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ABSTRACT
Machine learning, scientific computation and data analysis heavily
rely on efficient processing of high-dimensional data. Models like
Chat-CPT triggered a market fever for AI. This resulted in an unpar-
alleled investment into domain specialized hardware and software
systems. Tensor-based frameworks, like PyTorch, hide the low-level
complexity, empowering scientists to utilize hardware resources
most efficiently. This paper explores how database management
systems (DBMS) can benefit from these innovations.
Therefore the authors of [2] designed, implemented and evaluated
a Tensor Query Processor (TQP). TQP transforms SQL queries
into tensor programs and executing them with tensor computation
runtime (TCR). By implementing novel algorithms for relational
operators on tensor routines, TQP is portable across different envi-
ronments and able to complete the full TPC-H benchmark. Experi-
ments show up to 10x faster query execution by TQP compared to
specialized systems.

1 INTRODUCTION
In recent years data volumes and demand for analytics have grown
exponential. To keep up with this development vendors of data-
base management systems (DBMS) have delivered continuously
performance improvements by optimizing algorithms and influenc-
ing hardware development. However the single core performance
improvements on CPU have slowed down. To compensate this
slowdown, DBMS builders are searching for alternative ways to
improve performance. A promising solution is to use specialized
hardware e.g. FPGAs, neural-network accelerators or GPUs. The
usage of specialized components presents a challenge in supporting
the capabilities of these diverse hardware components.

Models like Chat-CPT triggered a market fever for AI, which
has driven unparalleled investments into specialized hardware and
software, especially into GPUs and open-source frameworks. These
developments have made hardware accelerators accessible to non-
specialists, enabling widespread adoption.

The authors of [2] had the idea to build a query processor up
on the innovations from the machine learning domain. They intro-
duced and developed a new query processor called the Tensor Query
Processor (TQP). TQP builds up on tensor computation runtimes
(TCRs) such as PyTorch, TVM, and ONNX to execute SQL queries
as tensor programs. The perfect TQP would be performant (G1),
portable (G2) across a wide range of specialized hardware and could
be developed and adopted with parsimonious engineering effort (G3).

Subject of this paper is the publication "Query Processing on Ten-
sor Computation Runtimes" [2]. Since all of the following work is
based on [2], citations are not explicitly given after each paragraph.

2 BACKGROUND
This Section summarizes system support for tensor computation
and introduces tensor operations used throughout the paper.

2.1 Tensor Computation Runtimes (TCRs)
In recent years there had been an increase in the popularity of
machine learning (ML) models, especially of deep neural networks.
While in the early days of ML, scientists implemented models man-
ually in C++, nowadays they can take advantage of several open-
soucre ML frameworks [2]. The most commonly used frameworks
are PyTorch and TensorFlow.
The architecture of these most common ML frameworks consists of
two main components. A high-level API where data is commonly
represented by multi-dimensional arrays —tensors— and these ten-
sors are manipulated through the use of tensor operators. The
low-level component enables compatibility to different hardware
such as GPU, CPU and ASICs by using a compiler/dispatcher and a
corresponding runtime.
In modern ML frameworks tensor computations can run either in
interpreted or compiled (graph based) mode. In interpreted mode
operators are executed on encounter while in graph based mode
operators are synthesized into a graph which is compiled and exe-
cuted as a whole [3]. These modes enable code optimizations such
as sub-expression elimination, operator fusion, code generation,
and removing Python dependency.
In this paper ML frameworks, compilers and runtimes are referred
to as tensor computation runtimes (TCRs).

2.2 Tensor Operations
Common TCR provide multiple operations to manipulate tensors.
This Section provides a brief outline.

Create Tensors: Most frameworks offer multiple methods to
create tensors, e.g with custom values, filling a tensor with
specific values (fill, zeros, ones, arange) or converting
data from other library’s (from_pandas, from _numpy).

Access Data: One or many data elements in a tensor can be
accessed via indexing or slicing operators using the square
bracket notation, indexing (index_select), a range (narrow)
or a mask (masked_select).

Reorganize tensors: Tensors can be reorganized either by
changing the shape of a tensor (e.g reshape, view), rearrang-
ing the elements in the tensor using an index (e.g gather,

scatter) or sorting the data elements (sort).
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Compare tensors: Tensors can be compared with the help
of operators like isnan, lt, gt, eq, le and ge.

Arithmetic operations: These operations include all tradi-
tional calculations on numbers (add, sub, mul, div) includ-
ing logical operators, e.g negative, logical_or, logical_and

and shift operations.
Join: Join operators stack or concat multiple tensors.
Reduction of tensors: These operators calculate simple ag-

gregations (min, max, sum, avg, mean), aggregations over
groups (scatter_min, scatter_max, scatter_sum, scatter_avg,

scatter_mean), nonezeros (via indexing), uniques and logi-
cal reductions (any, all).

Table 1: Execution times of filter over 6M elements in inter-
preted (Torch) and compiled (TorchScript) modes. Source: [2]

Implementation CPU GPU
Torch TorchScript Torch TorchScript

Bitmap 36.6 ms 36.6 ms 2.9 ms 2.9 ms
Python 23 s 22.7 s 200.3 s 200 s

3 QUERY PROCESSING ON TCRS
This Section summarizes the challenges and our design principles
for developing the tensor query processor (TQP).

3.1 Relational Operators as Tensor Programs
The foundation of a tensor program is data representation as ten-
sors. Tensors are arrays of arbitrary dimensions with the same
datatype.

Neural networks are implemented as a combination of tensor
operations in a host language (e.g Python). However DBMS requests
are phrased as queries in a standalone language (e.g DuckDB-SQL).
Let us create a simple filter condition over the column e_quantity
of the table example. Each value of the column e_quantity should
be larger then 12.

SELECT ∗ FROM example
WHERE qu an t i t y > 1 2 ;

There are several ways to implement this filter:
Python control flow The filter could be implemented by

Python control flow via looping over the column values.
Bitmap An alternative would be to represent the individual

columns as a 1d tensor and filter it with the less-than tensor
operator. This operator returns a boolean mask (line 1 of
Listing 3.1) which is then used to filter the column (line 2
of Listing 3.1).

1 mask = t o r ch . l t ( e _quan t i t y , 1 2 )
2 ou tpu t = t o r ch . ma sked_ s e l e c t ( e _quan t i t y , mask )

Listing 1: Implementation of a filter using bitmaps (Adapted
from [2])
Table 1 shows the performance of both implementations. The im-
plementation based on Python control flow is slower both on CPU
and GPU compared to the tensor implementation. Therefore one

of the design choices should be to avoid data-dependent code in
Python.

3.2 Challenges
Implementing relational operators as tensor programs requires
overcoming several challenges [2].

C1 - Expressivity: SQL-Queries can contain complex filters,
sub-queries, group-by, aggregates, joins, etc. It is not clear
if the available operators in TCR are sufficient to support
these complex relational operators.

C2 - Performance: Even if a relational operators can be im-
plemented using tensor operators, it does not guarantee
good performance.

C3 - Data Representation: Relational tables must be trans-
formed into tensor representations. Other papers have ex-
plored this challenge [2]. The transformation cost can not
be neglected.

C4 - Extensibility: A monolithic query processor might not
work for all situations, therefore the TQP´s design must be
flexible to meet different requirements.

3.3 Design Choices
To overcome the challenges of Section 3.2 certain design choices
have to be made.

DC1: Avoid implementing data-dependent control flow in a
host language (e.g Python) is essential to implement the
best possible performing tensor operators (check Table 1).
This design choice addresses C2 and allows to achieve G1
[2].

DC2: Query relevant relational data must be transformed into
the tensor format (C3). To achieve this, TQP represents
every table column as a tensor [2].

DC3: To achieve portability (G2) and parsimonious engineer-
ing effort (G3) it is important to use existing TCRs as they
are, rather then to extend them. If we extend a TCR with
new features and operators, wewould have to support those
extensions on all kinds of hardware. This design choice ad-
dresses C1 [2].

DC4: Tensor-based column format for input tabular data. It´s
essential for the TQP to easily integrate with ML and rela-
tional frameworks. This design choice addresses C4 [2].

4 TENSOR QUERY PROCESSOR (TQP)
TQP creates tensor programs by compiling ML models and rela-
tional operators using a unified infrastructure adapted from Hum-
mingbird [1]. Therefore the TQP´s workflow has two phases, (1)
transforming a query into a tensor program and (2) executing the
compiled program generating the result query.

4.1 Data Representation
TQP represents relational tabular data in a column format, storing
the data of a column as a 𝑛 ×𝑚 tensor (DC2, DC4). 𝑛 is the number
of stored entities while𝑚 depends on the column datatype.
For example, numerical column are represented as 𝑛 × 1 tensors.
Figure 1 visualizes this example with demo data. A column of type
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Figure 1: Representation of relational data as tensors by
converting each column into a tensor.

’String’ would be converted into a𝑛×𝑚 tensor by parsing each char-
acter of a column entry into an integer which is stored individually.
In this case𝑚 is the maximum length of any string [2]. The ’City’
column of the example data in Figure 1 is converted into a 2× 7 ten-
sor, because the table contains two entries and the max. number of
characters per Entry of this column is seven. The data entry ’Koeln’
is parsed into this integer sequence [75,111,101,108,110]. Since
the length of this sequence is less than the max. length of any data
entry of the ’City’ column, the sequence is extended with zeros
accordingly.

4.2 Query Compilation

Figure 2: The compilation phase of a TQP. Source: [2]

TQP´s compilation phase consist of four main layers visualized in
Figure 2.

Parsing Layer This layer converts input queries into an in-
termediate representation (IR) graph in two steps: At first
the input SQL query is parsed, optimized and exposed as a
frontend-specific physical plan. The second step translates
the physical plan into an IR graph utilizing a frontend-
specific parser.
The Intermediate Representation (IR) describes the SQL
statement physical plan. It is a graph-based data structure
consisting of nodes (𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠) and edges. Operators con-
tain a list of input and output variables, the operator type
and a reference to the operator instance. Edges represent
data in tensor format flowing from one operator output
variable to another operator input variable [2].

Canonicalization and Optimization Layer This layer is
similar to a classical rule-based optimizer. Rules are applied
to optimize the IR graph in two stages [2]. The first stage

eliminates frontend-system peculiarities in the IR graph,
e.g removing operators with no inputs. The second stage
rewrites the IR graph according to optimization rules.

Planning Layer This layer transforms the optimized IR
graph into an operator plan. For each IR node the cor-
responding physical operator, which is implemented in
PyTorch tensor programs, is instantiated.

Execution Layer This layer wraps the operator plan around
a PyTorch executor object. This object calls the tensor pro-
grams according their order, combines the individual pro-
grams into a successive one andmanages garbage collection.
This layer provides options to compile the generated execu-
tor program into different target formats. Note that not all
target formats support all operators and therefore queries
[2].

4.3 Execution
While execution, the previously generated tensor programmanages
(1) conversion of the input data, (2) data movement to/from device
memory and (3) scheduling of operators. The program returns the
query result in tensor, NumPy or Pandas format.

5 OPERATOR IMPLEMENTATION IN TQP
The Planning Layer translates the IR graph into tensor programs. At
the current state TQP supports following relational operators: selec-
tion, subqueries, sort, projection, group-by aggregation, non-equi,
natural join (hash-based and sort-based), leftouter, left-semi, and
left-anti joins. TQP also supports expressions including arithmetic
operations, comparisons, data aggregations (sum, count, min, max,

avg) and data aggregation functions (in, like and case) [2]. All
these functionalities enable TQP to process all 22 queries of the
TPC-H benchmark (C1) successfully using already existing tensor
operators (DC3).
The following Subsections describe the implementation of relational
expressions and sort-based join.

5.1 Expressions
Relational expressions consist of one or more values, operators
and SQL functions. They are used in filter conditions, projection
operators etc. For each expression TQP generates a sequence of
tensor operations in two stages: (1) for each value the corresponding
tensor is generated and the expression operators are mapped to
the respective tensor operator, e.g. + to torch.add. (2) The operators
and corresponding values in tensor format are ordered into a sequence
according the relational expression [2]. TQP converts the expression

o _ o r d e r s t a t u s = ' d '
AND o_o rd e r d a t e > l_commi tda t e

into this tensor operator sequence:
t o r ch . l o g i c a l _ a n d (

t o r ch . eq ( o _ o r d e r s t a t u s , [ 6 8 ] ) ,
t o r ch . g t ( l _ r e c e i p t d a t e , l _ commi tda t e ) )

[68] is a tensor containing the ’d’ encoded in ASCII.

5.2 Sort-Based Join
Columnar databases use a materialization strategy for joins. TQP adopts this
strategy while only using tensor operations. Figure 3 shows the calculation
process.
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Figure 3: Example of a sort-based Join. Source: [2]

Inputs are only the columns that compose the join predicate. The first step is
to sort both inputs individually (1), which are used to create two histograms
(2). These histograms are multiplied element wise (3). The resulting tensor
describes the join size for each unique join key, Which is used to create a
prefix tensor by computing the prefix sum up on all previous elements (6).
The last element of the prefix tensor contains the total bucket size (join
output, total number of entries). An index tensor with same size as the
bucket is created (6). TQP finds the matching join keys by iterating over the
index tensor and performing binary search on the prefix tensor (7). This
iteration implementation is parallelized. The output rows of the join are
generated by calculating the right and left output indexes for each row with
formula 1 (8).

𝑙𝑒 𝑓 𝑡𝑂𝑢𝑡𝐼𝑑𝑥 = 𝑐𝑢𝑚𝐿𝑒𝑓 𝑡𝐻𝑖𝑠𝑡 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒

𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑠𝑡

𝑟𝑖𝑔ℎ𝑡𝑂𝑢𝑡𝐼𝑑𝑥 = 𝑐𝑢𝑚𝑅𝑖𝑔ℎ𝑡𝐻𝑖𝑠𝑡 + (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐵𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 )% 𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑠𝑡

(1)
Figure 3 visualizes a sort-based join example with demo data. It contains all
eight steps to calculate the join output.
Components of Formula 1 are named using the same scheme as in Figure 3.

6 EVALUATION
The objective of the evaluation is to verify if TQP meets all previous defined
goals (performant (G1), portable (G2) and parsimonious engineering effort
(G3)).

6.1 Performance (G1)
TQPs performance is evaluated using the TPC-H benchmark. This
benchmark contains 22 queries. The system is a state of the art Azure NC6
v2 machine with an Intel Xeon CPU (E5-2690 v4, 6 virtual cores), 112 GB
of Ram and an NVIDIA P100. The operating system is Ubuntu 18.04 with
PyTorch 1.11, CUDA 10.2 and OmnisciDB 5.9.0.

For the performance evaluation the benchmark queries were executed both
on CPU and GPU. TQP was evaluated in two modes, interpreted by Pytorch
and compiled using TorchScript. Table 2 contains the results. Utilizing a
single CPU core, TQPs query execution time is in most cases slower than the
state of the art baseline DuckDB. Only for a few cases TQPs performance
is comparable with the baseline. On a GPU, TQPs query execution time is
usually higher than the baseline Omnisci. Up on comparison of both TQP
modes, the compiled version is faster for every completed query than the
interpreted one.
In general TQP can deliver up to 10× performance improvements on a GPU
over state of the art query executors.

Table 2: Query execution time on the TPC-H benchmark in
seconds. Benchmark was executed on CPU and GPU. Perfor-
mance measurements of TQP in PyTorch interpreted (TQP)
and compiled (TQPJ) mode versus a state of the art baseline
system. The TQPJ queries where compiled using TorchScript.
On CPU the baseline is DuckDB, while on GPU TQP was
compared against Omnisci. Best performance is highlighted.
Source: [2]

Query CPU (1 core) GPU
DuckDB TQP TQPJ Omnisci TQP TQPJ

Q1 0.664 7.535 7.301 0.966 0.027 0.026
Q2 0.101 0.629 0.577 9.197 0.039 0.028
Q3 0.273 1.154 1.165 0.096 0.027 0.024
Q4 0.216 1.050 1.087 N/A 0.020 0.018
Q5 0.302 2.459 2.963 3.699 0.048 0.042
Q6 0.156 0.143 0.073 2.466 0.003 0.002
Q7 0.430 2.236 1.931 2.406 0.042 0.035
Q8 0.278 2.460 2.503 1.316 0.050 0.039
Q9 2.533 4.518 4.616 1.975 0.105 0.092
Q10 0.430 1.168 1.184 24.25 0.057 0.052
Q11 0.034 0.476 0.324 0.296 0.016 0.009
Q12 0.309 0.976 0.966 0.309 0.976 0.966
Q13 0.181 9.379 9.197 0.181 9.379 9.197
Q14 0.171 0.124 0.096 0.171 0.124 0.096
Q15 0.291 0.133 N/A 0.291 0.133 N/A
Q16 0.093 3.664 3.699 0.093 3.664 3.699
Q17 0.381 2.303 2.466 0.381 2.303 2.466
Q18 0.765 2.245 2.406 0.765 2.245 2.406
Q19 0.419 1.577 1.316 0.419 1.577 1.316
Q20 0.276 2.032 1.975 0.276 2.032 1.975
Q21 0.932 25.49 24.25 0.932 25.49 24.25
Q22 0.069 0.315 0.296 0.069 0.315 0.296

6.2 Portable (G2)
The key feature of portable software is the possibility to run it in different
environments. TQP supports various input and output formats. Input for-
mats are converted by the parsing layer, which can be adapted to support
other formats. TQP outputs tensor programs for various TCRs without the
need to modify them. Due to this features TQP is a portable software.

6.3 Parsimonious engineering effort (G3)
TQP uses TCRs with the already available operators. Therefore parsimo-
nious engineering effort was necessary to implement it. Due to the modular
dosing of TQP, future extensions can be implemented with minimal engi-
neering effort.

7 CONCLUSION
The authors of [2] introduced TQP as the pioneering system capable of exe-
cuting relational queries on TCRs. TQP harnesses the advancements in TCRs
and effectively operates on various hardware devices supported by these
runtimes. Through extensive experiments, they demonstrated that TQP
not only successfully executed the complete TPC-H benchmark on TCRs
but also exhibited comparable, and in many cases superior, performance
compared to specialized CPU and GPU query processing systems.
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