
On "Hardware Acceleration of Compression and Encryption in
SAP HANA"

DT-DB42-M: TheQuestion to or the Better Answer on 42? (SS2023)

Di Xu
University of Bamberg

Bamberg, Bayern, Germany
di.xu@stud.uni-bamberg.de

ABSTRACT
To improve database performance as well as data security, com-
pression and encryption need to be considered in the database
management system. In this paper, we introduce the DEFLATE
Compression method and the three modes of The Advanced En-
cryption Standard (AES). Compression and different types of en-
cryption are then composed to suit different levels of security and
to determine which combinations maximize performance. Finally,
an experimental evaluation using trace data from SAP HANA is
performed.

KEYWORDS
compression, encryption, DEFLATE, AES, SAP HANA

1 INTRODUCTION
Security and performance are always two of the most important
evaluation criteria when designing a database management system.
Data compression and encryption are two techniques that can
help to reduce data size and protect data confidentiality[3]. They
have different but complementary goals. Compression reduces the
space and bandwidth required to store and transmit data, thereby
increasing efficiency, speed and cost. Encryption converts data
into an unreadable form that can only be decrypted using a key,
thus preventing unauthorized access, tampering and leakage. It is
clear that with the use of these two technologies, the security and
transfer efficiency of data and backup storage performance have
been enhanced or optimized.

In this paper, we explore compression and encryption in SAP
HANA cloud deployments. SAP HANA is a column-oriented in-
memory database specifically built to integrate both analytical and
transactional workloads into a single engine. It can be deployed
on-premise or as part of SAP HANA Cloud as a SaaS [1]. In Section
2, we introduce the DEFLATE compression algorithm and AES
encryption mode, and design a combination of compression and
three different encryption modes. In Section 3, we evaluate the
performance of the three combinations based on SAP HANA. The
results we obtained demonstrate the advantages of these designs:
we can efficiently compress and encrypt data as it flows to storage
(up to 4 GB/s and 15 GB/s, respectively, and about 4 GB/s when
combined).

2 METHOD
In this section, we separately describe the algorithms for com-
pression and encryption, and combine the two designs to form an
efficient architecture.

2.1 Compression
Common data compression methods are classified as lossless com-
pression and lossy compression. Lossless compression allows com-
plete restoration of the original data without any loss of informa-
tion when decompression occurs. Common lossless compression
algorithms are: Huffman Coding, LZ77 and LZ78, DEFLATE com-
pression algorithm. Using lossy compression the compressed data
is decompressed with some degree of information loss. It is com-
monly used to compress media data such as audio, images and
video to reduce file size while maintaining applicability. Common
lossy compression algorithms are JPEG (for image compression),
MP3 (for audio compression), MPEG (for video compression). These
compression algorithms are selected for use depending on the type
of data and application scenario. Lossless compression is suitable
for scenarios where complete restoration of the original data is
required, while lossy compression is suitable for situations where a
certain loss of information is acceptable.

Compressing data on its way to storage is typically done using
different methods. Being already in use in SAP HANA, we focus
on the DEFLATE method for heavy-weight compression[1].

The DEFLATE compressed data format consists of a series of
blocks, corresponding to successive blocks of input data. Each block
is compressed using a combination of the LZ77 algorithm and Huff-
man coding[2]. The basic idea of the LZ77 algorithm is that there
are many recurring strings in the data (which can also be byte
streams), and the more repetitions, the more compressible space.
For these recurring strings, we can use the <length, distance> pair,
where distance is the distance to the last occurrence of the string
and length is the length of the recurring string. Huffman coding
is a prefix coding based on counting the number of occurrences of
each character in the entire data to be encoded. A binary tree is
dynamically built from the bottom up by sorting characters from
smallest to largest according to their frequency. That is, from the
bottom up, the leaf nodes of the binary tree are each character, and
the fewer occurrences of the character at the bottom of the binary
tree, the longer the corresponding length of the code word. Deflate
combines the LZ77 algorithm with Huffman coding, first applying
the LZ77 compression strategy to compress the original data to
get the (<length, distance> or literal) stream, and then applying
Huffman coding to encode distance, length, and literal to get the
final compressed data stream respectively.

As shown in the Figure 1, the DEFLATE execution is divided
into five parts. External memory accesses are handled by dedicated
kernels (read data, load Huffman tree, send to DDR4), so resource



DT-DB42-M, July 05, 2023, Bamberg Di Xu

allocation can be optimized to accommodate specific read/write
kernels and achieve high operation frequency.

The compression of the client payload (i.e., database pages) is
split into multiple transactions. Different cores can process different
transactions from the same client payload in parallel. The payload
is sent to external memory and all kernels receive multiple con-
trol parameters, in particular the memory pointer and the size of
the input to be processed. Each compute core (LZ77 compression,
Huffman encoding) receives a transaction from the input FIFO, pro-
cesses it, and sends the resulting transaction to the next core via the
output FIFO. Execution ends when the memory core (sent to DDR4)
finishes writing the last part of the last compressed transaction to
main memory.

Figure 1: Compression block diagram[1]

2.2 Encryption
The common encryption methods are symmetric encryption and
asymmetric encryption. As the name implies, symmetric encryption
uses the same key to encrypt and decrypt data, such as AES and
DES, while asymmetric encryption uses a public key to encrypt
data and a private key to decrypt it, such as RSA.

The Advanced Encryption Standard (AES) is the most widely
used packet cipher encryption standard with three possible ini-
tial key lengths: 128-bit, 192-bit and 256-bit, and we will focus on
the 256-bit implementation. The design of the algorithm is based
on a series of substitutions and permutations, called transforma-
tion rounds. The number of rounds depends on the key length,
128 bit key – 10 rounds, 192 bit key – 12 rounds, 256 bit key – 14
rounds. The AES encryption algorithm defines numerous transfor-
mations that are to be performed on data stored in an array. The
first step of the cipher is to put the data into an array, after which
the cipher transformations are repeated over multiple encryption
rounds(Figure 2). The first transformation in the AES encryption
cipher is substitution of data using a substitution table. The second
transformation shifts data rows. The third mixes columns. The last
transformation is performed on each column using a different part
of the encryption key. Longer keys need more rounds to complete.

However, its block cipher modes of operation cause significant
performance differences due to the resulting implementations. We
compare three AES block cipher modes: Electronic Code Book

Figure 2: AES workflow

(ECB), Counter (CTR), and Cipher Block Chaining (CBC). ECB
mode is the simplest, each block will be encrypted using the same
key and the same algorithm. So, if we encrypt the same plaintext,
we will get the same ciphertext. So there is a high risk in this
mode. And the plaintext and ciphertext blocks are one-to-one cor-
respondence. Since encryption/decryption are independent, we can
encrypt/decrypt the data in parallel. If one block of plaintext or
ciphertext is corrupted, it will not affect other blocks. In the CTR
operation mode, the counter value is used as the input block for
the Encrypt. The output block of the Encryptor performs an oper-
ation of XOR with the plaintext block. All encryption blocks use
the same encryption key. If you can get the counter directly, you
can encrypt/decrypt data in parallel. CBC mode is implemented by
using an initialization vector (IV). In CBC mode, the IV must be
unpredictable (random or pseudorandom) at encryption time. We
will use the plaintext block xor with the IV. Then CBC encrypts
the result into a ciphertext block. In the next block, we will use the
encrypted result to dissociate with the plaintext block until the last
block. In this mode, even if we encrypt the same plaintext block,
we will get different ciphertext blocks. We can decrypt the data in
parallel, but it is not possible when encrypting the data. If a plain-
text or ciphertext block is corrupted, it will affect all subsequent
blocks.

2.3 Compression and Encryption
We take advantage of the versatility of the OpenCL environment
by combining modules written in different languages. The compres-
sion module is built in the OpenCL kernel, while the encryption
module is built in VHDL but integrated into OpenCL as a library
and exposed to the system kernel as a function call. The result
is a combination operator that compresses and then encrypts the
data when called by the database (Figure 3). When the compression
module is used alone, the compression result is sent directly to
external memory. When connected to the encryption module, the
compressed transactions are forwarded to the AES-256 module via
a FIFO buffer.



On "Hardware Acceleration of Compression and Encryption in SAP HANA" DT-DB42-M, July 05, 2023, Bamberg

Figure 3: Compression and encryption pipeline block dia-
gram for the three block cipher modes[1]

3 EVALUATION
Chiosa, Monica, et al.[1] evaluate the performance of each module
in standalone and combined cases. As a benchmark, using typical
configurations commonly used in SAP HANA today, and focus on
compression and encryption for blocks ranging in size from 4 KiB
to 16 MiB.

Software. For the software baseline, use an Intel® Xeon® Gold
6234 Processor 3.3 GHz machine with 8 cores and 16 threads featur-
ing: 512 kB (L1 cache), 8 MB (L2 cache), and 24.75 MB (L3 cache).
The level of parallelism set for our compression/decompression and
encryption/decryption baselines is consistent with the number of
threads SAP HANA allocates for these background tasks, namely
1-2 threads. These threads process the blocks in their entirety.

Hardware.The target platform consists of the Intel Programmable
Accelerator Card (PAC) for data centers, Intel FPGA PAC D5005
, connected to the CPU via a PCIe Gen3x16 link. The card fea-
tures a Stratix 10 SX FPGA, two QSFP+ connectors with up to 100
Gbps support, and 32 GB of on-board DDR4-2400 memory, with
a peak transfer rate of 19.2 GB/s. Using OpenCL for Intel FPGA
SDK (OpenCL RTE version 19.2.0.57) to implement and instantiate
the FPGA compute kernels that are interfacing with the on-board
DDR4 memory at 64 B cacheline granularity for both read and
write operations. The CPU (host processor) allocates memory for
the FPGA computing kernels, and a memory management library
handles the address translation between CPU main memory and
FPGA external memory.

3.1 Compression
Figure 4 presents the performance comparison of both software
baselines and our standalone compression kernel on the FPGA.
Compared to the CPU baselines, the FPGA achieves over an order
of magnitude speed-up for block sizes larger than 64 KiB. While
the overhead costs for small block sizes for the FPGA come from
both the memory movement overhead and the Huffman tree; on the
CPU, the bottleneck of the cache size cannot be avoided, because
it affects the ability of the CPU to efficiently access and retrieve
data from memory. Therefore, the throughput gain obtained on the
FPGA by increasing the block size is not seen on the CPU, where
the fastest implementation saturates at less than 0.2 GB/s.

Figure 4: Compression - with 1 and 2 threads on CPU vs.
FPGA design[1]

3.2 Encryption
As a baseline, Chiosa, Monica, et al.[1] build a library on top of
Intel AES intrinsic instruction set for the three AES-256 modes
(ECB, CTR, CBC). Each block cipher mode receives for encryp-
tion/decryption the same block sizes as the ones traced in SAP
HANA.

The results show that the three modes differ significantly in
terms of software performance. The ECB mode is the simplest and
thus performs the best in terms of software performance with a
maximum throughput of 4 GB/s for both encryption and decryption.
The CTR mode adds complexity with a maximum throughput of 2.5
GB/s. The CBC mode, where the cost of data dependency combined
with the cost of heterogeneous operations results in a maximum
throughput of 1.2 GB/s.

Figure 5 shows the limitations of the MHz operational clock
range of the FPGA. Even if for the FPGA the XOR operation comes
at no performance cost, the data dependency translated into the se-
quential nature1 of the CBC mode implementation limits the FPGA
CBC encryption throughput performance to 0.27 GB/s. At block
size granularity, CBC encryption cannot take advantage of the par-
allelization potential of the FPGA, whereas the CTR and ECBmodes
benefit from it, reaching a maximum throughput performance of 15
GB/s. By exploiting the spatial parallelism2 available on the FPGA,
CTR and ECB encryption modes exceed by up to seven times their
corresponding CPU performance.

3.3 Compression and Encryption
As observed in Figure 4 and Figure 5, the modules have a very
different maximum throughput. Compared to the 4 GB/s saturation
throughput delivered by the compression module, the CBC mode
(0.27 GB/s) would impose back-pressure and limit the overall per-
formance, whereas both CTR and ECB modes (15 GB/s) would turn
compression into the bottleneck.

1Sequential nature refers to the characteristic of a process or operation that must be
executed in a specific order, one step at a time, without parallelization or concurrent
execution. In the context of the statement, the sequential nature of the CBC (Cipher
Block Chaining) encryption mode means that the encryption process for each block
depends on the result of the encryption of the previous block. This dependency creates
a sequential chain of operations, where each block must be encrypted in order, one
after the other.
2Spatial parallelism refers to the simultaneous execution of tasks by several processing
units.



DT-DB42-M, July 05, 2023, Bamberg Di Xu

Figure 5: AES Encryption - with 1 and 2 threads on CPU vs. FPGA design[1]

Figure 6: Full pipeline - with 1 and 2 threads on CPU vs. FPGA design[1]

In Figure 6 we analyze its throughput performance. A maximum
throughput of 1.72 GB/s was achieved with CBC mode encryp-
tion, while for CTR or ECB mode encryption, a level of 4 GB/s was
achieved comparable to the throughput imposed by the compres-
sion module alone.

4 CONCLUSION
In this paper, we present algorithms for encryption and compres-
sion and evaluate them in their individual and combined forms.
The results show that the maximum throughput of both DEFLATE
compression + CTR/ECB converges to 4 GB/s greater than the 1.92
GB/s of the DEFLATE compression + CBC combination when the
data size is large enough. But the CBC model adds an extra level of
complexity to the encrypted data, which makes the data more se-
cure. Exactly how encryption and compression be combined could
be considered in more ways than just throughput. Including the or-
der of encryption and compression will also have an impact on the
encryption and compression process, which may be a perspective
that can be studied in the future.

REFERENCES
[1] Chiosa, Monica, et al. "Hardware acceleration of compression and encryption

in SAP HANA." 48th International Conference on Very Large Databases (VLDB
2022). 2022.

[2] Oswal S, Singh A, Kumari K. Deflate compression algorithm[J]. International
Journal of Engineering Research and General Science, 2016, 4(1): 430-436.

[3] How Do You Balance Data Security and Performance When
Compressing and Encrypting Data? (2023, June 22). Linkedin.
https://www.linkedin.com/advice/1/how-do-you-balance-data-security-
performance


	Abstract
	1 Introduction
	2 Method
	2.1 Compression
	2.2 Encryption
	2.3 Compression and Encryption

	3 Evaluation
	3.1 Compression
	3.2 Encryption
	3.3 Compression and Encryption

	4 Conclusion
	References

