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As part of their work on structure detection in CSV files, Jiang et al. address

a more specific problem of detection of aggregations. The term aggregation

is used to describe an arithmetic connection between a set of numbers

and a single number. In their article “Aggregation Detection in CSV Files”

the authors present an approach for detecting sums, averages, differences,

divisions, and relative changes within the numeric cells of files that also

contain non-numeric data. The objective of the present work is to outline

this approach. The approach is composed of three stages, in which the

aggregation candidates are determined row- and column-wise and pitted

against each other using various heuristics. Experiments have resulted in

precision and recall of over 0.95 for averages, divisions, and relative changes

for 90% of the files examined. For an unseen dataset, comparable results are

obtained. The so far unique approach leads to significantly better results

with real data than a baseline where all permutations are checked row by

row and column by column. However, the discussion of the results also

shows that there is still room for improvement.

1 INTRODUCTION

In recent years, the hunger for data has increased steadily. The goal

is often knowledge discovery through automated data processing. In

what follows, we will consider a paper that is concerned with data

preparation. It deals with the specific case of structure detection

in comma-separated values (CSV) files. These text files typically

represent tabular data by separating individual rows by separators

into cells. Often the semantics is clearly specified by the creating

or processing applications. However, the structure of CSV files is

not always easy to recognize in practice, especially when they were

exported from spreadsheets that contain not only simple tables.

Jiang et al. refer to such files as verbose, formally defined as CSV files

whose raw values serve various purposes, such as data, metadata,

group headers, or notes and appear in various positions [2]. While

there is other work that addresses structure detection in CSV files,

Jiang et al. extend their approach to include a unique non-keyword-

based detection of aggregations. Their work, entitled “Aggregation

Detection in CSV Files” [1], is the subject of this paper. Note that

since all of the following work is based on [1], citations are not

explicitly given after each paragraph.

An aggregation denotes an arithmetic connection between a set

of numbers and a single number. The single number – the aggre-

gator – can be evaluated by applying an aggregation function to

the set of numbers – the range. Jiang et al. consider in their paper

the aggregations sum, difference, average, division, and relative

change. In what follows, we will look at how the authors realized

their approach to detecting aggregations in CSV files. We will then

examine how well they succeeded. To do this, we will take a closer

look at the evaluation methods and the results obtained.

2 AGGREGATION DETECTION APPROACH

Before discussing the aggregation detection approach in detail, we

will first introduce some preliminary considerations. The heuristics-

based approach itself is divided into three stages.
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Fig. 1. Aggregator-aggregatee patterns: adjacent (A), cumulative (C) and

interrupt (I)

2.1 Formalization and characterization of aggregations

The formal definitions of the aggregations considered are as follows:

• Sum 𝐴 =
∑𝑛
𝑖=1 𝐵𝑖 ,

• difference 𝐴 = 𝐵 −𝐶 ,

• average 𝐴 = 1

𝑛

∑𝑛
𝑖=1 𝐵𝑖 ,

• division 𝐴 = 𝐵/𝐶,
• relative change 𝐴 = (𝐶−𝐵)/𝐵,

where 𝐴 is the aggregator and 𝐵 and 𝐶 are the range elements. In

practice, however, there is the complication that floating point num-

bers in CSV files can only be represented with finite precision, and,

in addition, unknown rounding errors often occur. Therefore, error

terms must be included in the equations for detection. However, the

actual error is unknown. It should also be noted that when rounding

to a specific decimal place, the relative error varies depending on

the magnitude of the number. When accounting for rounding errors,

a tradeoff must be made between not detecting aggregations caused

by an error level that is too low and generating false positives due

to an error level that is too high.

Only aggregations within rows or within columns are considered.

The procedure is identical in each case. Jiang et al. classify three

aggregation patterns covered by their approach. They distinguish

between adjacent, cumulative and interrupt aggregator-aggregatee

patterns. In the adjacent pattern, the aggregator is right next to

its range. The aggregator in the cumulative pattern considers cells

that are themselves adjacent aggregators. Therefore, a cumulative

aggregator cannot be completely adjacent to its range, but only to

its range combined with the range elements of its range. Only sums

and differences are detected according to this pattern. Finally, the

interrupt pattern is considered. Here, spaces can occur between

aggregator and individual range elements, but only if they contain

other aggregations. Figure 1 exemplifies the three patterns.

An additional point to be considered with CSV files is the number

format used. Jiang et al. describe different combinations of digit

group separators and decimal separators. For example, the same

number can be represented both by 12345, 67 (digit group separator:

none/decimal separator: comma) and by 12 345.67 (space/dot). The
authors differentiate between the formats space/comma, space/dot,
comma/dot, none/comma and none/dot. For the detection of aggre-

gations, the correct interpretation of the numbers is required. Jiang

et al. choose an approach that checks to which regular expression

of a number format most cells match. They then transform the num-

bers into the normalized format none/dot. These serve as input to
the workflow covered below.
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2.2 Reflection of the elaborated workflow

The naïve approach to finding aggregations would be to consider for

each cell all possible combinations of cells from the same row/column

for an aggregation. See section 3 for why Jiang et al. do not believe

this is appropriate. The authors themselves employ a heuristic ap-

proach. Aggregations are searched only in a certain neighborhood

and pruning rules are applied. The approach called AggreCol is di-

vided into three stages – individual aggregation detection, collective

aggregation detection and supplemental aggregation detection –

which are elaborated below. All procedures described for rows are

applied analogously for columns.

Individual aggregation detection. Independent detection is performed

for each of the five treated aggregation types in this stage. In ad-

dition to the error level for the aggregation equations, a second

variable input parameter is specified with the coverage threshold.

The coverage describes the ratio of lines in which an aggregation

pattern was found to the total number of lines. It therefore specifies

that the same pattern must occur in several lines in order to be

detected. A customized strategy is implemented for commutative

aggregations. For these, the order of the range elements does not

matter – in our case, this is true for the sum and the average. Also,

unlike differences, divisions, and relative changes, commutative ag-

gregations are not limited to just two range elements but can have

any number. For these an adjacency list strategy is applied. Com-

mutativity allows to apply a greedy approach. For each possible

aggregator candidate 𝑐 𝑗 , the possible range elements 𝑐𝑘 with 𝑘 > 𝑗

of the same row are iteratively added to the adjacency list starting

from the closest cell. After each iteration, the aggregation equation

is checked to determine if it is satisfied for the selected error level. If

it is satisfied, the adjacency list corresponds to an aggregation range

and the iteration is terminated. The same is done for 𝑘 < 𝑗 to find

range elements on the other side of the possible aggregator. In this

approach, Jiang et al. set the minimum number of range elements

to two so that false positives would not be detected for identical

values in two adjacent cells. One problem with the adjacency list

approach is that it may break out of the iteration loop too early.

The aggregation equation may coincidentally be satisfied for fewer

range elements than the actual aggregation includes. To counteract

this, for each aggregation detected, it is examined if the same pat-

tern can be found in nearby rows. If this is the case, the aggregation

candidate is included. Finally, the coverage must be satisfied, i.e., a

certain proportion of the rows must have an identical pattern for

these aggregations to be considered.

For non-commutative aggregations – in this case difference, divi-

sion, and relative change – the order of the range elements influences

the result. As stated earlier, these three aggregations each have ex-

actly two range elements. For these, a sliding window strategy is

used. For each possible aggregator candidate 𝑐 𝑗 , all permutations

within the window of size𝑤 are traversed. Once again, the proce-

dure is performed for both sides of 𝑐 𝑗 . A candidate is added if the

aggregation equation holds, and the coverage is satisfied.

All aggregation candidates are now grouped by their patterns.

A group contains all aggregation candidates where the type, the

column of the aggregator and the number and columns of the range

elements match. A sufficiency score is defined as the number of

a) b) c)

Fig. 2. Pruning rules: a) directional disagreement, b) complete inclusion

and c) mutual inclusion

candidates in the group divided by the total numeric cells in the

column. For groups that share one aggregator and for groups that

share the same range, only the one with the higher sufficiency score

is considered in each case. The remaining groups are prioritized

according to how many aggregation candidates they include and

how small their average error is. By iterating over the prioritized

groups, lower ranked groups that cannot coexist with the analyzed

group are eliminated. This is the case when one of the following

pruning rules applies:

• Directional disagreement: A possible aggregator is included

in two groups of the same type but with range elements on

different sides.

• Complete inclusion: A possible aggregator and part of its

range elements are included in the range of an aggregation

candidate of another group.

• Mutual inclusion: The possible aggregators of two aggrega-

tion candidates are mutually within the range of the other

candidate.

Figure 2 visualizes all three rules. The result of the individual ag-

gregation detection stage are aggregation candidates (for rows and

columns) for each aggregation type.

Collective aggregation detection. Contrary to its title, this stage does

not actually involve any detection of aggregation candidates. In-

stead, further pruning is applied with the aggregation types no

longer considered separately. Except for the division, which is ex-

cluded at this stage. Similar to the first phase, all groups – containing

aggregation candidates of multiple rows with the same type and

pattern – are ranked first. The criteria are the number of range

elements of the group and secondarily the number of detected ag-

gregations in a group. The complete inclusion and mutual inclusion

rules from the previous stage (see Figure 2b and c) are applied across

all aggregation types. If one rule applies, the lower ranked group is

eliminated. Additionally, another case is considered. A cell must not

be an aggregator of two aggregation candidates where the ranges

(partially) overlap. However, this is allowed for disjoint ranges.

Supplemental aggregation detection. The goal of this phase is to ad-

ditionally identify interrupt aggregations (see Figure 1). These have

not been considered in the approach described so far. The underly-

ing idea is to apply the individual aggregation detection approach,

but with slightly modified CSV files as input. Each of the files results

from systematic removal of certain already detected aggregation

cells. Aggregator columns of the detected non-cumulative aggre-

gation types are generally excluded from the constructed files, as

they cannot be used as range elements. For the modified files, the

individual detectors are executed in sequence. If new aggregations

are discovered for at least one aggregation type, the complete pro-

cedure described so far for this stage, including file modifications,

is repeated. If no aggregation detector finds new aggregations, the
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Fig. 3. Overview of the three stages of AggreCol namely individual/collective/supplemental aggregation detection

algorithm terminates. Finally, the same pruning rules as for the in-

dividual aggregation detection phase are applied. Figure 3 provides

an overall view of all three stages.

3 EVALUATION

The challenge for Jiang et al. in evaluating AggreCol is that there

are no comparable solutions. Therefore, no benchmarking can be

performed. In the following, we will look at what evaluation meth-

ods are used and what results the evaluation provides.

3.1 Introduction of the evaluation methods

Two datasets of CSV files, each compiled from different but disjoint

sources, form the basis for the empirical analysis. The authors have

implemented a tool to manually annotate aggregations for all CSV

files. These annotations include for each aggregation its type and

the positions of aggregator cell and range elements. Non-numeric

cells were included, for example ‘-’ as 0 or ‘+1.4 Points’ as 1.4.

All files considered contain at least one aggregation, resulting in

185 and 81 files for the two datasets, respectively. The first dataset

was used to develop the approach presented and to determine the

input parameters. The second dataset is used for validation to show

that no overfitting has occurred. As described in subsection 2.1, the

transformation of the number format is performed initially.

A detected aggregation and the actual aggregation match if and

only if the type, aggregator, and range elements match. Errors in-

clude missing an actual aggregation, or a detected aggregation being

incorrect. Jiang et al. use the metrics precision 𝑃 and recall 𝑅 for the

evaluation, where

𝑃 =
𝑛correct

𝑛correct + 𝑛incorrect
and 𝑅 =

𝑛correct

𝑛correct + 𝑛missed

with 𝑛𝑖 corresponding to the absolute number of results with clas-

sification 𝑖 . Thus, 𝑃 indicates the number of correctly detected ag-

gregations among all detected ones, while 𝑅 includes the number

of correctly detected aggregations among all actually correct ones.

The authors specify that 𝑃 or 𝑅 becomes equal one whenever the

denominator in the equations is zero. There is a trade-off between 𝑃

and 𝑅. One can favor 𝑃 by making the detection very restrictive to

avoid false positives, or favor 𝑅 by making the detection overly sen-

sitive to avoid false negatives. Therefore, the 𝐹1-score is introduced,

which incorporates both metrics by forming the harmonic mean.

There are three input parameters in AggreCol that affect results:

1. The error level in the aggregation equations, 2. the aggregation

coverage, which tells what percentage of all rows/columns must

be covered by aggregations of the same pattern, and 3. the window

size in the sliding window strategy. Jiang et al. set the window

size to ten. The other two parameters are determined empirically

based on the first dataset. Coverage is fixed at 0.7 by experimental

maximization of the 𝐹1-score. Also, the error level is set using the

𝐹1-score. Obviously, a higher error level – if there occur indeed

(rounding) errors in the files – leads to more true positives, but also

to more false positives. The authors show that for all aggregation

types considered, a different error level optimizes the 𝐹1-score.

In the following, the methodology of the experiments will be

briefly described. The results follow in subsection 3.2. Since a dif-

ference can be converted to a sum by moving the minuend to the

aggregator side, Jiang et al. include differences in the sum metrics

of the results. As a first evaluation of AggreCol, precision, recall

and the 𝐹1-score for the resulting aggregations are considered ac-

cording to the individual, collective and supplemental aggregation

detection stages per aggregation type. This is to capture the influ-

ence of each phase on the aggregations found. Moreover, the result

after the third stage corresponds to the decisive overall result for

the first dataset. However, the authors note that the distribution

of aggregations across the files considered is not uniform. While

many files have very few (at least one) aggregations, there are a

few files with a large number of (at most 1651) aggregations. An

evaluation based on the total number of aggregations over all files

bears the risk that the detection is optimized for the few files with

many aggregations. To counteract this bias, Jiang et al. introduce

file-level effectiveness as an additional metric. Here, precision and

recall are calculated per file and the proportion of files for which

a certain threshold is exceeded is considered. This is the metric

that is then used to evaluate AggreCol against the second dataset,

which has not yet been studied. By comparing the results of the two

datasets from dissimilar sources, it is possible to determine if there

is an overfitting in favor of the first dataset. As mentioned before,

AggreCol is the first approach that aims to detect aggregations in

verbose CSV files. Therefore, the results can only be compared to

the baseline. This examines for the given error levels the satisfaction

of the aggregation equations for all cells as aggregators, each with

all possible permutations within the same row/column as range

elements. This corresponds to a time complexity of O(𝑛3) for types
with exactly two range elements or O(𝑛 · 2𝑛−1) otherwise. In their

setup, the authors have set a time limit for execution of 5 minutes

per file.

3.2 Results

Examining the results after all three stages of AggregCol, the ma-

jority of the total aggregates detected correspond to those of the first

stage. The precision for the considered aggregation types increases
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after the phase of collective aggregation detection, while the recall

remains the same or decreases negligible. It can be concluded that

in this phase, where only pruning is performed, mainly false posi-

tives are removed. After the supplementary aggregation detection

stage, there is both minimal deterioration and improvement for the

three metrics across the aggregation types. Only for the average

there is a significant change of the 𝐹1-score by this phase of +0.039.
Overall, 𝐹1-scores of 0.782, 0.693, 0.860, and 0.844 are achieved for

the sum, average, division, and relative change respectively across

aggregations of all files.

At file-level, precision and recall above 0.95 are achieved for 90%

of the files for average, division, and relative change. The authors

argue that detection works well for many files, while some files

contain aggregation patterns that are not covered. The results for

the sum seem less promising. Precision and recall > 0.95 are only

achieved for 79.2% and 61.6% of the files, respectively. There is a

particular need for improvement in this respect, since sums account

for about 70% of all aggregations in the dataset studied. For the

unseen dataset, a qualitatively similar distribution of precision and

recall values can be seen at the file-level. The proportion of precision

and recall values above 0.95 decreases for most aggregation types,

but not to an extent that AggreCol can be considered exclusively

suitable for the first dataset.

For the comparison with the baseline, only the files of the un-

seen dataset are considered for which both approaches terminate

within the time limit. With AggreCol, the limit was never exceeded.

For each type, AggreCol achieves an 𝐹1-score of > 0.95 for more

than 60% of the files (pulled down by the sum), while the baseline

only achieves this for a maximum of 35% of the files. The baseline

approach produces a large number of false positives, which has a

negative impact on precision. It turns out that the heuristics used

in AggreCol not only provide efficiency benefits. The constraints

where range elements are allowed also correspond more closely to

aggregation patterns in real files than is achieved by checking all

permutations.

Jiang et al. further investigate reasons for false positives/negatives.

As described earlier, a fixed error level affects both of these errors.

In addition, false positives occur for sums if many small numbers –

especially zeros and ones – are present. Blank cells interpreted as

zeros, or 1/0 used in the sense of true/false, increase the occurrence

of this phenomenon. False negatives occur when interrupt patterns

are not interrupted by other aggregations, range elements are out-

side the window width, the directional disagreement rule according

to Figure 2 is violated in practice, or sum ranges end with 0.

3.3 Discussion and proposals

The previous subsection outlined where the authors themselves still

see sources of error. A few remarks on the approach and the evalua-

tion of AggreCol from an external perspective follow at this point.

Clearly, the heuristics described in subsection 2.2 made assumptions

that favored certain aggregation patterns and excluded others alto-

gether. The results do not provide a complete indication of how well

the approach is generally suited. On the positive side, the datasets

were compiled from disjoint sources. However, it is fundamentally

difficult to assess when exactly a dataset is a representative sample

for verbose CSV files. A concern is the manual annotation of the ac-

tual aggregations in the CSV files. Here, deviations from the original

files are possible. It would be conceivable to use Excel, Tableau or

other files with aggregations and then export them (possibly with

intentional rounding errors) as CSV files. Regarding the results, it

is unclear why differences are included in the metrics of the sum.

The authors justify this with the fact that their equations can be

rearranged arithmetically. However, this seems to be irrelevant in

this context, since they are detected by AggreCol using different

strategies. Besides, the results of the file-level evaluation are con-

sidered biased. The authors define 𝑃 B 1 for an aggregation type

and a file if this type was not detected in this file, and 𝑅 B 1 if it

does not occur in it. Thus, for the proportion of files in which there

are no aggregations of the examined type, 𝑅 > 0.95 is obtained in

each case. Similarly, 𝑃 > 0.95 holds for the fraction of files in which

there were no detections for that type. The results would be more

meaningful if for 𝑃 only those files were considered in which the

aggregation type under investigation was detected at least once,

and for 𝑅 only those in which the type occurs.

It has been shown that the error level influences the false pos-

itive/negative rate. Here it would be conceivable to define an in-

dividual error level not only for each aggregation type, but also

automatically for each file. Starting points could be the magnitudes

of the occurring numbers and also the number format (e.g., num-

ber of decimal places). Jiang et al. distinguish their approach from

evaluating cells by keywords, such as "total" and "all" for sum. They

argue that matching keywords does not provide reliable results.

Not all aggregators feature such labels, and false positives do occur.

However, it would be possible to incorporate this information into

the approach presented. Suppose a column label contains a key-

word for an aggregation type. In this case, the range restriction for

range elements could be made less restrictive when searching for a

possible aggregator of that type in that column.

4 CONCLUSION

We have discussed an initial solution approach that deals with the

detection of aggregations – namely sum, average, difference, di-

vision, and relative change – in CSV files. This heuristics-based

workflow performs significantly better than a baseline that tries all

permutations, both in terms of runtime and precision. The results

indicate that the approach achieves high precision and recall for

aggregation patterns of many files, except for the sum. Nevertheless,

it must be mentioned that the results are not completely informative.

Suggestions were made on how to present the results in a more

meaningful way and how to enhance the workflow. In any case,

Jiang et al. describe that they achieved improved results in their

higher-level research area – structure detection in verbose CSV

files – using the presented aggregation detection method.
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