
Examining "Coresets over Multiple Tables for Feature-rich and
Data-efficient Machine Learning"
JULIUS STUTZ, Otto-Friedrich University Bamberg, Germany

When a Machine-Learning (ML) model is trained to make accurate predic-
tions it often required to have lots of input variables. When the data is
presented in tables those input variables refer to the number of columns of
the input table. Training with many input variables is called feature-rich
ML. While it increases the effectiveness of the model it also significantly
makes the training period longer due to the sheer amount of data needed.
Furthermore, it requires lots of computational resources which, as well as
the additional time needed, result in higher costs. To accelerate this process
a small subset of tuples of the input table can be selected, such that this
subset is representative of the whole input table. This subset is called coreset.
Current algorithms can efficiently select a coreset but only when provided a
single input table. When the input consists of multiple tables they have to
be joined together which once again requires lots of resources.
Therefore Jiayi Wang and his colleagues propose RECON, an algorithm that is
able to efficiently select a coreset from multiple tables without joining them
together [Wang 2022; Wang et al. 2022]. The algorithm works by sampling
tuples as candidates for the coreset, comparing them to the tuples of all input
tables and then selecting the most representative tuple of the sample until
the desired coreset size is reached. It also provides theoretical guarantees
regarding a minimal difference of its gradient compared to the gradient of
the theoretically joined together feature-augmented table.
Experiments and their evaluations show that models trained with a coreset
created with RECON keep almost the same accuracy as models trained with
the feature-augmented table while being significantly more efficient with
example values of 13.3 minutes for RECON and 782 minutes for the latter one.
These values include the creation of a coreset (if necessary) and the training
of the model and were done with the same original dataset.

CCS Concepts: • Computing methodologies → Machine learning ap-
proaches; • Theory of computation → Machine learning theory.

Additional Key Words and Phrases: datasets, machine learning, coresets,
feature-rich, data-efficient

1 INTRODUCTION
In modern times ML as a concept is present in lots of different do-
mains. While the use cases might be entirely different they all share
the commonality that training their model requires a lot of data.
This data often comes in the form of tables, sometimes as a single
table but often as multiple tables. In the latter case, the tables are
then joined together to end up with a feature-rich dataset, meaning
a dataset with a lot of important attributes. Furthermore one might
use coresets of the data. A coreset is a small, representative subset of
the whole dataset that captures the essential information necessary
for training a model. The coreset selection is done by calculating
weighted gradients to approximate the full gradient of the entire
training dataset. In this context, a gradient refers to a derivative of
a certain loss function with respect to the parameters present in the
model. The goal is to find parameters such that this loss function is
minimized as it measured the difference between the actual target
values and the prediction the model makes. A minimized loss func-
tion thus leads to more accurate predictions.

Author’s address: Julius Stutz, julius.stutz@stud.uni-bamberg.de, Otto-Friedrich Uni-
versity Bamberg, An der Weberei 5, Bamberg, Bavaria, Germany, 96049.

The problem with the above idea is that joining multiple tables
together to achieve a feature-rich dataset is time-consuming. The
join types that this paper discusses might add redundancy, both to
the features as well as to the tuples. More concretely one-to-one,
one-to-many, many-to-many, and fuzzy joins are considered. Using
a coreset of the original data for the training process helps to reduce
the computational power needed due to fewer data that has to be
processed. On the other hand, it risks a slight loss of accuracy and
takes a lot of computational power to be created for an augmented
dataset.
To solve the join problem the goal of Wang et al. is to achieve a
data-efficient dataset, meaning it reduces the time and needed com-
putational power to train a model by using coresets, while also
achieving a feature-rich dataset without actually joining the tables
together. They do this by calculating a weighted gradient for each
table by using a partial feature similarity value for each tuple in
each respective input table. These are then all aggregated in the
end to compute a gradient for the feature-rich augmented dataset.
They’ve also proven that this estimated gradient is guaranteed to
be upper-bounded and thus provides theoretical guarantees.

2 RELATED WORK
The field of feature-augmentation and coreset selection itself has
already been studied independently from each other.
Feature-augmentation has many approaches such as simply joining
tables, avoiding unnecessary joins that would just provide redun-
dant information, or iterative feature augmentation. This approach
involves selecting an optimal subset of tables in an iterative man-
ner. The objective is to identify the tables that when augmented,
contribute the most to enhancing the model’s performance [Chep-
urko et al. 2020]. Coreset selection like discussed in Huang et al.
[2021], Braverman et al. [2016], and Kirchhoff and Bilmes [2014]
differs from the approach in this paper as their algorithms are only
designed for a single table, rather than for multiple ones.

3 METHODS

3.1 Coreset selection framework
Asmentioned in section 1 the use of gradients is common inML. The
gradient descent strategy is used for optimizing a loss function by
using different inputs, in this case, parameters. With just one table
it can be used to calculate the so-called full gradient of it by using
an algorithm that starts with an empty coreset and then iterative
goes through all tuples (rows) of the table and calculates their utility
for the coreset, utility meaning how close this new tuple would
bring the coreset gradient to the full gradient if it was included. The
tuple with the highest utility will then be added to the coreset and
the process will start once again till the desired coreset size has
been reached. This way we obtain a coreset that has the minimal
possible difference between the two gradients and thus can be used

HTTPS://ORCID.ORG/2041164
https://orcid.org/2041164


2 • Stutz

for training a model with accurate predictions.

𝐶 = argmin
𝐶⊆𝑇,𝑤𝑗 ≥0

max
𝜃 ∈𝜗

| |
𝑛∑︁
𝑖=1

∇𝑙𝑖 (𝜃 )︸      ︷︷      ︸
full gradient

−
|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙 𝑗 (𝜃 )︸          ︷︷          ︸
coreset gradient

| | (3.1.1)

This can be seen in Eq. 3.1.1, where 𝐶 refers to the coreset, 𝑇 to the
original table, max

𝜃 ∈𝜗
to considering all possible parameters, 𝑛 to the

number of tuples in 𝑇 , 𝑙𝑖 to the gradient of a tuple in 𝑇 , 𝑙 𝑗 to the
gradient of a tuple in𝐶 and𝑤 𝑗 to the weight of the tuple. Each tuple
in 𝑇 is uniquely mapped to a tuple in 𝐶 . Thus the weight 𝑤 𝑗 of a
tuple in 𝐶 is the number of tuples in 𝑇 that are mapped to𝑤 𝑗 .
To use this approach for multiple tables there exist two solutions
with the first one being the most obvious by first joining together
all tables to obtain a single large feature-augmented table. The other
approach is the one taken in the paper, without join materialization
(actually conducting the joins) but rather by calculating the feature
similarity inside each table (quantifying how similar or related the
tuples within a table are to each other) which is followed by aggre-
gating them. This yields an estimate for the utility of each group,
where a group represents a subset of tuples that have common at-
tribute values on specific attributes. Each group is formed, based on
the attribute values of the tuples in the joined results, allowing one
to identify tuples that exhibit similar characteristics.

3.2 Gradient approximation error bounded by groups
This section deals with proving that the degree to which the esti-
mated coreset gradient differs from the actual gradient (gradient
approximation error) is upper bounded by using groups. The proof
will be done in three steps. In the first step, the groups are taken as
given and a parameter 𝜃 is fixed. The given groups are disjoint and,
as mentioned in 3.1, are similar in some attribute set 𝐴. The set of
all disjoint groups is called 𝐺 . Now each 𝐺𝑖 ∈ 𝐺 is changed to not
include the tuples from the feature-augmented table 𝑇 + but rather

the indices of the tuples, such that
𝑔⋃
𝑖=1

𝐺𝑖 = {1, 2, . . . , 𝑁 }, where 𝑔

refers to the number of groups in𝐺 (|𝐺 |) and 𝑁 to the number of tu-
ples in 𝑇 + (|𝑇 + |). With this advancement and further mathematical
transformations which, if interested, can be further investigated in
the original paper, one can now rewrite a part of Eq. 3.1.1 as seen in
Eq. 3.2.1, which sets an upper bound on the gradient approximation
error by considering the maximum difference in gradients between
𝑐 𝑗 ∈ 𝐶 (the coreset) and the tuples in each group. The computation
of the second part of Eq. 3.2.1 can be efficiently performed without
the need to join all the tables.

| |
𝑛∑︁
𝑖=1

∇𝑙𝑖 (𝜃 )−
|𝐶 |∑︁
𝑗=1

𝑤 𝑗∇𝑙 𝑗 (𝜃 ) | | ≤
𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

| |∇𝑙𝑘 (𝜃 )−∇𝑙𝑖 (𝜃 ) | |

(3.2.1)

The proof now generalizes from a fixed parameter 𝜃 to the whole
parameter space 𝜗 . This is done by utilizing the proofs done by
colleagues that show that the gradient approximation error can be

bounded regardless of the specific optimization problem or param-
eter under consideration in practical scenarios. The mathematical
concepts of these proofs can be used to derive Eq. 3.2.2, where the
Euclidean distance | |𝑥𝑘 − 𝑥𝑖 | | is used as a metric to quantify the
similarity between the feature vectors of two tuples.

max
𝜃 ∈𝜗

𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

| |∇𝑙𝑘 (𝜃 ) − ∇𝑙𝑖 (𝜃 ) | | (3.2.2)

≤ 𝑐︸︷︷︸
constant

·
𝑔∑︁
𝑖=1

|𝐺𝑖 | min
𝑐 𝑗 ∈𝐶

max
𝑘∈𝐺𝑖

| |𝑥𝑘 − 𝑥𝑖 | | (3.2.2)

Till now the groups have been taken as given and derived from
the feature-augmented table 𝑇 +. The proof ends by stating that it is
also possible to derive groups just by examining the single tables
alone. This removes the computationally heavy task to join them
together and thus allows to efficiently select a coreset. This last step
of the proof is further examined in 3.3.

3.3 RECON algorithm
Wang et al. developed the RECON algorithm (feature-Rich and data-
Efficient machine learning with Coreset selection withOut join
materializatioN) to efficiently select a coreset by just providing all
single tables (with 𝑇 as the base table, and T = {𝑇1,𝑇2, . . . ,𝑇𝑚} to
augment it) as well as a desired coreset size (𝐾). Its workings can
be seen in algorithm 1 and will now be explained.

Line 1 is about pre-computing a set𝐷 that includes the partial fea-
ture similarity vectors of every single table (𝑇 and T ). This process
takes all tuple combinations inside of a single table and computes
their Euclidean distance. As this step needs no further computations
it can be pre-computed which is part of the reason the algorithm
performs much faster than other methods.
The algorithm then initializes the coreset 𝐶 as a set with zero

elements in the beginning (line 2). It then starts a while-loop that
reaches from line 3 to 15 and that is executed until the desired size
𝐾 of the coreset 𝐶 is reached.

Even though the feature-augmented table 𝑇 + is not materialized
through joins, some of its values are still needed to iterate through
them (for-loop from line 5 - 12) and find the tuples with the highest
utility. Therefore they are created in line 4 by sampling them using
the table 𝑇 and the ones in T , together with a sampling strategy
proposed by Zhao et al. [2018] that guarantees a uniform sample.
The utility that each tuple 𝑡 𝑗 ∈ S provides when added to 𝐶 is

initially set to zero (line 6) and then adjusted accordingly (line 9).
This adjustment is done using the feature similarity computed in line
8. The feature similarity 𝑠 𝑗𝑖 between a tuple 𝑐 𝑗 ∈ 𝐶 and each group
𝐺𝑖 is determined by an algorithm that uses the concept of dynamic
programming to calculate 𝑠 𝑗𝑖 given the pre-computed values𝑑ℎ𝑖 𝑗 ∈ 𝐷 ,
the group key that shows according to which features the groups are
divided, and the join tree that displays which tables would be joined
to which and on which feature (if the join materialization would
take place). When the utility for each tuple 𝑡 𝑗 ∈ S is computed (line
12), the tuple with the highest utility is then added to 𝐶 (line 13-14).



Examining "Coresets over Multiple Tables for Feature-rich and Data-efficient Machine Learning" • 3

Algorithm 1: RECON algorithm
Input: Base table 𝑇 , T = {𝑇1,𝑇2, . . . ,𝑇𝑚}, coreset size 𝐾
Output: Coreset 𝐶 ⊆ 𝑇 +, weightsW = {𝑤1,𝑤2, . . . ,𝑤 |𝐶 | }

1 𝐷 = {𝑑ℎ
𝑖 𝑗
|∀𝑇ℎ ∈ T ∪ {𝑇 },∀𝑡ℎ

𝑖
, 𝑡ℎ
𝑗
∈ 𝑇ℎ, 𝑑ℎ𝑖 𝑗 = | |𝑥ℎ

𝑖
− 𝑥ℎ

𝑗
| |};

2 𝐶 = ∅;
3 while |𝐶 | < 𝐾 do
4 S = sampled subset from 𝑇 + using 𝑇 and T ;
5 for each tuple t𝑗∈ S do
6 𝑈 (𝐶 ∪ {𝑡 𝑗 }) = 0;
7 for each group G𝑖∈ G do

/* 𝑠 𝑗𝑖 is the minimal similarity between
the tuples in group 𝐺𝑖 and the
feature vector of 𝑐 𝑗 ∈ 𝐶 */

8 𝑠 𝑗𝑖 = aggregate 𝑑ℎ
𝑖′ 𝑗 ′ ∈ 𝐷 obtained from different

tables;
9 𝑈 (𝐶 ∪ {𝑡 𝑗 })+ = |𝐺𝑖 |max𝑐 𝑗 ∈𝐶∪{𝑡 𝑗 } 𝑠 𝑗𝑖 ;

10 end
11 𝑈 (𝑡 𝑗 |𝐶) = 𝑈 (𝐶 ∪ {𝑡 𝑗 }) −𝑈 (𝐶);
12 end
13 𝑡∗ =𝑡 𝑗 ∈S 𝑈 (𝑡 𝑗 |𝐶);
14 𝐶 = 𝐶 ∪ 𝑡 𝑗 ;
15 end
16 for 𝑗 = 1 to |𝐶 | do
17 𝑤 𝑗 =

∑𝑔

𝑖=1 |𝐺𝑖 |I[ 𝑗 =𝑐 𝑗 ′ ∈𝐶 𝑠 𝑗 ′𝑖 ];
18 end
19 return 𝐶,𝑊 ;

After the coreset has been successfully created, one needs to
compute the weight for each tuple in 𝐶 (line 16-18). Each group𝐺𝑖

is uniquely mapped to a single tuple 𝑐 𝑗 ∈ 𝐶 . Thus the weight𝑤 𝑗 of
𝑐 𝑗 is computed as the sum of all groups 𝐺𝑖 mapped to them times
the size of each group respectively.

4 EXPERIMENTS AND EVALUATION
Wang et al. prove that RECON has a time complexity of O(𝑛2𝑑 +𝑛𝐾𝑆)
while normal coreset selection when first joining the tables has
O(𝑁 2𝐷 +𝑁𝐾𝑆), where 𝑛 refers to the average size of all tables in T
(𝑛 = |𝑇ℎ |), 𝑁 to the size of 𝑇 + (𝑁 = |𝑇 + |), 𝑑 to the average number
of features of all tables in T , D to the number of features of𝑇 +, 𝐾 to
the number of times the coreset selection algorithm loops (coreset
size), and 𝑆 to the number of tuples that are sampled during each
loop (𝑆 = |S|). As 𝑛 < 𝑁 is always true the time complexity of
RECON is always lower than that of the normal coreset selection.
Also, the time complexity looks at the worst case and provides an
upper bound on the number of computations needed. However, in
practice, because the data is typically distributed across different
labels, we can avoid performing computations for the entire dataset.
Instead, we can selectively work with smaller subsets of data that
are relevant to specific labels. This leads to a substantial reduction in
the overall computational requirements compared to the theoretical
complexity estimation.
To compare the performance of RECON five datasets were chosen

and other baseline techniques were used and their performance
observed to compare them to RECON. The six other techniques used
are Base (train model only with base table 𝑇 ), Full (train model
with full augmented table𝑇 +), Sample-Join (train model with sam-
pled 𝑇 + data without joins), Join-Coreset (train model with core-
set over full augmented table 𝑇 +), Coreset-Join (train model by
first creating the coreset of 𝑇 and then joining it with Tables from
T ), and factorized Machine Learning (FML) (accelerate batch
gradient descent by breaking down the computations involved in
machine learning tasks through the use of join operations). The
chosen datasets with varying sizes can be seen in Table 1.

Table 1. Datasets used for comparison (c = classification, r = regression)

name # tables # rows (𝑇 +) # features (𝑇 +) task

Brazil 4 98 463 9 c
IMDB 7 674 466 41 c / r

IMDB-Large 7 21 303 410 41 c / r
Stack 3 6 347 553 178 r
Taxi 5 2 792 376 30 r

The comparison between the different techniques is based on
two metrics, effectiveness and efficiency. Effectiveness is measured
differently based on the task that the dataset is created for. A dataset
like Brazil with a classification task deals with predicting discrete
class labels or probabilities while datasets with a regression task
like Stack involve predicting continuous numerical values. Thus
the effectiveness of a regression dataset can be expressed via the
root mean squared error (RMSE) while in the case of a dataset with
a classification task, it is measured via the prediction accuracy of
the model. The efficiency is purely measured by the time it takes to
create a coreset (if necessary for the technique) and use the data to
train a model. The goal of Wang et al was to create RECON such that
it combines the values of the best techniques for effectiveness and
efficiency respectively. As seen in algorithm 1 it takes the desired
coreset size as an input. As it is not trivial to guess this number
correctly, an iterative approach is used. The RECON algorithm is ex-
ecuted many times, each time with a slight increase as the input
for the coreset size. After each execution, the model is validated
and when the accuracy converges a coreset with the desired size
is found. Although this approach seems to be time-consuming, it
is not when compared to the other baselines. To have a fair com-
parison, Wang et al always set the environment up in a way that
favors the technique currently compared with RECON. As an exam-
ple the Sample-Joinmethod is instantly provided with the number
of tuples it should sample which is equal to the number of tuples
RECON computed for its coreset. The experiments with the sample
datasets and all discussed training techniques showed that RECON
can always perform very close to the effectiveness of the Full and
Join-Coreset methods which both are significantly more effective
than the other methods used. This holds for both classifications,
as well as regression tasks as can be seen in Figure 1. What makes
RECON stand out, however, is that it is more efficient than Full and
Join-Coreset and its time spent for training is rather comparable



4 • Stutz

Fig. 1. Effectiveness measured in accuracy for classification tasks (higher is better) and RSME for regression tasks (lower is better)

method accuracy
Base 0.540

Sample-Join 0.577
Coreset-Join 0.574
Join-Coreset 0.605

Full 0.606
RECON 0.605

(a) Brazil

method accuracy
Base 0.610

Sample-Join 0.628
Coreset-Join 0.624
Join-Coreset 0.663

Full 0.665
RECON 0.662

(b) IMDB

method RMSE
Base 1.79

Sample-Join 1.55
Coreset-Join 1.61
Join-Coreset 0.99

Full 0.98
RECON 1.00
(c) IMDB-large

method RMSE
Base 1.05

Sample-Join 0.98
Coreset-Join 1.04
Join-Coreset 0.75

Full 0.74
RECON 0.75

(d) Stack

method RMSE
Base 1.82

Sample-Join 1.66
Coreset-Join 1.57
Join-Coreset 0.77

Full 0.77
RECON 0.77

(e) Taxi

Fig. 2. Efficiency measured in time spent (lower is better)

method time (min)
Base 0.5

Sample-Join 0.8
Coreset-Join 0.7
Join-Coreset 2.5

Full 18.5
RECON 1.1

(a) Brazil

method time (min)
Base 11

Sample-Join 12
Coreset-Join 11
Join-Coreset 21

Full 150
RECON 16

(b) IMDB

method time (min)
Base 2.1

Sample-Join 8.2
Coreset-Join 9.4
Join-Coreset 610

Full 782
RECON 13.3

(c) IMDB-large

method time (min)
Base 4.3

Sample-Join 5.8
Coreset-Join 6.1
Join-Coreset 28

Full 254
RECON 12.7

(d) Stack

method time (min)
Base 0.52

Sample-Join 2.8
Coreset-Join 3.4
Join-Coreset 9.6

Full 72
RECON 4.6

(e) Taxi

to the one of Base, Sample-Join, and Coreset-Join. For demon-
stration observe the dataset Stack where RECON has an RMSE of
0.75 and Join-Coreset and Full one of 0.75 and 0.74 respectively.
The RMSE of the other techniques are higher and they can not
stand the comparison to the ones above. Meanwhile, the time spent
for creating a coreset (if necessary) and training a model with it is
significantly higher for Join-Coreset and Full with values of 28
minutes and 254minutes respectively while RECON is more efficient
with a value of 12.7 minutes. This shows that RECON combines the
best of effectiveness and efficiency and packages it into a combined
solution.

Fig. 3. Efficiency comparison with FML

−0.5 0 0.5 1

2
4
6
8

tim
e
sp
en
t(
lo
w
er

is
be
tte

r)

RECON FML

(a) Brazil

−0.5 0 0.5 1

20
40
60
80
100

tim
e
sp
en
t(
lo
w
er

is
be
tte

r)

RECON FML

(b) Stack

The only approach not further mentioned till now is FML. The
comparison with FML is not trivial as it exclusively enables training
using batch gradient descent. It works with the full dataset and thus
has the same effectiveness as Full but as experiments showed its
efficiency lacks in comparison to RECON with example values of 104
minutes compared to RECON’s 12 minutes. While FML minimizes lin-
ear algebra computations and thus enhanced its efficiency, training
using the complete dataset is still necessary.

5 CONCLUSION
Results show that the RECON algorithm allows for a more efficient
ML training process while still keeping or only slightly reducing ef-
fectiveness. This is backed by its design which allows for theoretical
guarantees. In comparison to previous coreset selection algorithms,
it is designed to work with multiple tables as input, which somehow
limits its application but also allows for drastic improvements in
this specific domain. Wang et al. published their paper in 2022 but
while it hasn’t gathered as much attention as it might deserve it still
holds the potential to accelerate the ML training process for some
applications in the future.

REFERENCES
Vladimir Braverman, Dan Feldman, and Harry Lang. 2016. New Frameworks for Offline

and Streaming Coreset Constructions. CoRR abs/1612.00889 (2016). arXiv:1612.00889
http://arxiv.org/abs/1612.00889

Nadiia Chepurko, RyanMarcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim Kraska,
and David R. Karger. 2020. ARDA: Automatic Relational Data Augmentation for
Machine Learning. Proc. VLDB Endow. 13, 9 (2020), 1373–1387. https://doi.org/10.
14778/3397230.3397235

Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos M. Freris, and Hu Ding. 2021. A
Novel Sequential Coreset Method for Gradient Descent Algorithms. In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and
Tong Zhang (Eds.). PMLR, 4412–4422. http://proceedings.mlr.press/v139/huang21b.
html

Katrin Kirchhoff and Jeff A. Bilmes. 2014. Submodularity for Data Selection in Machine
Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, Alessandro Moschitti, Bo Pang, and
Walter Daelemans (Eds.). ACL, 131–141. https://doi.org/10.3115/v1/d14-1014

Jiayi Wang. 2022. Coresets over multiple tables for feature-rich and data-efficient
machine learning [github]. Retrieved June 15, 2023 from https://github.com/
for0nething/RECON

JiayiWang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. 2022. Coresets over
multiple tables for feature-rich and data-efficient machine learning. Proceedings of
the VLDB Endowment 16, 1 (2022), 64–76. https://doi.org/10.14778/3561261.3561267

Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM,
1525–1539. https://doi.org/10.1145/3183713.3183739

https://arxiv.org/abs/1612.00889
http://arxiv.org/abs/1612.00889
https://doi.org/10.14778/3397230.3397235
https://doi.org/10.14778/3397230.3397235
http://proceedings.mlr.press/v139/huang21b.html
http://proceedings.mlr.press/v139/huang21b.html
https://doi.org/10.3115/v1/d14-1014
https://github.com/for0nething/RECON
https://github.com/for0nething/RECON
https://doi.org/10.14778/3561261.3561267
https://doi.org/10.1145/3183713.3183739

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Coreset selection framework
	3.2 Gradient approximation error bounded by groups
	3.3 RECON algorithm

	4 Experiments and Evaluation
	5 Conclusion
	References

