
On ’YeSQL: "You extend SQL" with rich and highly performant
user-defined functions in relational databases’

Telman Hüseynli
University of Bamberg

ABSTRACT
This paper presents the study conducted on "YeSQL: ’You extend
SQL’ with Rich and Highly Performant User-Defined Functions in
Relational Databases." The motivation behind this study stems from
the increasing demand for incorporating user-defined functions
(UDFs) into SQL to enhance its functionality and performance.

This paper outlines the proposal of an innovative approach that
enables the smooth integration of rich and highly performant UDFs
into SQL. This proposed approach is YeSQL: which extends SQL
functionalities with efficient user-defined functions (UDFs) in rela-
tional databases. The sources and materials utilised in this study
involve an analysis of existing approaches in the UDF implementa-
tion, an investigation of current alternatives by comparison, and
the design and application of the UDF extension strategy. The study
also addresses the limitations and difficulties encountered when
integrating UDFs with SQL in relational databases.

The outcomes of this research enable users to extend SQL with
custom functions and open up new possibilities for data process-
ing and analysis. The evaluation demonstrates YeSQL’s improved
performance compared to former software and states its capac-
ity to scale and efficiently manage complex tasks with large-scale
data. This study also provides the foundation for future studies and
innovations in UDF extensions.

1 INTRODUCTION
User-defined functions (UDFs) have gained considerable interest
due to their capacity to improve the efficiency of SQL queries.
This paper delves into the topic of "YeSQL: ’You extend SQL’ with
Rich and Highly Performant User-Defined Functions in Relational
Databases"[10]. Because all of the following material is based on
[10] and [16] citations are not supplied clearly after each text and fig-
ure. It sums up the theory, and the author’s innovative technique to
overcome the related challenges. The integration of UDFs with SQL
has considerable importance as information technologies improve.
Recently, the industry is focused on analysing big datasets and
obtaining useful information. This focus makes custom functions
in SQL crucial. Former studies in this area have contributed various
discoveries for integrating UDFs, nonetheless, these discoveries
were limited to achieving rich functionality and high performance.
Python is often the favoured programming language among UDF
developers due to its usability and expressiveness for UDF imple-
mentation. Most database systems work with Python UDFs; these
systems have several challenges to offering good usability, expres-
siveness, and efficiency. However MonetDB[2] and PostgreSQL[3]
are extensible with Python UDFs, they are not able to determine the
data type of the query results. They require a static return schema
and lack standard boosters like Just-In-Time (JIT) compilers.

YeSQL, as an SQL extension, provides more usable, portable, ex-
pressive functionalities and better performance as Python UDFs.

Both the server-based and embedded DBMSs can be extended with
YeSQL. The features such as scalar, aggregator, or table UDFs are
now fully integrated into the YeSQL extension. The users are able
to implement complex algorithms with YeSQL functions. The objec-
tive of this research is to integrate user-defined functions that have
featured functionalities and better efficiency versus relational SQL
queries. The authors present an innovation by considering the pre-
vious methodologies and the necessary delimitations. They aimed
to overcome the existing limitations and provide users with easy
implementation of UDFs into SQL, granting them efficient query
capabilities. Their study addresses the implications of incorporating
UDFs into SQL and techniques to resolve the limitations.

On the other hand, the authors don’t focus on the details of
DBMS or the specific optimization techniques for UDF execution.
Instead, they aim to extend the SQL framework in a functional
and efficient way. This proposal provides the technical overview of
extending SQLwith UDFs, highlights the significance in the relevant
field, and presents the research aim and the author’s solution. The
next paragraphs discuss the related work, the methods, and the
evaluation of the proposed technique.

2 FORMER APPROACHES
Many studies have explored the implementation of UDFs by dis-
cussing the limitations and problems related to their usability. The
existing research approaches have supplied a foundation of study
for improvements in SQL UDF support. However, alternative data-
base systems were needed to overcome the incompatibility be-
tween the evaluation of UDFs and relational DBMSs. The authors
demonstrate that the performance of YeSQL is superior compared
to Python UDFs optimised with the current compilers or source-to-
source compiling techniques.

The recent data management techniques focus on implementing
reusable functionalities under user-defined operators. Many data
management platforms support Python UDFs. Additionally, there
are studies to improve the performance of Python UDFs by speeding
up the compile process. GraalPython[1] enables the Just-In-Time
compilation by producing bytecode files for Java Virtual Machine.
Its interpreter uses Truffle language. Numba[12] presumes data
types and generates array-structured data to produce efficient ma-
chine code. It also enables the Just-In-Time compilation. Pyston[13]
uses low-level components to achieve a monitorable JIT Python
compiler. It is similar to the technique of implementation of Python
in C. However, these compilers address particular challenges in
improving the performance of UDF integration, they have other
drawbacks such as compatibility issues, being restricted to a few
libraries, or providing primarily experimental analysis. Moreover,
Cython [7] enables the users to develop their program in Python
and it compiles the program into C. Its performance is improved due
to low-level language advantages. Static typing requirements and



compatibility restrict it to reach satisfactory efficiency. Nuitka[4]
also translates Python code to the low-level language C++. Since the
compilation process consumes a lot of time, it is disadvantageous
to implement UDFs with many calculations.

There are several studies to advance data processing systems
by resolving the drawbacks of Python UDFs extension. Tuplex[15]
is a compiler, particularly for Python that enabled Just-in-Time
compilation. However, its functionality is not sufficient for current
industrial requirements. The study by Technical University Ilmenau
provides valuable insights related to the challenges of Python UDF
extensions [11]. It analyses some of the aforementioned compilers
by comparing and studying the significance of vectorization, com-
pilation, and parallelisation in speeding up the run time of Python
UDFs. Another proposal studied the performance of executing SQL
translation of whole Python programs [8]. It is observed that SQL
queries are more optimised when the parallel execution of data
processing is dynamically divided into tuples. However, the read-
ability of SQL codes was difficult for developers. Various research
studies focus on the conversion of UDFs to SQL queries and anal-
ysed obstacles in performance improvement. These studies show
the overhead of UDF execution is reduced when it is optimised by
SQL engines. On the other hand, some studies propose UDF fusion
techniques to reduce execution overhead. UDF fusion optimises
execution by fusing operations of multiple functions into one call.
Current works with this technique are compatible with only a few
libraries. YeSQL study extends these researches and enables UDF
fusion with all Python libraries.

3 METHODOLOGY
3.1 Design and Integration
The server-based DBMS and the compact embedded DBMS are fre-
quently utilised with Python UDFs.Figure 1 illustrates architecture’s
essential parts on the basis of both DBMS concepts. YeSQL can be
added to server-based as an innovative UDF extension. There are
two user roles in the extension design: application developers and
UDF developers. Application developers implement queries for the
front-end functionalities of the program. UDF developers design
custom query functions documented in the database management
system. The YeSQL functionalities are translated into SQL queries
to be executed. This task is operated by the layer called textitthe
Connection and Function Manager (CFM). The UDF developers are
able to use flexible SQL syntax and let the execution run with SQL
optimizers. The architecture of the CFM layer consists of the parser,
the code producer, and the function manager. UDFs are registered
in the database management system by the function manager. UDFs
written in Python are recorded in the designated UDF folder of the
extension. They are classified into scalar, aggregate, and table func-
tions. In the server-based DBMS, the function manager assumes
the responsibility of submitting user-defined functions (UDFs) to
the DBMS. The CFM parser verifies the accuracy of the syntax
of UDFs and converts them into SQL. The CFM code generator
provides platform-specific operations for UDFs with dynamically
typed data. It generates the code according to particular data types
and functionalities and enables seamless integration of UDFs.

Figure 1: Architecture Alternatives for YeSQL [10]

In the embedded DBMSs, YeSQL extension is added by utilis-
ing a programming interface. The CFM operates UDFs as callback
routines, promoting easy communication between the executed
queries and Python UDFs. In this instance, the functioning of the
CFM layer and the integrated DBMS takes place within a common
runtime system. Python CFFI[14] wrapper enables uncomplicated
data interchange between the SQL queries and Python UDFs.The
SQLite API provides native support for extended SQL functional-
ity through C UDFs.The Python CFFI wrapper serves as a bridge
between Python and the database engine, facilitating the execu-
tion of UDFs. The API provides integration of extension through C
UDFs, enhancing the capabilities of YeSQL in an embedded DBMS
environment.

YeSQL is a DBMS module that provides high compatibility with
widely used operating systems. In the server-based DBMSs, YeSQL
improves the performance of the processing framework. In this
case, MonetDB uses vectorized execution. A single instruction with
multiple elements efficiently transfers big data over the low system
API to execute in parallel. In the event of an embedded database,
YeSQL makes use of the API’s internal streaming architecture to
process the data efficiently. The API enables YeSQL to retrieve and
operate on data concurrently in co-routines using Python gener-
ators. Moreover, YeSQL’s design supports UDFs implemented in
other programming languages that have function interfaces for not
native instructions and a tracing JIT compilation.

UDFs in YeSQL can yield multiple output formats by dynam-
ically specifying data types based on the input operations. The
dynamic type declaration supports polymorphic functions. In em-
bedded DBMSs, polymorphism is supported using a virtual table
interface. In server-based DBMSs, the output format is not specified
beforehand and is temporarily stored in memory by Python Loader.

3.2 Functionality
In this paragraph, the core functionalities of YeSQL are stated briefly.
The primary purpose of YeSQL design is to enable developers to
use SQL methods easily and efficiently. YeSQL adds new syntax
features and functionalities to standard SQL services. The Python
UDFs are employable by current common Python frameworks. The
data processing in YeSQL leaves filters and joins to be executed
by database management systems as convenient. As mentioned
earlier, it is able to yield flexible output types by regulating the data
according to system requirements.

2



YeSQL presents particular syntax components to advance the
adaptability and efficiency of UDFs. For example, YeSQL offers
additional options for common SQL aggregate functions. It also
provides polymorphic table methods which produce output that
is identical to typical tables during query execution. It has scalar
functions that perform tasks per row and can produce multiple
element structures per row-specified output schema (textwindow).
With such functions, complicated data processing tasks can be
performed on a per-row basis and the result can be produced in
compound structures.

YeSQL offers UDF fusion. It creates a fused function to invoke
multiple UDFs with one call. JIT compilation enables optimisation
of the fusion by analysing the data dependencies of UDFs during
runtime. The corresponding example is shown in the Figure 1 below.

Figure 2: UDF Fusion Example [10]

Another important feature of YeSQL is syntax inversion. YeSQL’s
design enables users to easily implement chained UDFswith simpler
syntax and adaptable parameters. CFM table translates compact
instruction syntax to standard subqueries. The corresponding ex-
ample is shown in the Figure 1 below.

Figure 3: Syntax Inversion Example [10]

In summary, YeSQL offers rich support for polymorphic Python
UDFs, UDF fusion for parallel data processing, and syntax inversion
for the convenient composition of UDFs, enhancing the flexibility
and expressiveness of data processing tasks.

3.3 Improved Performance
There are two primary costly operations in data flow between
Python and SQL: a significant amount of function calls and transi-
tion of data structure. Both operations create considerable overhead.
The authors aimed to overcome these in YeSQL’s designwith several
approaches such as vectorized execution, tracing JIT compilation,
parallelism, UDF fusion, and stateful UDF execution. The authors
show that the order of these approaches is an important factor in

performance rate when they are applied together. Particular align-
ment according to system requirements can advance the efficiency
of query executions. The study states that such a combination can
reach a 33-fold improvement in comparison with isolated Python
interpreters. The particular combination is 10 times faster than
execution with embedded vectorization.

Tracing Just-In-Time: JIT compilation means compiling the code
into the low-level language during execution. JIT compilation can be
achieved with method-based and tracing techniques. Method-based
JIT compiles the functions when they are invoked. On the other
hand, Tracing JIT focuses on instruction sequences or loops that are
often executed. YeSQL architecture supports tracing JIT compilation
and optimises repeated calculations. The authors’ solution made
use of PyPy[9], a dynamic Python compiler. PyPy’s tracing compiler
determines feasible execution for big instruction sets that are called
multiple times during execution.

PyPy has many noteworthy advantages for easy and efficient
UDF execution. (a) It is compatible with the standard Python library
and commonly used frameworks. It is regularly updated to adapt
more libraries. (b) It does not require a static schema for outputs
and optimises the execution of the program during runtime. (c)
It successfully manages thrown exceptions by YeSQL UDFs. (d) It
enables effective translation of the code to low-level language by
using a foreign function interface. Moreover, it is able to utilise
CPython for the functionalities that PyPy is not compatible with.
Easy communication with DBMS: YeSQL has a smooth interface with
Database Management Systems (DBMS). The Foreign Function In-
terface encapsulates UDFs [14]. The CFFI acquires data during the
runtime by means of pointers to cdata objects, thereby avoiding any
redundancy of data. UDF Fusion: The study states that implement-
ing simple and reusable UDFs can enhance operational efficiency,
particularly in the context of text mining. The processing speed is
accelerated by UDF fusion through the reduction of instruction call
overhead. When it is possible to combine the logic of two distinct
functions, a merged UDF is created to optimise pipeline execution
by leveraging a C Foreign Function Interface (CFFI) wrapper. Paral-
lelism: Parallelized execution leverages the speed and scalability of
computer programs. However, concurrency is not possible within
Python interpreter, since the Global Interpreter Lock (GIL) restricts
the acceleration of runtime. The interpreter lock lets one thread run
instructions. The instantiation of Python objects also invokes GIL,
thereby resulting in more overhead. PyPy is faster in this matter. It
uses GIL more efficiently. The C Foreign Function Interface (CFFI)
accelerates execution by performing a gradual and unsynchronized
release when unlocking the interpreter. Stateful UDF: The YeSQL
provides stateful UDFs while the majority of DBMSs are only com-
patible with stateless Python UDFs. The stateful UDFs are able
to hold static values as an internal state that is available between
invocations. The stateful UDFs offer potential opportunities for the
advancement of query algorithms. In the embedded DBMSs, UDFs
are usually stateful by the standard. In server-based DBMSs, states
can be accessed across other rows of inputs and UDFs.

4 COMPARATIVE ANALYSIS
The efficiency and functionalities of YeSQL were assessed via dis-
tinct tests with distinct data sets and environments. The efficacy of

3



YeSQL’s workflow was evaluated through the Zillow and Flights
pipelines, alongside the OpenAIRE[5] text-mining pipeline. Regard-
ing pipeline performance, YeSQL utilising tracing JIT on MonetDB
demonstrated better outcomes compared to other approaches, it is
faster with concurrent execution enabled.

Figure 4: The impact of incorporating JIT into UDF execution
[10]

This study investigated comparatively the YeSQL extension and
standard SQL functionalities. The authors prove that YeSQL has
segments with improved optimization owing to the UDF fusion,
which resulted in fewer execution durations. The conducted exper-
iments have additionally underscored the benefits of incorporat-
ing seamless integration and the influence of data adjustments on
performance in general. The research was primarily concentrated
on assessing tracing JIT compilation. The experiments show that
YeSQL utilising PyPy (as the tracing JIT) and CFFI (for C conver-
sion) results in a threefold acceleration versus CPython. The study
conducted a comparative analysis of YeSQL and alternative DBMSs
that support Python UDFs. The results indicated that the YeSQL
extension has better performance when compared to alternatives
such as PostgreSQL, Spark, dbX, Pandas, Tuplex, and NumPy. The
corresponding experiment results are shown in the Figure 4 below.

Furthermore, the conducted experiments investigated the impact
of stateful User-Defined Functions (UDFs). The Stateful UDFs use
segments that compiled former invocations and recorded them.
This technique leads to fewer execution durations. To evaluate the
performance of UDF fusion, the authors measured the performance
of fused execution of multiple UDFs by comparing them with stan-
dard execution. The corresponding experiment results are shown
in the Figure 5 below. This research involved profiling the space
consumption of YeSQL execution when combined with PyPy, Tu-
plex, and PySpark[6]. The analysis revealed that YeSQL utilises less
memory in comparison to the alternative solutions such as PySpark,
and Tuplex.

Figure 5: Impact of UDF Fusion [10]

To conclude, the experiments proved the benefits of different
optimization and integration techniques, and the advantages of
utilising stateful UDFs and tracing JIT to enhance execution times
and scalability.

5 CONCLUSION
In conclusion, the study presented an innovative proposal for an
extension of SQL that boasts extensive UDF support with both
server-based and embedded DBMSs.The syntax is to optimize the
productivity of UDF developers by providing a featured relational
framework for constructing multilayered algorithms. YeSQL sur-
passed comparable implementations in terms of efficiency by utiliz-
ing innovative techniques such as tracing JIT compilation, paral-
lelism, UDF fusion, stateful UDFs, and seamless database integra-
tion. The implemented solution has been effectively deployed in
the real-world environment and by data engineers from several
fields and companies such as OpenAIRE. Future objectives include
providing assistance for federated and heterogeneous systems, as
well as enhancing UDF fusion and query rewriting optimization.

REFERENCES
[1] 2022. GraalVM. https://www.graalvm.org/ Last accessed 13 Juni 2023.
[2] 2022. MonetDB. https://www.monetdb.org/ Last accessed 13 Juni 2023.
[3] 2022. PostgreSQL. https://www.postgresql.org/ Last accessed 13 Juni 2023.
[4] 2023. Nuitka the Python Compiler. https://nuitka.net/ Last accessed 13 Juni

2023.
[5] 2023. OpenAIRE. https://www.openaire.eu/ Last accessed 22 Juni 2023.
[6] 2023. PySpark. https://spark.apache.org/docs/latest/api/python/ Last accessed

22 Juni 2023.
[7] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcín, Dag Sverre Selje-

botn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. Comput. Sci. Eng.
13, 2 (2011), 31–39. https://doi.org/10.1109/MCSE.2010.118

[8] Mark Blacher, Joachim Giesen, Sören Laue, Julien Klaus, and Viktor Leis. 2022.
Machine Learning, Linear Algebra, and More: Is SQL All You Need?. In 12th
Conference on Innovative Data Systems Research, CIDR 2022, Chaminade, CA, USA,
January 9-12, 2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/
p17-blacher.pdf

[9] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the 4th
workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, ICOOOLPS 2009, Genova, Italy, July 6, 2009,
Ian Rogers (Ed.). ACM, 18–25. https://doi.org/10.1145/1565824.1565827

[10] Yannis E. Foufoulas, Alkis Simitsis, Eleftherios Stamatogiannakis, and Yannis E.
Ioannidis. 2022. YeSQL: "You extend SQL" with Rich and Highly Performant
User-Defined Functions in Relational Databases. Proc. VLDB Endow. 15, 10 (2022),
2270–2283. https://www.vldb.org/pvldb/vol15/p2270-foufoulas.pdf

[11] Steffen Kläbe, Robert DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler. 2022.
Accelerating Python UDFs in Vectorized Query Execution. In 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA, USA, January 9-12,
2022. www.cidrdb.org. https://www.cidrdb.org/cidr2022/papers/p33-klaebe.pdf

[12] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based
Python JIT compiler. In Proceedings of the SecondWorkshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, Hal
Finkel (Ed.). ACM, 7:1–7:6. https://doi.org/10.1145/2833157.2833162

[13] Kevin Modzelewski. 2014. Introducing Pyston: an upcoming, JIT-based Python
implementation. https://nuitka.net/ Last accessed 13 Juni 2023.

[14] Armin Rigo and Maciej Fijalkowski. 2021. CFFI. https://cffi.readthedocs.io/en/
latest/# Last accessed 13 Juni 2023.

[15] Leonhard F. Spiegelberg, Rahul Yesantharao, Malte Schwarzkopf, and Tim Kraska.
2021. Tuplex: Data Science in Python at Native Code Speed. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.).
ACM, 1718–1731. https://doi.org/10.1145/3448016.3457244

[16] Lefteris Stamatogiannakis Yannis Foufoulas, Alkis Simitsis and Yannis Ioannidis.
2022. YeSQL specifications. https://athenarc.github.io/YeSQL/index.html Last
accessed 13 Juni 2023.

4

https://www.graalvm.org/
https://www.monetdb.org/
https://www.postgresql.org/
https://nuitka.net/
https://www.openaire.eu/
https://spark.apache.org/docs/latest/api/python/
https://doi.org/10.1109/MCSE.2010.118
https://www.cidrdb.org/cidr2022/papers/p17-blacher.pdf
https://www.cidrdb.org/cidr2022/papers/p17-blacher.pdf
https://doi.org/10.1145/1565824.1565827
https://www.vldb.org/pvldb/vol15/p2270-foufoulas.pdf
https://www.cidrdb.org/cidr2022/papers/p33-klaebe.pdf
https://doi.org/10.1145/2833157.2833162
https://nuitka.net/
https://cffi.readthedocs.io/en/latest/#
https://cffi.readthedocs.io/en/latest/#
https://doi.org/10.1145/3448016.3457244
https://athenarc.github.io/YeSQL/index.html

	Abstract
	1 Introduction
	2 FORMER APPROACHES
	3 Methodology
	3.1 Design and Integration
	3.2 Functionality
	3.3 Improved Performance

	4 Comparative Analysis
	5 Conclusion
	References

