
On "Orchestrating Data Placement andQuery Execution in
Heterogeneous CPU-GPU DBMS"
Seminar: Modern Database-systems for Machine Learning and Knowledge Discovery 2023

ANTON SACHNOV

Orchestrating Data Placement and Query Execution in Heteroge-
neous CPU-GPU DBMS [3] is a paper addressing the acceleration
of data analytics engines utilizing GPUs. Specifically, the focus is
on heterogeneous CPU-GPU data analytics engines, as the authors
introduce their own novel hybrid data analytics engine called Mor-
dred. The most limiting factor of GPUs in data analytics is their
memory capacity. This paper delves into two primary domains of en-
hancement when addressing this limitation. The authors discuss the
importance of data placement in a heterogeneous CPU-GPU system
and afterward, they address the challenges of heterogeneous query
execution. The author’s approach to implementing effective data
placement is by introducing a semantic-aware fine-grained caching
policy, which can not only cache data at sub-column granularity
but also within the data prioritizes segments estimated as more
semantically relevant. To make query execution on fine-grained
data like this possible, the authors introduce a heterogeneous query
executor. This type of query execution can also take data from both
CPU and GPU into account and uses both units in parallel during ex-
ecution. Evaluation of Mordred in benchmark tests has shown, that
semantic-aware fine-grained caching outperforms traditional poli-
cies andMordred itself outperforms coexisting GPUDBMS. The next
step towards optimization and improvement for this system would
be a full-fledged heterogeneous query optimizer, as currently, some
operations could still present a bottleneck. Furthermore, extend-
ing the research towards new hardware technologies like NVLink
or CXL could also offer new opportunities due to their increased
interconnect bandwidth.

1 INTRODUCTION
While GPUs have great computational power, due to their mas-
sive parallelization ability and high memory bandwidth, their use
for data analytics engines has always been limited by their small
memory capacities (up to 80GB). This Constraint makes GPUs only
leverageable for small data sets. While former studies have shown
GPU databases to perform more than 10x faster compared to CPU
counterparts, the standard approaches to mitigate the memory con-
straint can mostly be categorized with three strategies. The first
strategy simply consists of increasing the number of GPUs, so a
larger data set can be stored across multiple GPUs. This approach
has the drawback of poor scalability, so while it is a perfectly fine
approach in theory, it is not easily realizable as a practical or com-
mercial solution. The second approach only employs the GPU to
accelerate certain parts of the query, effectively treating it as a co-
processor. This design is not limited by the GPU memory as the
main storage place of data is handled by the CPU. Transferring data
to GPU on demand presents another weak link, this time it’s the

limitation of PCIe bandwidth being the new performance bottle-
neck. The third design category uses both GPU and CPU during
query execution and capitalizes on data that resides in both units’
main memories. The primary objective of this hybrid system is to
avoid excessive data transfer between the units, thus preventing
overloading of the PCIe link, while also utilizing as much of the
computational power of both units as possible. Previously exist-
ing system designs have shown that implementing an efficiently
running hybrid system requires additional complexity. Developing
a suitable caching policy to ensure effective data placement and
taking an extensive look into hybrid query execution is necessary to
fully take advantage of the acceleration potential of hybrid systems.
The pre-existing data analysis engines referenced in the paper had
not yet implemented data placement strategies for heterogeneous
query execution, or in some cases were relying upon traditional
caching policies.
The research documented in this paper focuses on the author’s
own novel data analytics engine called Mordred and the compar-
ative advantage it has to prior existing GPU DBMS. Apart from
already existing optimizations like late materialization, operator
pipe-lining, and segment skipping, Mordred’s novel optimization
techniques are centered around the two previously discussed issues
of data placement and heterogeneous query execution. Concerning
data placement, Mordred supports a semantic-aware fine-grained
caching policy, which enables Mordred to store data at sub-column
granularity and furthermore implements a weighted cost system,
so the most profitable data for GPU accelerated query execution
gets prioritized. To enable such a caching policy, Mordred has aug-
mented the query execution, enabling it to carry out operations on
subsets of columns. Another property of Mordred’s query execution
is heterogeneity, meaning it can separate queries into sub-queries,
assign those sub-queries to either GPU or CPU, based on the data
stored in their memory, and finally, execute them in parallel.

The following chapters of this paper will cover the authors’ approach
to data placement, specifically the algorithm by which semantic-
aware fine-grained caching is conducted, and also their implementa-
tion and optimization of heterogeneous query execution. Afterward,
there is going to be a summary of the original paper’s evaluation
and a concluding chapter pointing out the most influential aspects
of the Mordred engine when evaluating it against contemporary
systems.

2 DATA PLACEMENT
Mordred’s data placement design is based upon pre-existing designs
[2], where the whole data set is residing in CPU memory, while sub-
sets of the main data set get mirrored and cached in GPU memory.

, Vol. 1, No. 1, Article . Publication date: June 2023.

Maximilian Schüle
authors'

Maximilian Schüle
satzbau?

Maximilian Schüle
wie kann man PCIe überladen? gibt halt eine maximale Bandbreite, oder?

Maximilian Schüle
Referenz einfügen

Maximilian Schüle
satzbau

Maximilian Schüle
Quelle

Maximilian Schüle
Als den Absatz zu verstehen, hat gebraucht...

Previous systems did either not implement data placement strategies for heterogeneous query execution or were relying on out-dated (?) caching policies.

Maximilian Schüle
eigentlich gehört in das Abstract kein Zitat. Entweder umschreiben oder zumindest den Titel in Quotes setzen...

Maximilian Schüle
streichen

Maximilian Schüle
"zeitgenössische Systeme" naja...

Fig. 1. Visualization of different caching policies, example assumes cache size of 7 segments

This design specifically avoids disjoint data sets across both process-
ing units, so flexibility with query scheduling can be maintained.
Mirroring data sets allows for easier parallelization and for data in
transfer to have lightweight representation, so the CPU is able to
reconstruct data sets while in turn, the data transfer over the link is
kept low. What differentiates Mordred’s data placement design from
pre-existing ones is the engine’s caching policy, which evaluates
and compares data sets on multiple factors. While previous systems
relied on traditional caching policies like least-recently-used (LRU)
and least-frequently used (LFU), the authors of this paper argue that
primitive caching policies like lack nuance and can therefore not
identify relevent data for maximum GPU acceleration potential. The
paper then goes into the benefits of caching at sub-column granular-
ity and then elaborates on the importance of caching semantically
relevant data.

2.1 Fine-Grained Caching
The authors elaborate on two main constraints of coarse-grained
caching, which stores data by the whole column. The first constraint
is fragmentation. With GPU caches having a fixed size, storing one
column may be enough to occupy enough space, so that another
column would not fit in anymore, while also leaving this space
unused. With the ability to cache sub-columns, caches can be filled
up with subsets of other columns, allowing the caches to utilize
their full capacity. The second constraint is the skewness of the
column. Not every segment of a column is used with the same
frequency. In practice, columns may have an uneven distribution
for the hotness of their segments. To fully capitalize on the limited
memory capacity of GPU caches, more frequently accessed data
within columns should be prioritized, instead of storing the whole
column together with the colder segments.

2.2 Semantic-aware Fine-Grained Caching
Implementation of fine-grained caching with conventional caching
policies mitigates fragmentation and accounts for the skewness of
data but does not yet capture data sets benefiting GPU acceleration
the most, during query execution. Operators which are computation-
ally complex and frequent during query execution, are suitable for
GPU acceleration, so data participating in such operations should
also be prioritized. Data segments are not only skewed when it
comes to hotness but also the correlation they have with other
columns. Some operations can only be executed on GPU if all of the
relevant columns to the operation are also cached. If you take the

join operator as an example, both join keys are required to be cached.

This property calls for a caching policy with a cost model, which
considers data segments from multiple perspectives. The semantic-
aware fine-grained caching policy proposed by the authors extends
fine-grained LFU with weighted frequency counters, which reflect
the estimated speed-up gained from caching those segments and
also extends the cost estimation to semantically correlating seg-
ments.
The process of the semantic-aware weight update algorithm in Mor-
dred consists of calling a function for each segment to update the
segments’ weighted frequency counters. The amount by which the
frequency counter gets increased is calculated by a lightweight cost
estimation function which, estimates the runtime of a given query,
provided the segment in question is cached. This function is referred
to as estimateQueryRuntime() in the paper and is going to be ex-
plained further in the next chapter. The query runtime estimation
is then compared to the estimated runtime if the segments were not
cached and the frequency counter is then increased by the difference
between the uncached query runtime and the cached query runtime.
Finally, for every segment which is correlated to the segment in
question, the frequency counter is weighted by the same amount
divided by the cardinality of the correlated segments. The authors
define correlation for Mordred with three operators: selection, join,
and group-by aggregation. Although it is worth mentioning, that
this definition can still be extended in future developments.

2.3 Cost Model
This chapter briefly covers the idea and main principles behind the
estimateQueryRuntime() function. This is a cost model which is
present within the Crystal library and has been extended by the au-
thors to support more complex queries and PCIe. The model mainly
derives estimated execution time from theoretically required mem-
ory traffic. The accuracy has so far only been verified on simple
memory operations, but its precision has been shown to be adequate
for the purposes of a caching policy. Specific models done by the
authors include filtering cost, probing runtime for hash joins, data
transfer time for heterogeneous query execution over PCIe, mate-
rialization time to enable estimation of tuple reconstruction from
intermediate representation, and merging time of final results from
CPU and GPU. These models are all comprised of equations, which
take read and write memory bandwidth, the size of input segments,
cache line size, and interconnect bandwidth, to calculate estimates

2

Maximilian Schüle
Die Grafik sieht schon sehr der im Paper ähnlich, nur mit Mauszeiger.. raus, selber zeichnen (oder zumindest zitieren...)

Maximilian Schüle
?

Maximilian Schüle
relevant

Maximilian Schüle
den Satz verstehe man nicht... wahrscheinlich:
"one column might exceed the GPU cache"

Maximilian Schüle
aus Memory Geld herausschlagen, geht das?

utlize

Maximilian Schüle

Maximilian Schüle
naja, gibt m.W. keine GPU-Join, wo nicht beide Seiten im Device-Memory liegen, aber das würde ich halt nicht cached nennen. Außerdem materialisiert ein CPU-Join nur eine Seite, also nur einen Join-Key

Maximilian Schüle
, which

Maximilian Schüle
Quelle?

Fig. 2. Pseudocode for segment weight update function

of those sub-query element runtimes. The estimateQueryRuntime()
function can divide a complete query into these models and then
calculate the overall sum of the runtimes with negligible overhead.

3 HETEROGENEOUS QUERY EXECUTION
Data sets that are stored in segment-granularity introduce new
complexity to query executions. Some operators cannot be executed
in GPU due to the GPUmemory only storing a subset of the required
data for the execution. Existing systems have dealt with this problem
by executing the query on GPU and then transferring the uncached
data during query execution. This solution has two drawbacks, with
the first being unoptimized inter-device data transfer, bringing back
the PCIe bottleneck, and the second one being the underutilization of
the CPU, in which cores are left unused during GPU query execution.
Mordred approach to query execution focuses on parallelism of

both CPU and GPU while minimizing the required data transfer
overall, as well within the memory-bound devices as well as over
the interconnecting link. The goal is to capitalize on as much of the
available computational power as possible and to utilize the cached
data to the fullest.

3.1 Operator placement
Operator placement during query execution has been discussed
in previous works, while specifically Breß et al. [1] presented a
data-driven operator placement heuristic, where operators are exe-
cuted in the corresponding system which stores all of the required
data. If the CPU is storing the main data set, operators would only
get executed in GPU if all of the required columns are cached in
GPU, otherwise, the operator would get executed on the CPU. This
heuristic approach has been shown to outperform operator place-
ment on estimated costs and is more lightweight. Mordred adopts
data-driven operator placement at segment granularity, meaning
it can execute portions of the operator in the device containing all
required input segments. Mordred can split every operator between
CPU and GPU and place those operator partitions according to the
location of the input segments.

Fig. 3. Example of segment grouping

3.2 Segment-Level Query Plan
Mordred divides cached data sets into groups and executes them in
parallel. To determine grouping, Mordred applies the data-driven
operator placement heuristic to calculate the execution plan for
each segment and puts segments with the same execution plans
in a group. Operators are then fully or partially executed on those
segment groups which have suitable input data, while the rest is
executed in CPU. Figure 2 illustrates an example of a relation s which
is fully cached in GPU, while r is only partially cached. Furthermore,
there is a grouping of r which has group 1 storing two entire rows,
group 2 storing three rows without column c, and group 3 is not
cached in the GPU at all. Group 1 has basically a subset of the whole
relation r so any operation on r which can be executed on subsets of
relations, can be executed on r. Group 2 in turn could only perform
operations that don’t have c as a key column. Group 3 cannot be
executed in the GPU, so any sub-queries with these segments would
therefore be executed on the CPU.
Intermediary results from executing partial operations on segment
groups are then sent back to the CPU in a lightweight representation.
The CPU can then perform late materialization, reconstructing the
results and merging them together with the CPU’s dataset. The
authors also point out that merging is typically lightweight, but
with very large query results, merging could present a bottleneck.
A concrete solution to this issue requires a complete heterogeneous
query optimizer, which is deferred to future work by the authors.

4 EVALUATION
Mordred was evaluated by using Star Schema Benchmark(SSB),
which has been widely used in previous data analytics research.
The evaluation done by the authors is summarized in this chap-
ter by highlighting these three aspects: (1) semantic-aware fine-
grained caching policy and the comparative performance to tradi-
tional caching policies, (2) the performance increase gained from
segment-level query execution, (3) the overall performance of Mor-
dred as a data analytics engine compared to existing DBMS with
GPU incorporation.

4.1 Caching Policy Performance on Standard SSB
In this first experiment, the authors varied the GPU cache size
and evaluated the performance of different caching policies while
executing SSB queries. The tested cache sizes ranged from 400 MB
to 8.8 GB, with all columns which are accessed by queries fitting
into an 8.8 GB cache. The query access distribution is uniform. LFU

3

Maximilian Schüle
Quelle...

Maximilian Schüle
lieber manches weglassen, als nicht erklären...
Was bedeutet "Late materialization" hier?

Maximilian Schüle
Quelle

Fig. 4. Execution Time of Various Caching Policies with Different Cache
Size (Uniform distribution with 𝜃 = 0)

Fig. 5. Memory Traffic Breakdown for Each Caching Policy

caching policies have been shown to be faster than LRU, while the
most difference is achieved by having the policy operate on a fine-
grained level. Semantic-aware fine-grained caching outperformed
every caching policy. Especially at small levels of cache, semantic-
aware fine-grained caching heavily outperformed the other policies,
due to it being the ability to identify hot data with greater precision.
When investigating memory traffic in terms of traffic going through
CPU, GPU, and the interconnect which is PCIe in this case, the
interconnect traffic was low across all policies. The authors note
that this is due to the data-driven operator placement heuristic.
Semantic-aware caching had the highest GPU and interconnect
traffic, and the lowest CPU traffic out of all policies. This shows that
out of all other policies semantic-aware fine-grained caching utilized
the GPU the most and had therefore the greatest acceleration.

4.2 Influence of Varying Query Access Pattern on Caching
This experiment tests semantic-aware caching on data sets with
access skewness. The authors employed a Zipfian distribution with
a tunable skewness parameter 𝜃 , to simulate non-uniform hotness
in the test data sets. A larger 𝜃 indicates higher skewness. When
the cache size is small fine-grained caching is more sensitive to
skewness compared to column-granularity caching. The effective-
ness of these policies in capturing the hot portion improves with

Fig. 6. Execution Time of Various Caching Policies with Varying Query
Access Distribution

higher skew factors. Among the fine-grained policies, LFU generally
performs better than LRU, indicating that access frequency is more
effective than access timestamps for capturing skewness in query
distribution. For all 𝜃 values semantic-aware caching consistently
outperforms traditional caching policies. When the cache size is
large the performance of fine-grained caching policies is compara-
ble to semantic-aware caching. This is due to a bigger cache size
fitting all of the hot data. However, for smaller cache sizes, the per-
formance gap widens as only a subset of the hot portion can fit in. In
such cases, semantic-aware caching can accurately identify critical
segments that offer the greatest benefits from GPU acceleration.

4.3 Evaluating Segment-level Query Execution

Fig. 7. Impact of segment grouping in Mordred

This chapter elaborates on the performance benefits of segment
grouping for heterogeneous query execution. The conducted ex-
periments have shown segment grouping to reduce the amount of
launched kernels, as they are only launched in groups instead of for
every segment individually. Segments with the same execution plan
are launched with a single kernel call. Segment grouping can speed
up the query by up to 3x, with the gain increasing with cache size.
The authors also elaborate on merging and grouping as potential
bottlenecks, with Mordred spending more time on both the larger
the cache size gets. The percentage grows from 0.8% on merging and
grouping compared to 99.2% of the time for execution with a cache
of 0.8 GB, to 6.6% merging and grouping with 93.6% execution time
at a larger cache size like 6.4GB. What is worth noting is that larger
cache sizes have much faster execution. Following this analysis, the
authors did not conclude merging or grouping to be performance
bottlenecks.

4

Maximilian Schüle
muss erklärt werden oder weglassen

Maximilian Schüle
"Cache-Größen haben eine viel schneller Ausführung"

the larger the cache size , the faster the execution

Fig. 8. SSBQuery Performance of Different CPU/GPU DBMS with data fitting in GPU (top) and not fitting in GPU (bottom)

4.4 Comparison with Other CPU/GPU DBMS
To compare Mordred to contemporary systems, two sets of experi-
ments have been conducted. The first set tests the DBMS with data
that does fit in GOU, and the second set is done with data not fit-
ting in GPU. When data fit in GPU, Mordred was outperforming
every DBMS due to pre-existing optimization techniques which
were implemented by the authors and optimizations specifically
unique to Crystal, which enable more efficient use of GPU memory
bandwidth. When data did not fit in GPU, Mordred was consistently
outperforming the contemporary DBMS. According to the authors
Mordred outperformed similar systems because of semantic-aware
fine-grained caching, compared to contemporary systems, which
did employ fine-grained caching, but with simpler LFU/LRU poli-
cies. Other DBMS were outperformed because they did not utilize
fine-grained caching and therefore were affected by fragmentation.
Because the caches were fragmented, the CPU was transferring data
to the GPU more often resulting in suboptimal performance.

5 CONCLUSION
The main contributions of this paper to the field of CPU-GPU DBMS
are data placement and heterogeneous query execution. The authors
proposed semantic-aware fine-grained caching which is a caching
policy specifically tailored to prioritize data that is most relevant
for GPU acceleration. The other big contribution is the authors’
heterogeneous query executor which has a focus on parallel use
of CPU and GPU, while also leveraging the most out of the data
located across both devices and operating in fine granularity. The
author’s novel hybrid engine Mordred implements both the caching
policy and the query executor and was evaluated on Star Schema

Benchmark, where it has outperformed existing Systems by multi-
ple orders. The caching policy itself has outperformed traditional
caching policies by 3x.

REFERENCES
[1] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query processing in co-

processor-accelerated databases. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, page 1891–1906, New York, NY, USA, 2016.
Association for Computing Machinery.

[2] Sebastian Breß. The design and implementation of cogadb: A column-oriented
gpu-accelerated dbms. Datenbank-Spektrum, 14(3):199–209, 2014.

[3] Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. Orchestrating data place-
ment and query execution in heterogeneous cpu-gpu dbms. Proc. VLDB Endow.,
15(11):2491–2503, jul 2022.

5

Maximilian Schüle
normalerweise endet eine Conclusion mit Outlook...

	1 Introduction
	2 Data Placement
	2.1 Fine-Grained Caching
	2.2 Semantic-aware Fine-Grained Caching
	2.3 Cost Model

	3 HETEROGENEOUS QUERY EXECUTION
	3.1 Operator placement
	3.2 Segment-Level Query Plan

	4 Evaluation
	4.1 Caching Policy Performance on Standard SSB
	4.2 Influence of Varying Query Access Pattern on Caching
	4.3 Evaluating Segment-level Query Execution
	4.4 Comparison with Other CPU/GPU DBMS

	5 Conclusion
	References

