Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS

Image sources:

https://productnation.co/my/15665/best-graphics-card-gpu-malaysia/

https://developer.nvidia.com/blog/benchmarking-deep-neural-networks-for-low-latency-trading-and-rapid-backtesting-on-nvidia-gpus/

Outline

- Introduction and Background
 - Basic GPU architecture
 - GPU for data analytics
 - Previous GPU solutions
 - Heterogenous CPU-GPU DBM
 - Mordred novel hybrid CPU-GPU data analytics engine introduced by the paper
- Optimizations implemented by Mordred engine
 - Data placement: Semantic-Aware Fine-Grained Caching
 - Heterogenous query execution
- Evaluation
- Conclusion

GPU Architecture

- Global memory at bottom of GPU memory hierarchy (up to 80 GB and 2TB/s bandwidth on modern GPUs)
- Most basic compute unit: streaming multiprocessors (SM)
- One SM has multiple cores with access to same shared memory (SMEM)
- the L1 and L2 caches/access global memory
- L1 cache is local to an SM and the L2 cache is shared by all SMs

Image sources:

https://techdifferences.com/difference-between-cpu-and-gpu.html

https://www.researchgate.net/figure/Standard-GPU-memory-hierarchy_fig4_271134412

https://www.bsc.es/research-development/research-areas/computer-architecture-and-codesign/memoryhierarchy-gou

GPU for Data Analytics

- Potential for acceleration:
 - massive parallelism
 - high memory bandwidth
 - more than 10× speedup over the CPU counterparts
- Main limitation:
 - small memory capacity
 - only small workloads fit in and can then be accelerated

Mitigating Memory Limitation

• GPU is primary execution engine

- Working sets are stored in one or multiple GPUs
- multiple GPUs for larger aggregated memory

• GPU as a coprocessor

- data resides on the CPU
- transferred to GPU on demand during query execution (GPU as accelerator)
- systems do not suffer from limited GPU memory capacity
- Limited bandwidth on PCIe => another bottleneck
- Heterogeneous CPU-GPU query execution
 - CPU and GPU are both used in special query execution
 - Partial execution on CPU avoids excessive data transfer to GPU
 - Focus of this paper (Mordred data analytics engine)

Data Placement and Query Execution in Mordred

• Data Placement

- CPU maintains a copy of the entire database, subset of data cached in GPU memory
- semantic-aware cache replacement policy
 - Fine granularity caching
 - cost based performance model estimates benefit of caching
- Heterogeneous Query Execution
 - segment-level query plan allows for fine-grained heterogeneous execution
 - Other general optimization techniques (late materialization, operator pipelining etc)

Data Placement in Mordred

- Mordred maintains a copy of all data in CPU
- No disjoint datasets compared to alternatives
- Flexible query scheduling
 - CPU can process queries when GPU can't
 - CPU can reconstruct results => reduce PCIe traffic

Data Placement: Fine-Grained Caching

- Previous LRU and LFU replacement policies are not optimal for GPU acceleration
- Problem is caching at column granularity
 - Fragmentation
 - Does not capture access skewness
 - Hotter sub-column data cannot be prioritized in caching

Data Placement: Semantic-Aware Caching

- Sub-column LRU/LFU cannot identify data benefiting most from GPU
- Consider correlation between multiple columns when caching
 - Join needs both keys cached etc.
- Extend LFU with weighted frequency counters

Cache Replacement Policy

- Cost model captures:
 - relative speedup of caching a segment
 - correlation among segments from different columns
 - Correlation depends on the performed operator (selection, join, and group-by aggregation)
- estimateQueryRuntime()
 - Simple model to predict runtime
 - assumption that the CPU/GPU memory and PCIe bandwidth are the performance bottleneck

Algorithm 1: Update the weighted frequency counter	
for segment S	

1 **UpdateWeightedFreqCounter**(segment S) *#* estimate query runtime when S is not cached. $RT_{uncached} = estimateQueryRuntime(cached_segments \setminus S)$ 2 *#* estimate query runtime when *S* and segments correlated with *S* are cached. $RT_{cached} = estimateQueryRuntime(cached segments \cup S \cup$ 3 correlated segments) weight = $RT_{uncached} - RT_{cached}$ 4 S.weighted freq counter += weight 5 for C in correlated segments do 6 *# evenly distribute weight to all segments correlated with S* C.weighted_freq_counter += weight / |correlated_segments| 7

Cost Models: estimateQueryRuntime()

- Derives execution time mostly from assumed memory traffic
- Model has only been verified on simple operators
- Mordred extends model to more complex queries and to support PCle

[input segments]

selection predicate

• Example: Filtering cost

$$filter \ runtime = \frac{size(int) \times N}{B_r} + \frac{size(int) \times N \times \sigma}{B_w}$$

$$N = |input segments|$$

$$\sigma = selection \ predicate$$

$$Br = read \ memory \ bandwidth$$

$$Bw = write \ memory \ bandwidth$$

Heterogenous Query Execution

- fine-grained caching adds extra complexity of query execution
 - possible that only subset of data required by operator exists in GPU memory
 - Existing systems with fine-grained caching still execute entire query on GPU, transfer uncached data to GPU during execution
- Goals of Mordred query execution:
 - Minimize inter-device data transfer
 - Minimize CPU/GPU memory traffic
 - Fully exploit parallelism in both CPU and GPU

Operator Placement

- Previously: Data driven operator placement heuristic
 - operator is executed in GPU only if all input columns are cached in GPU
- Mordred applies this at sub-column granularity
 - executes portions of the operator in the device where input segments reside
 - Single operator can be split to run in both CPU and GPU

Segment-Level Query Plan

- Mordred groups segments and executes them in parallel
 - Grouping of segments is based on data-driven operator placement heuristic
 - Segment groups are then executed in parallel
 - After execution finish all results are sent back to CPU merged

Figure 2: Example of Segment Grouping.

4.1.3 Example of Query Execution.
Q0: SELECT S.D, SUM(R.C) FROM R,S
WHERE R.B = S.D AND R.A > 10 AND S.E > 20
GROUP BY S.E

Evaluation: Caching Policy

Figure 5: Execution Time of Various Caching Policies with Different Cache Size (Uniform distribution with $\theta = 0$)

Cache can hold 20% of accessed collumns Replacement Policy

Figure 6: Memory Traffic Breakdown for Each Caching Policy

Comparison with Other CPU/GPU DBMS

Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)

Conclusion

- Two main contributions:
 - Data placement
 - introduce semantic-aware fine-grained caching policy
 - Heterogenous query execution
 - can fully exploit data in both devices
 - coordinate query execution at a fine granularity
- Evaluation:
 - semantic-aware caching policy manages to outperform the best traditional caching policy by 3×
 - Mordred manages to outperform existing GPU databases by an order of magnitude