
YeSQL with Rich and Highly Performant UDFs in RDBs
DT-DB42-M: TheQuestion to or the Better Answer on 42? (Summer term 2023)

University of Bamberg
Bamberg, Germany

jinghao.wu@stud.uni-bamberg.de

Jinghao Wu

ABSTRACT
With the development of modern data management applications,
the data source has become more and more varied and complex.
It leads to the popularity of user-defined Functions(UDFs), also
the extension of relational paradigms which can syntactically and
semantically support them, even in a traditional database manage-
ment system(DBMS). But there is a typical limitation of UDFs which
is the impedance mismatch between evaluation and relational pro-
cessing. In this seminar paper, we present YeSQL, an SQL extension,
which can optimize execution performance in this context. It can
be easily integrated with either server-based or embedded DBMS.
The outstanding characteristics of YeSQL include easy implementa-
tion of complex algorithms and five performance enhancements.
Then, the evaluation analysis demonstrates the efficiency of query
execution in alternative combinations of environment, database
engines, and techniques.

1 INTRODUCTION
As data sources and forms have become more complex, forms of
database management systems have been developed to accommo-
date various needs. In this case, we discuss the performance of
YeSQL based on the two representative DBMSs.

1.1 MonetDB
MonetDB is a column-oriented open source relational DBMS. It is
designed to provide high performance for complex queries in large
databases, such as tables with hundreds of columns and millions of
rows. MonetDB has been used for high-performance applications
such as online analytical processing, data mining, geographic in-
formation systems (GIS), resource description frameworks (RDF).
MonetDB now supports UDFs written in Python/NumPy. The im-
plementation uses Numpy arrays and therefore has limited over-
head - and provides functional Python integration with native SQL
functions to match the speed.

1.2 SQLite
SQLite is a database engine written in the C programming language.
It is a standalone application, but rather a library that software
developers embed into their applications. SQLite is designed to
allow it to run without the need to install a database management
system or require a database administrator. Unlike a client-server
database management system, the SQLite engine does not have a
separate process with which the application communicates. Instead,
the linker integrates the SQLite library - statically or dynamically -
into an application that uses SQLite functionality through simple

Figure 1: System Architecture of YeSQL[1]

function calls, reducing the latency of database operations; for
simple queries with low concurrency, SQLite performance benefits
from avoiding the overhead of inter-process communication.

In this seminar paper, we describe in detail the system archi-
tecture of YeSQL and how it functions and is implemented. About
YeSQL, this SQL extension provides more expressive and powerful
Python UDFs. It enriches SQL with three types of Python UDFs,
scalar, aggregate, and table functions.

2 YESQL
YeSQL is designed to serve both application scenarios. It can be
integrated with either a server-based DBMS (e.g., MonetDB) or an
embedded DBMS (via SQLITE API).[1]

2.1 System Architecture
We define two groups of user roles. First, the application users like
data analysts submit their queries to the interactive terminal or
visualization interface, which delivers queries to the Connection
and Function Manager further. UDF developers create their UDFs
(gray boxes in Figure 1) and YeSQL loads them into the DBMS.
Possibly, one user fulfills both roles

The Connection and Function Manager (CFM) consists of three
components: a)Parser: Check whether the query YeSQL or standard
SQL. When queries use standard syntax, then simply pass through.
b)Code generator: It transforms the query to a specific language
depending on the underlying DBMS. c)Function manager: Submit
UDFs to the DBMS. It accesses the packages which define the UDF.

Submission of UDFs depends on whether YeSQL is integrated
with an embedded or a server-based DBMS. When integrated with
a server-based DBMS(Left side in Figure 1), CFM first complies the
UDFs, then they can be accessible by the DBMS’s UDF manager
as an in-process embedded library. It submits declarations directly



to the DBMS. When integrated with an embedded DBMS(Right
side in Figure 1), it submits the UDFs via the Python CFFI wrapper.
The UDFs are executed in the same process with the CFM and the
DBMS. These three gray boxes are typical types of UDFs which
are classified into scalar, aggregate, and table functions. It provides
flexibility and expressive power in data processing and analysis.
The Python CFFI wrapper from both sides is the layer that are
borderlines between Python and the database engine. With server-
based DBMS, it directly calls Python UDFs from the shared library.
With an embedded DBMS, it submits the UDFs as callback functions
andmakes sure that the seamless data exchange between DBMS and
Python UDF is guaranteed. SQLite API natively supports extended-
SQL functionality through C UDFs.

2.2 Characteristics of YeSQL
2.2.1 Usability and Expressiveness. For this characteristic, the au-
thor introduces functionality, syntactic inversion, and code gen-
eration of YeSQL by giving some corresponding examples. YeSQL
offers support for table function chaining which means the queries
can be nested for each table returning UDF. The example from the
paper lists three UDFs from the PostgreSQL query. (a) xmlparse, to
parse an XML data source and return text rows, (b) rowidvt, to add
a row-id column to the resulting table, and (c) sample, to produce a
random subset of the input rows.
select * from

sample (10000 , 'select * from

rowidvt(''select * from

xmlparse(''''select xml from table '''') '')');

After using the syntax inversion, the query is much easier as we
can see as follow:
sample 10000 rowidvt xmlparse select xml from

table;

Another example shows a small test in practice. 380 undergrad-
uate students were required to complete an assignment with and
without SQL. The taskwas about the development of two algorithms
and in the end approximately 86% of students finished successfully.
After the experiment, the feedback was quite well. Most students
said programming with YeSQL was easy and they liked that YeSQL
code was more concise than Python and non-UDF SQL code.

2.2.2 Performance. Performance is the reason we keep pursuing
faster algorithms, and better technology. YeSQL aims to avoid the
impedance mismatch between the relational SQL evaluation and
the procedural Python execution. This mismatch causes two major
overheads when implementing YeSQL. (a)Context switching: fre-
quent execution can be expensive if one facility needs to call another
facility through various levels of indirection. (b) Data conversion:
Because of different data forms in two execution environments, we
need to be encoded/decoded or wrapped/unwrapped. To reduce or
remove these expenses, YeSQL offers five techniques to improve per-
formance, which are tracing JIT compilation, seamless integration
with the DBMS, UDF fusion, parallelism, and support for stateful
UDFs. Figure 2 presents a performance classification illustrating the
extent that each technique contributes to performance. While any
one of these techniques can help improve UDF execution, applying
them all in a specific order increases the chances of optimization.

Figure 2: Largest factors in boosting Python UDF
execution[1]

a) JIT(Just-in-Time )-compiled UDFs: JIT compilation enhances
program performance by dynamically compiling portions of a pro-
gram into machine code during runtime. It highlights the difference
between method-based JIT compilers and tracing JIT compilers,
which focus on frequently executed loops. The authors propose the
use of the PyPy dynamic compiler, a high-performing engine for
Python program execution, in conjunction with the YeSQL query
compilation as a pre-optimization step. The integration of PyPy
with a DBMS is discussed, specifically the compatibility of CFFI’s in-
ternal array representation with Numpy, which aligns well with the
Python support of MonetDB. This integration allows for seamless
passing of arrays between PyPy and CPython UDFs, minimizing
overheads. In summary, PyPy with YeSQL can optimize UDFs in
Python programs.

b) Seamless Integration with DBMSs: UDFs are wrapped using
embedded CFFI. During UDF execution, data is transferred to CFFI
as pointers to cdata objects without any data copies. For integer
and float columns, Python uses them directly. However, for string
columns, three options are presented: using ‘ffi.string‘ to transform
strings into a format understandable by PyPy or CPython, using
‘ffi.buffer‘ to return a memory view of the string without copying it,
or passing the pointer to the C string directly, allowing for low-level
optimizations by manipulating the pointer in a C-like manner.

c) UDF fusion: The practice of producing small and reusable
UDFs is common and beneficial for productivity. These UDFs can
be combined in workflows, such as text mining, where tasks like
tokenization, stemming, and normalization are performed sequen-
tially. To enhance performance, UDF fusion can be employed. This
involves combining multiple UDFs into a single function at the CFFI
wrapper level. The fused UDFs eliminate CFFI conversions and al-
low for longer instruction sequences, enabling more optimization
by tracing JIT.

d) UDF parallelization: Parallelism is generally beneficial for
improving program performance and scalability. However, in the
case of Python UDFs within DBMSs, their parallel execution is
limited by the Global Interpreter Lock (GIL). The GIL is a lock that
allows only one thread to execute Python code at a time, preventing
deadlocks. While the GIL itself doesn’t add significant overhead,
it becomes a performance bottleneck in CPU-bound and multi-
threaded scenarios. The GIL is also active during the creation of
Python objects when translating database data for use in Python
UDFs. Releasing and acquiring the GIL incur additional costs. In
the case of CFFI, the GIL is released lazily without synchronization,

2



which allows for optimized performance. However, in PyPy, object
creation is faster and requires less memory, leading to improved
GIL release and acquisition.

e) stateful UDFs: Data processing systems primarily support
stateless UDFs, where only the output persists beyond execution.
However, stateful UDFs offer advantages in algorithm development
and performance optimization. Embedded DBMSs allow stateful
UDFs with access to external states and server-based DBMSs like
MonetDB share states across different UDFs. Developers can pro-
vide UDFs as Python modules, enabling them to import packages
and perform costly operations at the global scope. This improves
performance and allows for pre-compiling patterns and perform-
ing other optimizations. While stateless UDFs are more common,
stateful UDFs provide interesting opportunities for data analysis
and data science tasks.

2.3 Portability and Modularity
2.3.1 Portability. YeSQL is an architecture that enhances existing
systems, particularly those using the SQLite API, which acceler-
ates queries in SQLite using Apache Arrow for analytics. Also, it
extends the functionality to work in server-based architectures and
is compatible with works like Hustle[3].

2.3.2 Modularity. YeSQL is a modular addition to a DBMS that
can be easily installed and is compatible with various operating
systems. It integrates with data processing systems through C UDFs
and ODBC, adapting the Python CFFI wrapper component to meet
specific requirements. YeSQL UDFs run within the same process
as the DBMS’s C-UDF API, either in-process or out-of-process.
For server-based DBMSs, YeSQL leverages the DBMS’s execution
model. For example, in MonetDB which has a vectorized execution
model, the data is passed via CFFI with one function call as array
pointers. With embedded databases like SQLite, YeSQL utilizes
the streaming architecture and Python generators to handle large
datasets efficiently, allowing for the creation of data pipelines.

2.4 Deployment
YeSQL is used by OpenAIRE31, a technical infrastructure involv-
ing a consortium of 65 European universities, research centers,
and other institutions. It is employed for various tasks, including
harvesting research data from multiple sources, text mining open-
access publications, and extracting relevant links. OpenAIRE3 has
successfully harvested millions of publications, datasets, research
software artifacts, and projects from numerous funders. The infras-
tructure relies on over 150 YeSQL UDFs to accomplish these tasks
efficiently.

3 EVALUATION
The YeSQL codebase consists of approximately 66K lines of Python
and C++, including 18.5K lines dedicated to the definitions of over
150 Python UDFs currently supported. The evaluation of YeSQL
involves three representative data science pipelines and micro-
benchmarks of specific design features.
1OpenAIRE is an active network in 35 countries, the National Open Access Desks,
who are experts in the local scene and are eager to help you on any issues related to
open science.
https://www.openaire.eu

Figure 3: Zillow for varying data sizes and paralization[1]

3.1 Setup
3.1.1 Hardware and Software. The experimental setup includes
running the experiments on an Intel Core i7-4930K processor with
64GB of RAM and Ubuntu 20.04 as the operating system. The mea-
surements are performed with cold caches on SSD disks, and an
average of five executions is reported. YeSQL is compared against
Tuplex[4], MonetDB, PostgreSQL, a commercial distributed analytic
database engine (dbX), Pandas, and Spark (PySpark).

3.1.2 Datasets. The datasets used for evaluation are the zillow,
flights, and text-mining pipelines. [2, 4]The zillow and flights pipelines
are obtained from Tuplex’s GitHub repository, and the text-mining
pipeline comes from a real-world application called OpenAIRE. The
zillow dataset has three size variations: 1GB/5.6M rows, 5GB/28.6M
rows, and 10GB/56M rows. The flights dataset has three size varia-
tions: 1.6GB/5M rows, 3.2GB/10M rows, and 6.4GB/20M rows.

3.2 End-to-end Pipeline Evaluation
In the end-to-end pipeline evaluation, YeSQL with tracing JIT on
MonetDB (mdb.pypy) outperforms other candidates in both single-
threaded and multi-threaded executions. MonetDB with CPython
(mdb.python) suffers from slow parallelism due to the Global In-
terpreter Lock (GIL) and is slower than mdb.pypy. YeSQL is faster
than Tuplex in both single-threaded and multi-threaded executions.
SQLite performs well in single-threaded execution but lacks sup-
port for parallelism. Spark/PySpark has slower execution due to the
spawning of a main Java process and separate Python processes.
This superiority is observed in various datasets, different data sizes,
and execution forms. (Shown in Figure 4,5,6)

3.3 Several Micro-experiments
In the micro-experiments, the tracing JIT in YeSQL significantly
improves the performance of UDF execution compared to native

3



Figure 4: Flights pipeline[1]

Figure 5: Text mining pipeline[1]

Python, Cython, Nuitka, and Numba implementations. YeSQL’s
seamless integration with MonetDB allows UDFs to achieve similar
or better performance compared to native SQL queries. The over-
head of transferring string columns using ffi.string compared to
direct pass is evaluated, and the impact of different setups (caches,
storage types, parallelization) on YeSQL’s performance is examined.

Figure 6 shows that JIT-compiled YeSQL implementations allow
MonetDB and SQLite to run 6x to 68x faster than the other can-
didates (bars show time, labels show gain). Overall, YeSQL with
tracing JIT on MonetDB demonstrates superior performance in
both end-to-end pipelines and micro-experiments compared to
other systems and frameworks.

4 CONCLUSION
YeSQL is a groundbreaking SQL extension outlined in this paper.
It introduces an array of features to enhance UDF support, mak-
ing it an ideal choice for data scientists and analysts. With YeSQL,
developers can easily integrate it with both server-based and embed-
ded database engines, thanks to its pluggable architecture. YeSQL
supports Python UDFs fully integrated with relational queries as

Figure 6: Performance of a scalar UDF on a string column[1]

scalar, aggregator, or table functions. YeSQL goes beyond alter-
native implementations by offering performance enhancements.
These include tracing JIT compilation of Python UDFs, parallelism
and fusion of UDFs, stateful UDFs, and seamless integration with
database engines. When evaluating YeSQL with tracing JIT on Mon-
etDB, it becomes evident that it outperforms other systems and
frameworks in terms of overall performance. This superiority is
observed in various scenarios, including end-to-end pipelines and
micro-experiments. The practicality of YeSQL is validated through
its deployment in production environments, where data scientists
from diverse domains utilize its capabilities.

Furthermore, the research team is actively exploring future di-
rections, such as extending YeSQL to federated and heterogeneous
systems and optimizing UDF fusion and query rewriting.

REFERENCES
[1] Yannis Foufoulas, Alkis Simitsis, and Yannis Ioannidis. 2022. YeSQL. Proceedings of

the VLDB Endowment 15, 12 (2022), 3730–3733. https://doi.org/10.14778/3554821.
3554886

[2] Tasos Giannakopoulos, Yannis Foufoulas, and Harry Dimitropoulos. 2019. Interac-
tive Text Analysis and Information Extraction. Zenodo. https://doi.org/10.5281/
zenodo.4677595

[3] Chen Martin Prammer, Suryadev Sahadevan Rajesh and Patel. 2022. Introducing
a Query Acceleration Path for Analytics in SQLite3. Proceedings of the VLDB
Endowment 7 (2022), 1–7.

[4] Leonhard Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21). Association
for Computing Machinery, New York, NY, USA, 1718–1731. https://doi.org/10.
1145/3448016.3457244

4

https://doi.org/10.14778/3554821.3554886
https://doi.org/10.14778/3554821.3554886
https://doi.org/10.5281/zenodo.4677595
https://doi.org/10.5281/zenodo.4677595
https://doi.org/10.1145/3448016.3457244
https://doi.org/10.1145/3448016.3457244

	Abstract
	1 Introduction
	1.1 MonetDB
	1.2 SQLite

	2 YeSQL
	2.1 System Architecture
	2.2 Characteristics of YeSQL
	2.3 Portability and Modularity
	2.4 Deployment

	3 Evaluation
	3.1 Setup
	3.2 End-to-end Pipeline Evaluation
	3.3 Several Micro-experiments

	4 Conclusion
	References

