
DBOS: a DBMS-oriented operating system
Seminar: Moderne Datenbanksysteme für maschinelles Lernen und Wissensentdeckung (Summer Term

2023)

Huseyn Mammadli
University of Bamberg

ABSTRACT
Current operating systems are intricate systems that weren’t cre-
ated for the computer settings of today. The scalability, heterogene-
ity, availability, and security concerns in the present cloud and
parallel computing systems are made tougher for them as a result.
In order to solve these issues, is suggested a completely new OS
design built on a data-centric architecture: all operating system
state should be consistently represented as database tables, and ac-
tions on this state should be performed via queries from otherwise
stateless activities. With this approach, it is simple to grow and
evolve the OS without restructuring the entire system, examine
and troubleshoot system state, update components without causing
a service interruption, use machine learning to manage choices,
and add advanced security features. It is addressed how a database
operating system (DBOS) might enhance the programmability and
performance of many of the most crucial applications used today,
and a strategy for creating a DBOS proof of concept is suggested.

In paper is demonstrated how a database operating system (DBOS)
may execute scheduling, file management, and inter-process com-
munication at a level of performance comparable to that of current
systems. Implementing OS services as ordinary database queries,
while implementing low-latency transactions and high availability
only once, can also deliver noticeably improved analytics while
drastically reducing code complexity.
ACM Reference Format:
Huseyn Mammadli. 2023. DBOS: a DBMS-oriented operating system: Semi-
nar: Moderne Datenbanksysteme für maschinelles Lernen und Wissensent-
deckung (Summer Term 2023). In Proceedings of Seminar. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Began with operating systems that have been in operation for
almost 50 years. The Unix operating system was developed in the
1970s and Linux was first developed in the 1990s. While the design
and capabilities of the machines on which it runs have evolved
significantly, the fundamental architecture of the unix lineage of
operating systems, as well as other operating systems like windows,
has not changed in all that time. Not single node operating systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Seminar,
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

or desktop operating systems, but rather operating systems that run
on massive computer clusters or in data centers are being discussed
here.

It should be mentioned that the Unix concept of having every-
thing in a file was appropriate at the time. However, it doesn’t
actually scale to these huge applications operating on sizable com-
puter clusters. Since they rely heavily on network connectivity and
mostly employ RPC, they have a lot of state to maintain across
this big distributed system. It appears that under that load, Unix is
starting to squeak and is suggested that, because there is so much
state to handle in these enormous, distributed contemporary sys-
tems, the state management problem is a big data issue in and of
itself. Hardware is becoming massively parallel and heterogeneous.
These “sea changes” make it imperative to rethink the architecture
of system software, which is also the topic of this paper[1].

2 RELATEDWORK
Data Base Operating System, or DBOS, is the name of the new
system, which results in a radically different operating system
stack.

Figure 1: Proposed DBOS stack. Level 1 is the bottom layer.

Level 4: User Applications
At the highest level level four is user applications. These are big
distributed applications, such as online search, machine learning
and other functions. The programming paradigm is comparable to
the serverless architecture, which is used by many modern com-
mercial clouds. Consequently, the entire program is divided up into
a number of smaller sub jobs, each of which runs only when neces-
sary. In order to do serverless computing, his top level operating
system offers abstractions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
Maximilian Schüle
noun is missing

Maximilian Schüle
states

Maximilian Schüle
in <article missing> paper

Maximilian Schüle
source

Maximilian Schüle

Maximilian Schüle

Seminar, Huseyn Mammadli

The most significant aspect of this stack’s benefit is that all the
state that must be managed in order to execute these massive apps
is maintained in a database. This contains elements like scheduling,
file storage, and inter-process communication. All of it is supported
by a contemporary database with SQL querying capabilities. This
makes tasks like monitoring and debugging considerably simpler
to have access into the operational health of these systems.All of
these things are fairly simple to achieve because they are able to
quickly query the database for the application status[2].

Level 3: OS Functionality
Going down one,now at level three. Basic OS features include things
like task scheduling, file systems, and inter-process communication.

Every operating system service operates using a combination of
user-defined functions and SQL, and all of these services rely on a
unified, global view of the operating system state represented by
DBMS tables.

As a result, supporting cross-cutting activities is made simple
for services.A contemporary database serves as the foundation for
all of that.

Level 2: The DBMS
The distributed database system, which is level two of the archi-
tecture, is its center.A utilizing a multi-node main memory trans-
actional database with this core component, which would be ex-
tremely high performance is suggested. The database must have an
effective sql query engine.since that will serve as the foundation
for most of the querying and state management in this system.

Level 1: Microkernel Services
And lastly, right close to the hardware at the lowest level. A number
of microkernel services are available. This is what supplies the very
fundamental stuff that the distributed database system requires to
function and abstracts the hardware.This includes elements like as
the raw device drivers, interrupts, and so on. The system comprises
a set of backend nodes that assume one or more ‘roles’ in the
cluster[3].

3 METHODE

• The answer to the question "Doesn’t a full-fledged database
need a lot of high-level operating system abstractions in
order to run" is no, since, like most commercial database sys-
tems, this actually avoid many of the file system and other
fundamental high level abstractions. Directly managing the
data on the drive and using the RAW disk. Therefore, a fully
functional modern database may run with very minimal
assistance from the operating system.Consequently, this ar-
chitecture is quite realistic.

• "How would some typical system tasks performed in such
an operating system?" Everything focuses on tables and

SQL queries, much like it would expect in a database, which
makes it really fascinating.

Therefore, the first step to capture the current state of the task
in a table, just as one would in a database.This is a table and has its
fundamental structure.

Then the code that would be used to create a task scheduler, that
chooses which task to schedule when. This is FIFO task scheduler
pseudocode.hence it can be seen that the work was chosen using
a SQL SELECT query. The task’s characteristics are continued in
some pseudocode after that.

Figure 2: Simple FIFO scheduler.

Finally, there is another table, which called the worker table,
where tasks might be run. A SQL UPDATE statement was then
used to update the worker table with the job that was chosen to
run.

The inter-process communication is also done by a table.

So hier is message table, which could put messages into it and
Users can read messages out of this table which is already coming
with transactional guarantees. because This is transactional mod-
ern database underneath all this and could keep mapping of entire
operating system design in terms of these tables and schemas.

Maximilian Schüle

Maximilian Schüle
that's not scientific writing

Maximilian Schüle

Maximilian Schüle
avoid "feeling" in scientific papers

Maximilian Schüle
source

Maximilian Schüle
here

DBOS: a DBMS-oriented operating system Seminar,

Figure 3: Filesystem tables for data and metadata.

For example this is the basic schema for how would tried to build
a traditional file system in this operating system.

So instead of writing code for everything, this has a very different
flavor of how to build system logic on top of the primitives. It is
possible to write SQL queries, inserts, and updates to query the
state, manage the state, and update the entire state in this very
database- and schema-oriented way. That is an aspect of both the
operating system and the application.

4 EVALUATION
So as to evaluate the viability of this concept, is created a very rudi-
mentary prototype. The initial prototype, which is called "Straw",
will be followed by systems termed "Wood" and "Brick" in the future.

Figure 4: Performance of ping20-pong20 benchmark.

Figure 5: Performance of multicasting benchmark.

For Straw Prototype is picked Linux as the base layer on top
of the hardware instead of a micro kernel and the database layer
is VoltDB. A variety of benchmarks is also conducted to compare
the performance of their prototype to more established operating
systems like Linux with well-known RPC mechanisms like gRPC.

For small messages, DBOS outperforms gRPC up to 2.7 times,
while for large messages (8 KB), it underperforms [2]. Although
the difference between TCP/IP and DBOS has decreased slightly, it
is still wide.

When considered that the DBOS messaging strategy is imple-
mented in a few lines of SQL code running on an unmodified DBMS,
and gRPC is a specialized communication framework created by
many developers over many years, the minor performance differ-
ence between DBOS and gRPC is astounding.

However, considering that this is a very crude prototype and this
is still hopeful.Consequently, still shows that if could be improve it
and get more performance out of it, might be highly competitive
with a more conventionally designed operating system.

5 CONCLUSION
Finally, this study proposed a new operating system design that
consists primarily of modern databases.Furthermore, it is claimed
that this would significantly simplify the extremely difficult state
management that most contemporary operating systems, along
with the sizable distributed applications they support, must handle
and how with sql queries, inserts, and updates. We have this very
new approach of creating system code.It streamlines the develop-
ment of all these apps by utilizing contemporary database features
like transactional updates and others.

Seminar, Huseyn Mammadli

REFERENCES
[1] Michael J. Cafarella, David J. DeWitt, Vijay Gadepally, Jeremy Kepner, Christos

Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia. 2020. DBOS: A
Proposal for a Data-Centric Operating System. CoRR abs/2007.11112 (2020).

[2] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana
Mathew, David Bestor, Michael J. Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy
Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith Suresh, and
Matei Zaharia. 2021. DBOS: A DBMS-oriented Operating System. Proc. VLDB
Endow. (2021).

[3] Lalith Suresh, João Loff, Faria Kalim, Nina Narodytska, Leonid Ryzhyk, Sahan
Gamage, Brian Oki, Zeeshan Lokhandwala, Mukesh Hira, and Mooly Sagiv. 2019.
Automating Cluster Management with Weave. CoRR abs/1909.03130 (2019).

	Abstract
	1 Introduction
	2 Related Work
	3 Methode
	4 Evaluation
	5 Conclusion
	References

