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Outline 

problem solution results 
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Problem – Feature-rich ML 

• Problem:  

Feature-rich Machine Learning takes a long time 

 

• Solution:  

Use coreset of original data to reduce time needed 
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Problem – Coreset selection 

• Problem:  

Current coreset selection algorithms work with one 

table, what if we have many different tables? 

 

• Solution: 

Joins tables together 
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Problem – Join materializations 

• Problem: 

Joining multiple tables with lots of data each together is 

computationally expensive  
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Solution – RECON algorithm  

• RECON = feature-Rich and data-Efficient machine 

learning with Coreset selection withOut join 

materializatioN 

 

• Concept:  

Select coreset without joining all tables together by 

calculating how representative a tuple is for the 

respective table 
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Solution – RECON algorithm 
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Solution – compute partial feature similarity 

• partial feature similarity = degree of similarity of two 

tuples in a table 

 

• partial feature similarity computation done for each 

table (as a pre-computation step) 
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Solution – initialize empty coreset 

• create coreset as the empty set 

 

• following loop will continue till desired coreset size is 

reached 
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Solution – sample subset 

• join materializations should not happen 

 

• thus a small (uniform [2]) sample is needed to obtain 

potential values to add to the coreset 

 

• sample is subset of tuples of joined together  

table T+ 
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Solution – compute utilities for coreset 

• goal: compute utility each tuple in sample provides for 

coreset 

 

• utility for each tuple initially set to zero 

 

• then all tables are divided into disjunct groups 

according to a group key (tuples with the  

same values for the group key are in the  

same group) 
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Solution – compute utilities for coreset 

• utility of each tuple in sample computed by comparing it 

to each group, taking the minimal degree of similarity 

found in the group (worst case), and adding it to current 

utility 

s1 

t1 

t2 

t3  similarity = 0.6 

 similarity = 0.4 

 similarity = 0.8 

 utility(s1) += 0.4 

group 1 

sample 
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Solution – add tuple to coreset 

• when utility for each tuple in sample is computed: 

add tuple with highest utility to coreset 
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Solution – check coreset size 

• desired coreset size reached? 

 

 no: 

return back to loop by sampling new tuples for T+ (right 

arrow) 

 

 yes: 

continue with weight computation (left arrow) 
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Solution – compute weights 

• each group is uniquely mapped to a tuple in the coreset 

 

• weight(cx) = ∑ (size of group mapped to cx) 

 

• shows how representative tuple is for whole dataset 



S. 16 Examining “Coresets over Multiple Tables for Feature-rich and Data-efficient Machine Learning” | Julius Stutz | DT-DB4MLKD-B 

 

Solution – time complexity 

• normal coreset selection: 

O (𝑁²𝐷 + 𝑁𝐾𝑆)  𝑁 = size of joined table T+ 

 

• RECON: 

O (𝑛²𝑑 + 𝑛𝐾𝑆)  𝑛 = average size of all single tables 

 

 

• 𝑁 >> 𝑛  

(especially with Feature-rich ML) 
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Results – compared methods 

• Base   (train model only with base table T) 

• Full   (train model with join together table T+) 

• Sample-Join  (train model with sampled T+ data (no 

   joins)) 

• Join-Coreset  (train model with coreset of T+) 

• Coreset-Join  (train model by first creating coreset of 

   T and then joining it with other tables) 
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Results – measurements 

• effectiveness: 

- accuracy (for classification tasks) 

- root mean squared error (RMSE) (for regression 

tasks) 

 

• efficiency: 

- time spent to create coreset (if necessary) and train 

model 
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Results – effectiveness 

regression tasks 

 

RMSE  

(lower is better) 

classification tasks 

 

accuracy  

(higher is better) 
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Results – efficiency 

regression and classification tasks 

 

 time spent to create coreset (if necessary) and train model  

(lower is better) 
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Results – combined 

Base, Coreset-Join, Sample-Join: good efficiency, bad effectiveness 

 

Join-Coreset, Full: good effectiveness, bad efficiency 

 

RECON: good effectiveness, good efficiency 
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