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* Global memory at bottom of GPU cpu cpu |

memory hierarchy (up to 80 GB and
2TB/s bandwidth on modern GPUs)

* Most basic compute unit: streaming
multiprocessors (SM)

Thread Block 0 Thread Block 1

* One SM has multiple cores with access
to same shared memory (SMEM)

* the L1 and L2 caches/access global
memory

e L1 cacheis local toan SM and the L2
cache is shared by all SMs
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GPU for Data Analytics

* Potential for acceleration:
* massive parallelism
* high memory bandwidth
* more than 10x speedup over the CPU counterparts

* Main limitation:
* small memory capacity
* only small workloads fit in and can then be accelerated



Mitigating Memory Limitation

* GPU is primary execution engine
* Working sets are stored in one or multiple GPUs
* multiple GPUs for larger aggregated memory

* GPU as a coprocessor
e data resides on the CPU
 transferred to GPU on demand during query execution (GPU as accelerator)
e systems do not suffer from limited GPU memory capacity
* Limited bandwidth on PCle => another bottleneck

* Heterogeneous CPU-GPU query execution
 CPU and GPU are both used in special query execution
e Partial execution on CPU avoids excessive data transfer to GPU
* Focus of this paper (Mordred data analytics engine)



Data Placement and Query Execution in
Mordred

e Data Placement

* CPU maintains a copy of the entire database, subset of data cached in GPU memory
* semantic-aware cache replacement policy

* Fine granularity caching
* cost based performance model estimates benefit of caching

* Heterogeneous Query Execution

* segment-level query plan allows for fine-grained heterogeneous execution
« Other general optimization techniques (late materialization, operator pipelining etc)



Data Placement in Mordred

* Mordred maintains a copy of all data in CPU
* No disjoint datasets compared to alternatives

* Flexible query scheduling
e CPU can process queries when GPU can't
e CPU can reconstruct results=> reduce PCle traffic



Data Placement: Fine-Grained Caching

* Previous LRU and LFU replacement policies are not optimal for GPU
acceleration

* Problem is caching at column granularity
* Fragmentation
* Does not capture access skewness
e Hotter sub-column data cannot be prioritized in caching
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Data Placement: Semantic-Aware Caching

e Sub-column LRU/LFU cannot identify data benefiting most from GPU

* Consider correlation between multiple columns when caching
* Join needs both keys cached etc.

e Extend LFU with weighted frequency counters
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Cache Replacement Policy

e Cost model captures:

* relative speedup of caching a
segment

 correlation among segments from

different columns

e Correlation depends on the
performed operator (selection,
join, and group-by aggregation)

e estimateQueryRuntime()

* Simple model to predict runtime
e assumption that the CPU/GPU

memor
the per

fo

and PCle bandwidth are
rmance bottleneck

Algorithm 1: Update the weighted frequency counter
for segment S

1 UpdateWeightedFreqCounter(segment S)

2

# estimate query runtime when S is not cached.

RT ncached = estimateQueryRuntime(cached_segments \ S)

# estimate query runtime when S and segments correlated with S
are cached.

RT (4ched = estimateQueryRuntime(cached_segments U S U
correlated_segments)

weight = RTyncached — RTcached

S.weighted_freq_counter += weight

for C in correlated segments do

# evenly distribute weight to all segments correlated with S

L C.weighted_freq_counter += weight / [correlated_segments|




Cost Models: estimateQueryRuntime()

e Derives execution time mostly from assumed memory traffic
* Model has only been verified on simple operators

 Mordred extends model to more complex queries and to support
PCle

* Example: Filtering cost

size(int) X N s size(int) X N X o
B, B,y

filter runtime =

N = [input segments|

o = selection predicate

Br = read memory bandwidth
Bw = write memory bandwidth



Heterogenous Query Execution

* fine-grained caching adds extra complexity of query execution

* possible that only subset of data required by operator exists in GPU memory

e Existing systems with fine-grained caching still execute entire query on GPU,
transfer uncached data to GPU during execution

e Goals of Mordred query execution:

* Minimize inter-device data transfer
* Minimize CPU/GPU memory traffic
* Fully exploit parallelism in both CPU and GPU



Operator Placement

* Previously: Data driven operator placement heuristic
e operator is executed in GPU only if all input columns are cached in GPU

* Mordred applies this at sub-column granularity
e executes portions of the operator in the device where input segments reside
* Single operator can be split to run in both CPU and GPU



Segment-Level Query Plan

* Mordred groups segments and executes them in parallel
* Grouping of segments is based on data-driven operator placement heuristic
e Segment groups are then executed in parallel
» After execution finish all results are sent back to CPU merged

RELATION R
B

RELATION S

e

B B T A
e o e T i A
GROUP 1 S : : ek S
R L L AR S R LA R L L
i v R R S e
e L
R R e Ly

GROUP 2

e Ly

A B A A AN

R, R A

St R R
GROUP3 —

s

Cached

Uncached

Figure 2: Example of Segment Grouping.

4.1.3 Example of Query Execution.

Q@: SELECT S.D, SUM(R.C) FROM R,S
WHERE R.B = S.D AND R.A > 10 AND S.E > 20
GROUP BY S.E



Evaluation: Caching Policy
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Figure 7: Execution Time of Various Caching Policies with Varying Query Access Distribution




Comparison with Other CPU/GPU DBMS
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Figure 13: SSB Query Performance of Different CPU/GPU DBMS (Data fits in GPU)
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Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)



Conclusion

e Two main contributions:
* Data placement
* introduce semantic-aware fine-grained caching policy

» Heterogenous query execution

 can fully exploit data in both devices
* coordinate query execution at a fine granularity

e Evaluation:

e semantic-aware caching policy manages to outperform the best traditional
caching policy by 3x

* Mordred manages to outperform existing GPU databases by an order of
magnitude
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