Orchestrating Data
Placement and Query
Execution in

Heterogeneous CPU-GPU
DBMS

https://productnation.co/my/15665/best-graphics-card-gpu-malaysia/

Outline

* Introduction and Background
* Basic GPU architecture
GPU for data analytics
Previous GPU solutions
Heterogenous CPU-GPU DBM
Mordred novel hybrid CPU-GPU data analytics engine introduced by the paper

* Optimizations implemented by Mordred engine
* Data placement: Semantic-Aware Fine-Grained Caching
* Heterogenous query execution

e Evaluation

e Conclusion

GPU Architecture T EEe.
CACHE - | | |
-

* Global memory at bottom of GPU cpu cpu |

memory hierarchy (up to 80 GB and
2TB/s bandwidth on modern GPUs)

* Most basic compute unit: streaming
multiprocessors (SM)

Thread Block 0 Thread Block 1

* One SM has multiple cores with access
to same shared memory (SMEM)

* the L1 and L2 caches/access global
memory

e L1 cacheis local toan SM and the L2
cache is shared by all SMs

i

GPU for Data Analytics

* Potential for acceleration:
* massive parallelism
* high memory bandwidth
* more than 10x speedup over the CPU counterparts

* Main limitation:
* small memory capacity
* only small workloads fit in and can then be accelerated

Mitigating Memory Limitation

* GPU is primary execution engine
* Working sets are stored in one or multiple GPUs
* multiple GPUs for larger aggregated memory

* GPU as a coprocessor
e data resides on the CPU
 transferred to GPU on demand during query execution (GPU as accelerator)
e systems do not suffer from limited GPU memory capacity
* Limited bandwidth on PCle => another bottleneck

* Heterogeneous CPU-GPU query execution
 CPU and GPU are both used in special query execution
e Partial execution on CPU avoids excessive data transfer to GPU
* Focus of this paper (Mordred data analytics engine)

Data Placement and Query Execution in
Mordred

e Data Placement

* CPU maintains a copy of the entire database, subset of data cached in GPU memory
* semantic-aware cache replacement policy

* Fine granularity caching
* cost based performance model estimates benefit of caching

* Heterogeneous Query Execution

* segment-level query plan allows for fine-grained heterogeneous execution
« Other general optimization techniques (late materialization, operator pipelining etc)

Data Placement in Mordred

* Mordred maintains a copy of all data in CPU
* No disjoint datasets compared to alternatives

* Flexible query scheduling
e CPU can process queries when GPU can't
e CPU can reconstruct results=> reduce PCle traffic

Data Placement: Fine-Grained Caching

* Previous LRU and LFU replacement policies are not optimal for GPU
acceleration

* Problem is caching at column granularity
* Fragmentation
* Does not capture access skewness
e Hotter sub-column data cannot be prioritized in caching

Relation R Relation S Relation R Relation S Relation R Relation S
| Join Keys L 7 Join Keys | Join Keys

cache size=7
(a) Coarse-grained caching (b) Fine-grained caching (c) Fine-grained semantic-aware caching

Data Placement: Semantic-Aware Caching

e Sub-column LRU/LFU cannot identify data benefiting most from GPU

* Consider correlation between multiple columns when caching
* Join needs both keys cached etc.

e Extend LFU with weighted frequency counters

Relation R Relation S Relation R Relation S Relation R Relation S
| Join Keys L 7 Join Keys | Join Keys

cache size=7
(a) Coarse-grained caching (b) Fine-grained caching (c) Fine-grained semantic-aware caching

Cache Replacement Policy

e Cost model captures:

* relative speedup of caching a
segment

 correlation among segments from

different columns

e Correlation depends on the
performed operator (selection,
join, and group-by aggregation)

e estimateQueryRuntime()

* Simple model to predict runtime
e assumption that the CPU/GPU

memor
the per

fo

and PCle bandwidth are
rmance bottleneck

Algorithm 1: Update the weighted frequency counter
for segment S

1 UpdateWeightedFreqCounter(segment S)

2

estimate query runtime when S is not cached.

RT ncached = estimateQueryRuntime(cached_segments \ S)

estimate query runtime when S and segments correlated with S
are cached.

RT (4ched = estimateQueryRuntime(cached_segments U S U
correlated_segments)

weight = RTyncached — RTcached

S.weighted_freq_counter += weight

for C in correlated segments do

evenly distribute weight to all segments correlated with S

L C.weighted_freq_counter += weight / [correlated_segments|

Cost Models: estimateQueryRuntime()

e Derives execution time mostly from assumed memory traffic
* Model has only been verified on simple operators

 Mordred extends model to more complex queries and to support
PCle

* Example: Filtering cost

size(int) X N s size(int) X N X o
B, B,y

filter runtime =

N = [input segments|

o = selection predicate

Br = read memory bandwidth
Bw = write memory bandwidth

Heterogenous Query Execution

* fine-grained caching adds extra complexity of query execution

* possible that only subset of data required by operator exists in GPU memory

e Existing systems with fine-grained caching still execute entire query on GPU,
transfer uncached data to GPU during execution

e Goals of Mordred query execution:

* Minimize inter-device data transfer
* Minimize CPU/GPU memory traffic
* Fully exploit parallelism in both CPU and GPU

Operator Placement

* Previously: Data driven operator placement heuristic
e operator is executed in GPU only if all input columns are cached in GPU

* Mordred applies this at sub-column granularity
e executes portions of the operator in the device where input segments reside
* Single operator can be split to run in both CPU and GPU

Segment-Level Query Plan

* Mordred groups segments and executes them in parallel
* Grouping of segments is based on data-driven operator placement heuristic
e Segment groups are then executed in parallel
» After execution finish all results are sent back to CPU merged

RELATION R
B

RELATION S

e

B B T A
e o e T i A
GROUP 1 S : : ek S
R L L AR S R LA R L L
i v R R S e
e L
R R e Ly

GROUP 2

e Ly

A B A A AN

R, R A

St R R
GROUP3 —

s

Cached

Uncached

Figure 2: Example of Segment Grouping.

4.1.3 Example of Query Execution.

Q@: SELECT S.D, SUM(R.C) FROM R,S
WHERE R.B = S.D AND R.A > 10 AND S.E > 20
GROUP BY S.E

Evaluation: Caching Policy

8101

j —— LFU (Column) Em GFPU s CPU B (ntercomnect
—»— LRU (Column)

G0 1
LRL-2 {Column)
—+— LFU (Segment)
—+— LRU [SEEment) 2400 1
—e— |RU-2 (Segment) .
Semantic-aware
2000 7
(-

=

Traﬂlr; (GByte)

Execution Time {5
-

bl

=

—
1

\RUZ LY Segmen aee;"ﬂﬁ“f’ segﬂ‘e“‘j pic Aware
0 2000 4000 6000 8000 LRU { ’RU 2{ [‘
Cache Size (MB) Cache canhold 20% of accessed collumns Replacement Palicy
Figure 5: Execution Time of Various Caching Policies with Figure 6: Memory Traffic Breakdown for Each Caching Policy

Different Cache Size (Uniform distribution with & = 0)

—— LFU (Column) —+— LRU (Column) LRU-2 (Column) —— LFU (Segment) —+— LRU (Segment)

30

301

|]
o
1

o

|

Execution Time (s)
= o

Execution Time (s)
= o

oot
I

[}
I
3

—
—

0.5 1.0 1.5 2.0 25 0.5 1.0 1.5 2.0
Skew Factor (0) Skew Factor (#)

(a) Cache Size = 1600 MB (b) Cache Size = 2400 MB

(S
o

16

—&— LRU-2 (Segment) —— Semantic-aware

Execution Time (s)
7

0.5 1.0 1.5 2.0 2.5
Skew Factor (f)

(c) Cache Size = 4800 MB

Figure 7: Execution Time of Various Caching Policies with Varying Query Access Distribution

Comparison with Other CPU/GPU DBMS

B ElazingDB CoGaDB B YDE BN HeawDB Mordred
E 100 4
@
£ 1024
=
S
£ 107 5
L
¢
L].“”_
Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q32 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 mean
Queries
Figure 13: SSB Query Performance of Different CPU/GPU DBMS (Data fits in GPU)
B ElazingDB CoGaDB B YDEB B HeawDB Mordred
1
E
w 1044
E
5 1075
3
Lﬁ" 10! 4
Q1.1 Q1.2 Q13 Q2.1 Q2.2 Q23 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 mean
Queries

Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)

Conclusion

e Two main contributions:
* Data placement
* introduce semantic-aware fine-grained caching policy

» Heterogenous query execution

 can fully exploit data in both devices
* coordinate query execution at a fine granularity

e Evaluation:

e semantic-aware caching policy manages to outperform the best traditional
caching policy by 3x

* Mordred manages to outperform existing GPU databases by an order of
magnitude

	Folie 1: Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS
	Folie 2: Outline
	Folie 3: GPU Architecture
	Folie 4: GPU for Data Analytics
	Folie 5: Mitigating Memory Limitation
	Folie 6: Data Placement and Query Execution in Mordred
	Folie 7: Data Placement in Mordred
	Folie 8: Data Placement: Fine-Grained Caching
	Folie 9: Data Placement: Semantic-Aware Caching
	Folie 10: Cache Replacement Policy
	Folie 11: Cost Models: estimateQueryRuntime()
	Folie 12: Heterogenous Query Execution
	Folie 13: Operator Placement
	Folie 14: Segment-Level Query Plan
	Folie 15: Evaluation: Caching Policy
	Folie 16
	Folie 17: Comparison with Other CPU/GPU DBMS
	Folie 18: Conclusion

