
DBOS

DBMS
oriented 
Operating 
System



OUTLINE

▪ INTRODUCTION

▪ ARCHITECTURE

▪ TASKS

▪ MESSAGES

▪ PROTOTYPE

▪ CONCLUSION



INTRODUCTION

▪ Basic architecture has not changed

▪ But architecture and capabilities of the machines

on which it runs have changed very drastically

1970´s

1990´s
"Dieses Foto" von Unbekannter Autor ist lizenziert gemäß 
CC BY-NC

"Dieses Foto" von Unbekannter Autor ist lizenziert gemäß CC BY-NC

https://www.freepngimg.com/png/73392-shell-command-line-script-unix-linux-interface
https://creativecommons.org/licenses/by-nc/3.0/
https://www.pngall.com/linux-png/download/52265
https://creativecommons.org/licenses/by-nc/3.0/


Destination

Run on

▪ Large clusters of computers or 
data centers

not

▪ Single node operating Systems 
or a Desktop operating System

Dieses Foto https://images.app.goo.gl/L8mfx7vUZjs12D3M6
Dieses Foto https://images.app.goo.gl/vU34ga518FXAeQ618



Large applications running on very large clusters of 
computers.
Mostly work on RPC (Remote Procedure Call) and heavy 
on network communications

So a lot of state to manage and that all state itself
is a big data problem

WHY ?



ARCHITECTURE

▪ Level 4

USER APPLICATIONS

Large distributed applications such as machine 
learning, web search, and so on. 
The programming model is similar to the 
serverless model we see in many commercial 
Cloud.
Whole application broken down into a series of 
smaller subtasks, each running on demand for a 
very short period of time

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



ARCHITECTURE

▪ Level 4

Much easier to get visibility 
into the operational status of 
these applications, things like 
monitoring, debugging .

Can be done very easily 
because simply query the state 
of application from the 
database.

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



ARCHITECTURE

▪ Level 3

Basic operating system 
functionality things, like 
scheduling tasks or file systems 
or into inter-process 
communication

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



ARCHITECTURE

▪ Level 2

Heart of Architecture which is a 
distributed database system

should be: multi-node main 
memory transactional database

good SQL Query Engine

=> the basis of how a lot of the 
querying and state management is 
going to be done in this system

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



ARCHITECTURE

▪ Level 1

a set of microkernel services 
which abstracts the hardware 
and provides the very basic 
things that the distributed 
database system needs in 
order to run

=> things like the raw, device 
drivers, interrupts and so on.

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



TASKS

- Doesn’t a full-fledged database need a lot of high-level operating system 
abstractions in order to run?

- not really. Because at most commercial database systems, actually bypass a lot of 
core high level abstractions like the file system . Directly used the raw disk and do 
their own management of data on the disk. So in fact it is very possible or a full-
fledged modern database to run with very little support from the operating system



TASKS

The next question is how can write a scheduler for our tasks that 
selects which task to schedule and when?

o Schedule tasks

The fields of the Task table are:



TASKS

Pseudocode for a FIFO task scheduler

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



TASKS

Our schedulers also require a Worker table:

But how does inter-process communication work?



MESSAGES

- That is also done by a table. So have a message table where can put 
messages and consumers can read messages from this table

A Message table is required:

=> and note that all of this already comes with transaction guarantees. 
because you have a modern transaction database underneath all of this



MESSAGES

The basic schema of how try 
to build a traditional file 
system in this operating 
system

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



So, see that this has a very different flavor of how to build system 
logic on top of the primitives, instead of writing code for everything.

This very database and schema oriented way of doing things where 
write SQL Queries, inserts and updates to query our state, manage 
all state and update all the state.

MESSAGES



PROTYPE

I. DBOS - straw (very simple basic prototype)

II. DBOS - wood

III. DBOS - brick



PROTYPE

DBOS – straw

Base Layer is Linux on top of the hardware instead of a 
micro kernel

Data Base Layer is VoltDB

Against a more traditional operating system like Linux 
with a well-known RPC mechanism like gRPC on top of it.



RESULT

DBOS outperforms gRPC by up to 2.7 
times for small messages, while it 
underperforms by 48% for 8KB messages.

The difference between TCP/IP and DBOS 
has narrowed somewhat, but is still 
considerable.

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



RESULT

The small performance 
difference between DBOS and 
gRPC is impressive when 
consider that the DBOS 
messaging scheme is 
implemented in a few lines of 
SQL code running on an 
unmodified DBMS, whereas 
gRPC is a specialised 
communication framework 
developed by many engineers 
over many years.

Dieses Foto https://cs.stanford.edu/~matei/papers/2022/vldb_dbos.pdf



But that's still really encouraging because this is a very unoptimised 
prototype. 
So, this still shows that if optimise it and squeeze more performance 
out of it, this could be very very competitive with a more traditionally 
optimised operating system

PROTOTYPE



CONCLUSION

■ A new operating system architecture that uses a modern database as 
the basic building block

■ The claim is that this will drastically simplify the very complex state 
management that most modern operating systems have to manage 
with their large distributed applications on top of it

■ Like this very different way of writing system code with SQL selects 
and inserts and updates that takes advantage of modern database 
features like transactional updates and so on to simplify the creation 
of all these applications


