
Orchestrating Data
Placement and Query
Execution in
Heterogeneous CPU-GPU
DBMS

Image sources:
https ://productnation.co/my/15665/best-graphics-card-gpu-malaysia/
https ://developer.nvidia.com/blog/benchmarking-deep-neural-networks-for-low-latency-trading-and-
rapid-backtesting-on-nvidia-gpus/

https://productnation.co/my/15665/best-graphics-card-gpu-malaysia/

Outline

• Introduction and Background
• Basic GPU architecture
• GPU for data analytics
• Previous GPU solutions
• Heterogenous CPU-GPU DBM
• Mordred novel hybrid CPU-GPU data analytics engine introduced by the paper

• Optimizations implemented by Mordred engine
• Data placement: Semantic-Aware Fine-Grained Caching
• Heterogenous query execution

• Evaluation

• Conclusion

GPU Architecture

• Global memory at bottom of GPU
memory hierarchy (up to 80 GB and
2TB/s bandwidth on modern GPUs)

• Most basic compute unit: streaming
multiprocessors (SM)

• One SM has multiple cores with access
to same shared memory (SMEM)

• the L1 and L2 caches/access global
memory

• L1 cache is local to an SM and the L2
cache is shared by all SMs

Image sources:
https ://techdifferences.com/difference-between-cpu-and-gpu.html
https ://www.researchgate.net/figure/Standard-GPU-memory-hierarchy_fig4_271134412
https ://www.bsc.es/research-development/research-areas/computer-architecture-and-codesign/memory-
hierarchy-gpu

GPU for Data Analytics

• Potential for acceleration:
• massive parallelism

• high memory bandwidth

• more than 10× speedup over the CPU counterparts

• Main limitation:
• small memory capacity

• only small workloads fit in and can then be accelerated

Mitigating Memory Limitation

• GPU is primary execution engine
• Working sets are stored in one or multiple GPUs
• multiple GPUs for larger aggregated memory

• GPU as a coprocessor
• data resides on the CPU
• transferred to GPU on demand during query execution (GPU as accelerator)
• systems do not suffer from limited GPU memory capacity
• Limited bandwidth on PCIe => another bottleneck

• Heterogeneous CPU-GPU query execution
• CPU and GPU are both used in special query execution
• Partial execution on CPU avoids excessive data transfer to GPU
• Focus of this paper (Mordred data analytics engine)

Data Placement and Query Execution in
Mordred
• Data Placement

• CPU maintains a copy of the entire database, subset of data cached in GPU memory

• semantic-aware cache replacement policy

• Fine granularity caching

• cost based performance model estimates benefit of caching

• Heterogeneous Query Execution
• segment-level query plan allows for fine-grained heterogeneous execution

• Other general optimization techniques (late materialization, operator pipelining etc)

Data Placement in Mordred

• Mordred maintains a copy of all data in CPU

• No disjoint datasets compared to alternatives

• Flexible query scheduling
• CPU can process queries when GPU can't

• CPU can reconstruct results => reduce PCIe traffic

Data Placement: Fine-Grained Caching

• Previous LRU and LFU replacement policies are not optimal for GPU
acceleration

• Problem is caching at column granularity
• Fragmentation

• Does not capture access skewness

• Hotter sub-column data cannot be prioritized in caching

cache size = 7

Data Placement: Semantic-Aware Caching

• Sub-column LRU/LFU cannot identify data benefiting most from GPU

• Consider correlation between multiple columns when caching
• Join needs both keys cached etc.

• Extend LFU with weighted frequency counters

cache size = 7

Cache Replacement Policy
• Cost model captures:

• relative speedup of caching a
segment

• correlation among segments from
different columns

• Correlation depends on the
performed operator (selection,
join, and group-by aggregation)

• estimateQueryRuntime()
• Simple model to predict runtime
• assumption that the CPU/GPU

memory and PCIe bandwidth are
the performance bottleneck

Cost Models: estimateQueryRuntime()

• Derives execution time mostly from assumed memory traffic

• Model has only been verified on simple operators

• Mordred extends model to more complex queries and to support
PCIe

• Example: Filtering cost

N = |input segments|
𝜎 = selection predicate
𝐵𝑟 = read memory bandwidth
𝐵𝑤 = write memory bandwidth

Heterogenous Query Execution

• fine-grained caching adds extra complexity of query execution
• possible that only subset of data required by operator exists in GPU memory

• Existing systems with fine-grained caching still execute entire query on GPU,
transfer uncached data to GPU during execution

• Goals of Mordred query execution:
• Minimize inter-device data transfer

• Minimize CPU/GPU memory traffic

• Fully exploit parallelism in both CPU and GPU

Operator Placement

• Previously: Data driven operator placement heuristic
• operator is executed in GPU only if all input columns are cached in GPU

• Mordred applies this at sub-column granularity
• executes portions of the operator in the device where input segments reside

• Single operator can be split to run in both CPU and GPU

Segment-Level Query Plan

• Mordred groups segments and executes them in parallel
• Grouping of segments is based on data-driven operator placement heuristic

• Segment groups are then executed in parallel

• After execution finish all results are sent back to CPU merged

Evaluation: Caching Policy

Cache can hold 20% of accessed collumns

Comparison with Other CPU/GPU DBMS

Conclusion

• Two main contributions:
• Data placement

• introduce semantic-aware fine-grained caching policy

• Heterogenous query execution
• can fully exploit data in both devices

• coordinate query execution at a fine granularity

• Evaluation:
• semantic-aware caching policy manages to outperform the best traditional

caching policy by 3×

• Mordred manages to outperform existing GPU databases by an order of
magnitude

	Folie 1: Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS
	Folie 2: Outline
	Folie 3: GPU Architecture
	Folie 4: GPU for Data Analytics
	Folie 5: Mitigating Memory Limitation
	Folie 6: Data Placement and Query Execution in Mordred
	Folie 7: Data Placement in Mordred
	Folie 8: Data Placement: Fine-Grained Caching
	Folie 9: Data Placement: Semantic-Aware Caching
	Folie 10: Cache Replacement Policy
	Folie 11: Cost Models: estimateQueryRuntime()
	Folie 12: Heterogenous Query Execution
	Folie 13: Operator Placement
	Folie 14: Segment-Level Query Plan
	Folie 15: Evaluation: Caching Policy
	Folie 16
	Folie 17: Comparison with Other CPU/GPU DBMS
	Folie 18: Conclusion

