows

• Choosing Number of Partitions - increasing the number of
row partitions (tasks operating on row ranges) increases
memory overhead, finds a good number of partitions for
each feature, and reduces the degree of parallelism if the
total memory estimate exceeds the memory budget

Optimized parallelization strategies are exemplified in Figure 2,
which showcases three instances, each featuring two specific fea-
tures.

3 EXPERIMENT AND RESULTS
UPLIFT framework performance is compared with the existing
most popular ML solutions for Feature Transformation:

• Apache SystemDS: in the figures it is called Base because
of usage of the default configuration of Apache SystemDS
and the same cache-conscious runtime implementation as
UPLIFT

• Scikit-learn: currently the most popular tool for Feature
Transformation

• Other ML Systems: Spark, Dask, Keras and Tensorflow -
more specialized ML Systems for specific use-cases (row-
based parallelization, fused transformation/training pipelines
and NLP)

3.1 Datasets
To evaluate feature transformations and foster research in this
area, (Phani et al., 2022a) introduce the FTBench benchmark. It
combines synthetic and publicly available real datasets from UCI
(Dua et al., 2017) AMiner (Dataset, 2023), and Kaggle (Forecast-
ing, 2023) (Santander, 2019). Inspired by reported challenges, the

Figure 3: Speedup with Threads (Phani et al., 2022a)

benchmark includes datasets capturing choke points. These datasets
cover various domains, modalities, feature transformations, data
characteristics, and workload types. FTBench provides a standard-
ized framework for evaluating feature transformations in different
scenarios. Table 2 illustrates 15 use-cases with identifiers that are
presented in the result figures.

3.2 Micro Benchmarks
Micro Benchmark Section focuses on measuring the performance
of small, isolated code snippets or specific functions within a sys-
tem, it aims to provide fine-grained insights into the performance
characteristics. Here the micro benchmarks investigate speedup
due to increasing threads, time breakdown of phases and impact of
different numbers of row partitions.

Speedup: Figure 3 shows the result of increasing threads. Syn-
thetic data with 5M rows, 100 categorical columns (with 100K dis-
tinct each) is used in this experiment. Recoding (RC) improves up
to 10x at 16 physical cores. Dummy-Coding (DC) produces 10M
columns (ultra-sparse) but equally well results. Feature Hashing
(FH) shows smaller optimization because it is a memory-bandwidth
bound operation.

Row Partitioning: Figure 4 illustrates that with increasing of
partitions performance improves up to 8/16 partitions for Build/Apply
Tasks. Feature Hashing (FH) shows to be an operation robust to par-
titioning (no metadata). UPLIFT optimizer also picks 8/16 partitions
as an optimal number of partitions in this case.

3.3 Feature Transformation Benchmark
The Feature Transformation Benchmark (FTBench benchmark) re-
sults primarily focus on evaluating the performance of SystemDS
(Base and UPLIFT) and SKlearn (Dua et al., 2017). The SKlearn
pipelines, specifically the FeatureUnion, were automatically gen-
erated by parsing the same JSON transform specification used for
UPLIFT and Base.

The use cases considered in the benchmark are divided into
groups: small real datasets, large real datasets, scenarios involving
large strings and datasets with many distinct values in synthetic
data. By categorizing the use cases in this manner, the benchmark



Liia Sharipova

Figure 4: Build/Apply Partitions(Phani et al., 2022a)

Figure 5: Small (Adult) Dataset (Phani et al., 2022a)

Figure 6: Large Datasets (Phani et al., 2022a)

provides a comprehensive evaluation across various data charac-
teristics and transformation scenarios.

Small Dataset: Figure 5 shows that Base, SKlearn are 32x/52x
faster than Keras. UPLIFT further improves by 6x Dask, Spark’s
static parallelization schemes are ineffective for smaller datasets.
UPLIFT is 10x faster than Spark.

Large Datasets: Figure 6 depicts results of the experiment on
larger datasets. UPLIFT is consistently faster than Base and Sklearn.
On Criteo(T3). Spark is 2.5x faster than Sklearn .For T3, UPLIFT
is 3x faster than Spark. Overall, dynamic parallelization schemes
significantly improve across different data characteristics

Figure 7: String Length (Phani et al., 2022a)

Data Characteristics: Figure 7 shows manipulation with the
string lengths in T13 and the number of distinct values per column
in T14. The results depicted in Figure 7 demonstrate that UPLIFT
achieves a speedup of 7.5x compared to Base for strings with a
length of 50. However, the speedup diminishes to 2.9x for strings
of length 500 due to increased cache misses. Furthermore, UPLIFT
improves 21x over SKlearn for smaller strings and 5x for larger
strings. These findings highlight the performance characteristics
of UPLIFT under varying string lengths and the advantage it holds
over SKlearn for different string sizes.

4 DISCUSSION OF APPROACH
The optimization approach of the UPLIFT framework shows very
promising results and even is integrated into the existing ML sys-
tem Apache SystemDS. However, as the authors (Phani et al., 2022a)
outline themselves the Optimizer does not show stable results in
every case. Future work can focus on the specific instances that
depict the instability of the UPLIFT optimizer and on the search
for potential reasons for unreliable parallelization strategies. In
addition to this, the framework currently only applies to local op-
erations on CPUs. Extending UPLIFT to distributed, data-parallel
operations, federated backends, and hardware accelerators (Zaharia
et al., 2012) are interesting and together require necessary future
work to compete with existing solutions.

5 CONCLUSION
UPLIFT is a parallel feature transformation framework with fine-
grained task scheduling. Optimization based on data, workload and
hardware characteristics UPLIFT showed good improvements com-
pared to static parallelization During the development of UPLIFT,
provided Feature Transformation Benchmark proved to be very
useful for ML systems feature transformation performance eval-
uation. UPLIFT is fully integrated into Apache SystemDS. There
are several future work improvements such as more explanatory
optimizer work and providing reasons for unstable cases; extension
to federated backends; further implementations for more baseline
ML systems.



UPLIFT: Parallelization Strategies for Feature Transformations in Machine Learning Workloads

REFERENCES
C. N. Dataset. Citation network dataset, 2023. URL https://www.aminer.org/citation.
B. Derakhshan, A. Rezaei Mahdiraji, Z. Abedjan, T. Rabl, and V. Markl. Optimizing

machine learning workloads in collaborative environments. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
1701–1716, 2020.

D. Dua, C. Graff, et al. Uci machine learning repository. 2017.
G.-R. C. Forecasting. G-research crypto forecastingt, 2023. URL https://www.kaggle.

com/c/g-research-crypto-forecasting/data.
H. Ghoddusi, G. G. Creamer, and N. Rafizadeh. Machine learning in energy economics

and finance: A review. Energy Economics, 81:709–727, 2019.
P. J. Haas and L. Stokes. Estimating the number of classes in a finite population. Journal

of the American Statistical Association, 93(444):1475–1487, 1998.
X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. The journal of
machine learning research, 17(1):1235–1241, 2016.

P. Molino, Y. Dudin, and S. S. Miryala. Ludwig: a type-based declarative deep learning
toolbox. arXiv preprint arXiv:1909.07930, 2019.

A. Phani, L. Erlbacher, and M. Boehm. Uplift: parallelization strategies for feature trans-
formations in machine learning workloads. Proceedings of the VLDB Endowment,
15(11):2929–2938, 2022a.

A. Phani, L. Erlbacher, and M. Boehm. Uplift: parallelization strategies for feature trans-
formations in machine learning workloads. Proceedings of the VLDB Endowment,
15(11):2929–2938, 2022b.

B. Santander. Santander customer transaction prediction, 2019. URL https://www.
kaggle.com/c/santander-customer-transaction-prediction/data.

S. Siddique and J. C. Chow. Machine learning in healthcare communication. Encyclo-
pedia, 1(1):220–239, 2021.

K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, and D. Tzovaras. Utilizing machine
learning on freight transportation and logistics applications: A review. ICT Express,
2022.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A {Fault-Tolerant} abstrac-
tion for {In-Memory} cluster computing. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 15–28, 2012.

https://www.aminer.org/citation
https://www.kaggle.com/c/ g-research-crypto-forecasting/data
https://www.kaggle.com/c/ g-research-crypto-forecasting/data
https:// www.kaggle.com/c/santander-customer-transaction-prediction/data
https:// www.kaggle.com/c/santander-customer-transaction-prediction/data

	Abstract
	1 Introduction
	1.1 Common Feature Transformations
	1.2 Challenges of Feature Transformations
	1.3 Existing Approaches

	2 Summary of approach
	2.1 UPLIFT System Architecture
	2.2 Rule-based Optimizer

	3 Experiment and Results
	3.1 Datasets
	3.2 Micro Benchmarks
	3.3 Feature Transformation Benchmark

	4 Discussion of approach
	5 Conclusion
	References



