
WannaDB: Using ad-hoc SQLQueries for Information Retrieval
DT-DB42-M: TheQuestion to or the Better Answer on 42? (Summer term 2023)

Jakob Ernesti
University of Bamberg

jakob.ernesti@stud.uni-bamberg.de

ABSTRACT
WannaDB is a new way for ad hoc SQL-like Queries over (unstruc-
tured) text collections. The system is able to extract information
without prior training out of a variety of collections. The results are
then provided as tables. The system works with already existing
extractors to collect the necessary information. The innovative part,
enabling an ad-hoc exploration, is two interactive steps through
the extraction process: A feedback loop ensures that the automatic
extraction matched the right mentioning with a requested attribute,
and also the user is asked about grouping matches. The structure of
the result tables is defined by the SQL query itself. The evaluation
demonstrates that WannaDB is able to handle different kinds of
existing text collections with good results, but still struggles with
some queried attributes or collections. Summarizing, WannaDB
is a new tool for Information Retrieval over hardly-known text
collections that returns structured information.

1 INTRODUCTION
To be honest, nobody likes reading a pile of papers. If it is enjoyable
and a paper is well-written, it is nice. But often, you have to read it
multiple times to extract all the information. And yes, the author is
aware of the irony present in it, but you are also still reading, so
we can go a little further and look at the problem in more detail.
The most frustrating part is that you might not only read one paper
to get an overview of a whole subject; you have to read a bunch
and figure out which one might hide the most needed information.
But it’s not just scientists who struggle. Journalists, for example,
have to read tons of reports or articles. However, time is a valuable
resource, and often it is not clear at all if the information you need
is in that text collection.
WannaDB is designed to satisfy information needs on (unstructured)
text document collections in an ad hoc manner and to present the
results in tables. The system was presented in Hättasch et al.[2] at
the BTW’23. This paper used the example of journalists looking
up information in a large document collection, and we might stick
with that. It works within two big steps, that will be shown in more
detail in the following chapters. First step is the extraction of so
called information nuggets out of each documents with a Named
Entity Recognition. After that, the user can ask a question with a
SQL-like query. For example, they want to know the covid incident
in a certain time period in Upper-Franconia or they examines the
airlines with multiple incidents in the last years. At just this mo-
ment, the tables are formed based on the query’s attributes. For
tuning the results, WannaDB uses the user’s input within an inter-
active user feedback loop.
Of course, there are quite many Extraction Systems and some of
them also sort information into tables. But the big advantage of

WannaDB is its flexibility of use, as it is not a domain specific ap-
proach. Other systems are often trained on special domains and
sets or, if they are able to extract tables too, use pre-designed tem-
plates. On contrast, this system is able to adapt to unknown data
sets after the nugget extraction and is even capable to handle diffi-
cult disambiguation problems with the interactive user feedback.
But it has also significant limitations that should be known before
implementing it. The system will only answer single-table queries,
because it builds just one table on a document collection with each
row representing one document. The table’s attributes must also
be given within the SQL-query. But most of all, one must be aware
that the result shown may not be complete or values might be dirty
(maybe through incorrect clustering). And, of course, you have to
be able to form a SQL-like statement to use it.

2 STAGE 1: OFFLINE EXTRACTION
The first step can be done as a pre-processing before any user inter-
action. Even if it might take its time, especially for big collections,
it only has to be done once for each collection as long as it re-
mains unchanged. Now so-called nuggets are created, which will
be used for query processing later. Each document of a collection
is processed with a named entity recognition tool; almost any tool
can be used, as long as it can create label-mention-pairs. It is even
possible to use multiple extractors together at the same time. This
step already represents a conceptual bottleneck for WannaDB, as
only the information contained in the nuggets can be processed
further. The nuggets store following signals: Label expresses the

Figure 1: Offline extraction: Extract all nuggets that might
be relevant (once per document, independent of information
need).[2, 161]

entity type defined by the extractor (e.g. "region"), mention is the
entity’s representation in the text (e.g. "Upper-Franconia"), context
is the specific sentence with the mention and the position describes

Maximilian Schüle
form

Maximilian Schüle
examine

Maximilian Schüle
In

Maximilian Schüle
how is dirty defined?

Maximilian Schüle
normalerweise kommt ihr eine Übersicht der Gliederung: Section 2 presents... Section 3...
gerade hier notwendig

Jakob Ernesti

the position of the mentioning in the document. After the extrac-
tion, the information is preprocessed, to get normalized data from
e.g. dates.

3 STAGE 2: INTERACTIVE QUERY
EXECUTION AT RUNTIME

3.1 Creating a schema by the query’s attributes
One main key of WannaDB are the interactive processes. A rough
idea how this interactions looks like from a user’s perspective is
shown in a demonstration by the research group presenting a quite
similar system, ASET. It is a quite related approach to structure text
collections in tables using the same technologies as in WannaDB
but the attributes are not given within a SQL-like query.[1]

Figure 2: Online Interactive Query Execution part 1: Create
table[2, 161]

WannaDB supports two classes of SQL-like queries: A simple extrac-
tion of facts (arguments) and grouping / aggregations. The tables
for answering the user’s query are only created, when the request
is made. The table’s structure is given by the query’s attributes
and aggregation operations or group-by-statements. In the default
table used, every column represents one attribute and every row
one document. However, it is important to note that users are re-
quired to possess knowledge about the text collection’s structure.
For instance, when inquiring about the authors of documents, the
authors must also be listed within the respective documents. This
structured approach, with one row per document, implies that the
requested entities must be individually listed in separate documents.
For example, if a user requests information on Covid incidences per
state, there must be a dedicated document for each state in order
to provide the desired data.
Then the table is filled with the correct content based on the in-
formation extraction available in the nuggets. However, the as-
signment by machine learning algorithms requires training with
corresponding training data. WannaDB establishes the semantic
similarity between the nuggets and the table attributes through
user interaction in order to be able to encounter different subject
areas in an ad hoc manner.
For every query attribute, WannaDB calculates the semantic close-
ness (cached distance) between the attribute (e.g. "Government Dis-
trict") and nugget (e.g. "region").1 The lowest distance within a
1The cached distance is represented with the cosinus distance between the nugget’s
label embedding and the attributed name embedding.

document is considered the document’s guessed match at that mo-
ment.

3.2 Interactive user feedback loop
The interactive user feedback phase is the true innovative point
about this approach. To ensure WannaDB selects the nuggets rele-

Figure 3: Online Interactive Query Execution part 2: Fill table
to satisfy information need (repeat/refine as desired)[2, 161]

vant to the query, it assumes that the user has domain knowledge,
even if limited. In this way, the software overcomes the problem
of limited contextual knowledge and no specialized training on
certain collections by simply sticking to the text and relying on
user’s knowledge.
A ranked list of the documents with their current guessed match
is presented to the user. They may confirm the guess, may select
another nugget from the the specific document or can reject the it,
if the document does not contain any searched content. The user
also gets a first impression of the current state of the quality of
the query results. Additionally, they can independently terminate
the interactive phase at any time, ensuring no frustration from
continuously ’work’ for the system, the evaluation shown below
demonstrates that the WannaDB benefits quite quickly from some-
times only a few user inputs.
The feedback is continuously used to update the current guessed
matches and also updates the list presented to the user. In this way,
incorrect matches can be corrected and results with a low proba-
bility can be confirmed or rejected. In case of a confirmed match,
the feedback is used to update the cached distance of all remaining
nuggets.2

3.3 Threshold Adjustment
A threshold is used for two purposes. First, it ensures a guess that is
too uncertain will not be used and it might be better to leave a cell

2The distance between two nuggets is calculated by the mean of the cosine distances
between their own signal embeddings.

Maximilian Schüle

Maximilian Schüle

WannaDB

empty. Second, it presents guesses with maximum benefit in the
feedback loop to the user. The threshold is not fixed. It is adjusted
permanently through the feedback phase. If the threshold value
is higher than the distance of a nugget confirmed by the user, the
threshold value is raised. On the other hand, if the user confirms
that there is no match in the document, and the distance of the
current guess is lower than the threshold value, the threshold will
be decreased. The idea is, if the user confirms a nugget that is above
the threshold, then all nuggets that fall between the confirmed and
the threshold should be an adequate result.

3.4 Interactive Filtering & Grouping
The Filtering / Grouping Process is designed like the feedback loop
above to use the user’s knowledge through an interactive process.
The paper does only explain grouping, but the filtering shall work
similar. First, entries with the identical string representation will be
merged without any user interaction. The other ones are clustered
by the distance between the nuggets. The system will present all
members of a pair of clusters that might be merged to the user for
approval. For a better result and to keep the necessary interactions
small, WannaDB choose to present a pair with a higher distance.
If they confirm, all clusters shown and any clusters with a lower
distance are merged and additionally all distances will be computed
again. If the user rejects the suggestion, the system will look up for
a better threshold for the distance by using a binary search pattern.

4 EVALUATION
The authors tested WannaDB’s abilities to show of their system’s
performance. Therefore they used three different collections: Sum-
maries of the aviation accidents reports by the United States Trans-
portation Safety Board, summaries of daily Covid reports by the
german RKI and three T-REx data sets about countries, Nobel Prize
laureates and skyscrapers. All collections provide different chal-
lenges. For the Covid reports the search for numerical attributes
in texts was supposed to be the difficulty, while the requested
attributes in the various T-REx datasets were rarely all in one doc-
ument. The system should therefore have to cope with various
problem cases, which are, of course, also part of the requirements
for such an ’Jack-of-all-trades’ system.
The first evaluation involved conducting end-to-end queries to test
its performance, using metrics such as Recall, Precision, and mean
Jaccard Index, similar to classic Information Retrieval systems. The
authors simulated 20 user interactions for each query. The paper
presents the initial results of two queries over the T-REx nobel
laureate set and the country set. The extraction differs slightly from
the actual values, especially concerning the count(*) function. How-
ever, the authors note that other extraction systems do not provide
100% accuracy either and users gain in any case a faster overview
of existing data in the collections.
One of the most important steps in WannaDB is the user feedback
for improving the results. To evaluate the effectiveness of the in-
teractive extraction, the authors compared it against structured
data extracted from the test collections using BART, a very reliable
pre-trained system. They fine tuned one BART model for each col-
lection separately and further used another already-tuned one. In

Figure 4: F1-Score for table filling results from WannaDB,
BART trained on explicit sets and BART tuned with SQuAD
with different sets[2, 170]

comparison to a run with 20 user interactions the fine-tuned sys-
tem yielded the best results. The performance of the already-tuned
model was very dependent on the underlying data sets. Although
WannaDB did not always achieves the best results and with some
data sets also underwent the system not being finely tuned, the
authors highlighted that their system was able to perform well
across many different datasets and without needing prior training.
This demonstrates that WannaDB meets the requirement of being
able to answer ad hoc queries effectively.
The last experiment tested the performance of WannaDB on a per-
attribute level to show stable accuracy and recall for very different
attributes. The results demonstrate, that WannaDB’s tables hat
lower quality for certain attributes compared to others. The reason
might be the quality of current extractor models that may struggle
with extracting some kind of information, especially in fields with
very domain-specific languages or different wordings to describe
the same concepts. Another factor mentioned is the occurrence of
attributes in only a few documents, which made the table filling
challenging.
The evaluation of the user interaction demonstrated, that for high
performance the system often needs just 5 to 10 interactions to
improve its score. In some cases, even a single interaction gained
very good results. However, there were also attributes where addi-
tional interaction did not significantly improve the output. Overall,
even if WannaDB’s user interaction is a crucial part, only a few
iterations are enough to gain good results.
In terms of scalability the group evaluates the response time within
the user interaction and the compute time for the Offline Extraction.
They assume that these might be the most crucial time costs for
potential users, as the system should be able to extract nuggets
from large document sets within an acceptable amount of time.
The latency to compute the user input and present the next set
of guessed matches was only a fraction of a second on average
for a single user interaction, so that another one could have been
done immediately. Even with the largest document set with over
100,000 nuggets, the extraction took approximately 48 minutes.
These seemed tolerable time costs and exemplified that the system
can handle even larger collections within a reasonable time frame
for users. However, the calculations were done with a relatively

Maximilian Schüle
one

Maximilian Schüle
ly

Maximilian Schüle
es

Maximilian Schüle
demonstrate

Maximilian Schüle
a

Maximilian Schüle
had

Jakob Ernesti

powerful desktop computer, which exceeds the processing power
of many common PCs. A comparison with weaker machines was
not made.3
The evaluation results indicate that WannaDB can effectively han-
dle the majority of queries on the aviation and covid collections,
producing satisfactory outcomes. These collections closely align
with the use case of journalists seeking information. However, Wan-
naDB may face difficulties with specific queried arguments and
certain text collections. Despite these limitations, the authors of the
paper express their overall satisfaction with the evaluation results.
It is important to note that while a specialized system trained on
specific data will always outperform WannaDB, it still serves its
purpose by providing a general impression of the data and enabling
ad hoc information retrieval.

5 CONCLUSION
Is this the end of reading? Probably not! WannaDB, as it was pre-
sented, allows a user to get an impression of the information in a
document collection, mainly because there are queried terms and
even whole collections that are more difficult to handle than others.
And you always need to have at least some domain knowledge,
at least to formulate a proper query. The system design is aware
of this and is using the users knowledge of the world and adapt
this through an interactive cycle to improve its results. But also to
formulate a SQL-query that can proceed further very well users
will need at least some information about the text collection (and of
course, must have some basic SQL knowledge). Beside that, one bot-
tleneck is the nugget extraction: If the extractors struggle with the

documents, the output might be poor as well. Nevertheless the eval-
uation proofed that WannaDB can handle most queried attributes
in an ad hoc manner. Besides the nugget collection at ’index time’
the system needs no specific training. The authors demonstrated
how a query language made for relational databases can be used for
Information Retrieval approaches. The results presented as a table
that the user are able to shape within the SQL-query is a good and
very unique idea. To the best of the author’s knowledge, there is
no system that works in the way WannaDB works and this paper’s
author was not able to find any, either.[2, 167]
Briefly, WannaDB stands out as a valuable tool due to its ability to
handle ad hoc queries and generate tables based on those queries.
It offers unique features that can complement other related ap-
proaches.4

REFERENCES
[1] Benjamin Hättasch, Jan-Micha Bodensohn, and Carsten Binnig. 2022. Demon-

strating ASET: Ad-Hoc Structured Exploration of Text Collections. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
2393–2396. https://doi.org/10.1145/3514221.3520174

[2] Benjamin Hättasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, and
Carsten Binnig. 2023. WannaDB: Ad-hoc SQL Queries over Text Collections.
In BTW 2023, Birgitta König-Ries, Stefanie Scherzinger, Wolfgang Lehner, and
Gottfried Vossen (Eds.). Gesellschaft für Informatik e.V. https://doi.org/10.18420/
BTW2023-08

3If a computer with following specifications is a ’normal’ consumer desktop machine,
might be questionable: AMD Ryzen 9 3900X; 32GB@3000MHz RAM; NVIDIA GeForce
RTX 2070 SUPER 8GB VRAM[2, 173]
4TheWannaDB code is available at https://github.com/DataManagementLab/wannadb/

https://doi.org/10.1145/3514221.3520174
https://doi.org/10.18420/BTW2023-08
https://doi.org/10.18420/BTW2023-08
Maximilian Schüle
normally, you is not used in papers, better use
"one allways needs to have"

Maximilian Schüle
users'

Maximilian Schüle
users

Maximilian Schüle
authors were

	Abstract
	1 Introduction
	2 Stage 1: Offline Extraction
	3 Stage 2: Interactive Query Execution at runtime
	3.1 Creating a schema by the query's attributes
	3.2 Interactive user feedback loop
	3.3 Threshold Adjustment
	3.4 Interactive Filtering & Grouping

	4 Evaluation
	5 Conclusion
	References

