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This paper develops a heuristic algorithm for solving a routing and scheduling problem for tramp shipping with discretized time
windows. The problem consists of determining the set of cargoes that should be served by each ship, the arrival, departure, and
waiting times at each port, while minimizing total costs. The heuristic proposed is based on a variable neighborhood search,
considering a number of neighborhood structures to find a solution to the problem. We present computational results, and, for
comparison purposes, we consider instances that can be solved directly by CPLEX to test the performance of the proposed heuristic.
The heuristics achieves good solution quality with reasonable computational times. Our computational results are encouraging and
establish that our heuristic can be utilized to solve large real-size instances.

1. Introduction

In light of the phenomenon of globalization, rapid growth of
Asian economies, and the increasing volumes of international
trade, global logistics management in business operations
has become more important than ever. In this regard, trans-
portation is becoming a more strategic business function
because transport costs account for a larger percentage of
the cost of goods sold. There is an increasing interest in
reducing transportation costs and increasing route efficiency.
Maritime transportation plays a key role in international
trade as it represents a low cost transportation mode for high
volume and long-distance shipments, being far less expensive
than airplane transportation.Hence,maritime transportation
is responsible for the majority of long-distance shipments
in terms of volume. According to the review of maritime
transport by UNCTAD [1], more than seven million tons of
goods are carried by ship annually. Some illustrative statistics
are provided in [2]. General shipping industry statistics are
available in publications by the Institute of Shipping Eco-
nomics and Logistics (http://www.isl.org/) and the Astrup
Fearnley Group (http://www.isl.orgwww.fearnley.com/).

Optimizing maritime transportation systems involves
several types of decisions (strategic, tactical, and operational).
The strategic decisions include network design (configuration
of the routes and their frequencies) and fleet and ship
size determination. Tactical decisions include routing and
scheduling of ships either for liner, tramp, or industrial ship-
ping. Operational decisions refer to day-to-day decisions
which may be aided by the design of on-board advisory
systems that increase a vessel’s operability and performance.

In this work, we consider a tactical problem consisting
of routing and scheduling a heterogeneous tramp fleet.
Gatica and Miranda [3] propose a network based model in
which time windows for picking and delivering cargoes are
discretized and the model is solved directly by using CPLEX.
Authors showed that the loss of optimality due to the dis-
cretization approach was not significant. Size of the instances
solved by the authors considered up to 50 cargo contracts, a
fleet size of up to 9 ships, and a level of discretization of 15
time nodes. As reported in the results section, there were
several instances that cannot be solved to optimality, which is
proportional to the level of discretization. For the continuous
case, only 50% of the instances could be solved, and as long
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as the level of discretization increases, higher number of
instances can be solved to optimality.

Difficulty in solving real-life sized problems motivated
us to propose, as an extension of this previous work, a
heuristic procedure based on a variable neighborhood search
to efficiently solve the problem for larger size instances.
In order to evaluate the performance of the procedure, we
create a set of instances using the same instance generation
procedure used in [3] and compare the performance of the
heuristic procedures against the results obtained by using
CPLEX.

The rest of the paper is organized as follows. Section 1
provides a brief review of related literature and Section 2
presents background of the problem. Section 3 presents
the problem description and introduces the notation and
the mathematical formulation provided in [3]. Section 4
provides algorithmic and implementation details. Section 5
presents computational experimentation and finally conclu-
sions and recommendations for further research are provided
in Section 6.

2. Background

The problem addressed in this paper is related to the gen-
eral traveling salesman problem (TSP), the vehicle routing
problem (VRP), and, especially, to a variation of the VRP: the
vehicle routing problem with time windows (VRPTW). TSP
is a problem based on a salesman whomust visit 𝑛 clients and
return to the initial place of departure.The objective is to visit
all clients without passing through the ones previously visited
[4]. VRP is considered as a generalization of TSP where the
clients request either delivery or pick up of an amount of
cargo. The VRP differs from the TSP problem in the fact that
more than one vehicle is needed to deliver the cargoes with
an associated cost [5]. We refer the interested reader to the
work of Laporte and Osman [6], for a comprehensive review
onVRP andVRPTW, and to the work of Ando and Taniguchi
[7], which discusses recent issues arising on city logistics and
urban freight transport.

Christiansen et al. [8] discuss several differences between
ship routing and other vehicle routing problems and justifies
the need for research specifically focused on ship routing
and scheduling. The most recent review of ship routing and
scheduling is presented in [9], in which research on ship
routing and scheduling problems during the newmillennium
is reviewed. Some of the highlights are that the number
of papers doubles every decade and that research on liner
shipping, marine inventory routing, and optimal speed is
leading the research efforts. In [8], a literature review for these
problems is provided and perspectives for further research as
well as other optimization and decision-support techniques
within the shipping industry are discussed. For earlier litera-
ture reviews, the reader is referred to [10, 11].

Three generalmodes of operation for shipping companies
can be distinguished: industrial, tramp, and liner [8, 11]. In
liner shipping, the ships follow a published schedule with
regular itineraries and predetermined routes, frequencies,
and port arrivals/departures; it is very similar to a bus line.
The tramp shipping company follows the available cargoes

similarly to a taxi. A tramp shipping company usually has
a fixed amount of contract cargoes that it is committed to
carry and tries to maximize the profit from optional cargoes.
In industrial shipping, the cargo owner usually controls the
ships and aims to ship cargo at aminimal cost. In the simplest
cases, industrial fleet operation is similar to tramp shipping.
In more general cases, the industrial fleet operation becomes
more complex, especially when trips are not prespecified
and a supply network has to be determined based on
time-dependent supply chain demand functions. The main
difference is that industrial shipping is commonly used for
a specific type of cargo related to a certain type of industry.
Tramp is usually the operation mode to transport liquid and
dry commodities or cargo involving a large number of units
(e.g., vehicles) and liner shipping is the selected mode to
transport containerized cargo which represents the major
segment of liner shipping [3].

The main costs in ocean shipping are (1) capital and
depreciation costs which are related to the loss of a ship’s
market value with respect to the initial investment, (2)
running costs which are fixed costs such as maintenance,
insurance, crew salaries, and overhead costs, among others,
and (3) operating costs which are associated with day-to-
day operations such as fuel consumption, port and customs
expenses, and tolls paid at canals, among others. Fuel con-
sumption has been a relevant subject in themaritime industry
as well as for the world’s largest navies due to oil price
variability and environmental considerations which drive the
effort for fuel-efficient navigation. Fuel consumption can be,
to a large extent, controlled by navigation speed since it is
approximately a cubic function of speed [11].

We base our discussion on the recent works on ship
routing and scheduling of tramp fleets. Even when maritime
transportation is a part of a supply chain, Christiansen et al.
[8] found that little work has been done to integrate the whole
supply chain. Later, Flatberg et al. [12] developed another
solution approach for solving the problem proposed in [11];
they use an iterative improvement heuristic combined with
an LP solver. Fox and Herden [13] describe a MIP model
to schedule ships from ammonia processing plants (which
convert ammonia into different fertilizer products) to eight
ports in Australia. The objective is to minimize freight, dis-
charge, and inventory holding cots while taking into account
the inventory,minimumdischarge tonnage, and ship capacity
constraints. The MIP model is solved by using commercial
optimization software. An inventory routing problem similar
to [11] but with multiple products was analyzed by Ronen
[14] for liquid bulk oil cargo. Considering multiple products
adds complexity to the model since it requires separating the
shipments planning stage from the ship scheduling stage.The
methods used were MIP and heuristics.

Christiansen et al. [8] commented on the lack of research
on tramp shipping as compared to industrial shipping. One
main reason could be the large number of small operations
in the tramp market. The first work to introduce a typical
tramp ship scheduling problem was presented by Appel-
gren [15, 16]. DW decomposition was employed to solve
it. Instead of minimizing costs, the model maximizes the
actual marginal contribution (excluding fixed costs). Kim
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and Lee [17] developed a prototype decision-support system
for ship scheduling in the bulk trade where the scheduling
problem is formulated as a set packing problem with similar
constraints as in Appelgren’s model. Several authors have
developed decision-support systems for companies operating
both in tramp and industrial modes [18–20]. A tramp routing
and scheduling problem that maximizes the profit from
operating the fleet was solved by [21, 22]. Brønmo et al.
[23] develop a multistart local search heuristic. Korsvik et
al. [24] propose a unified tabu search heuristic, which allows
infeasible solutions with respect to ship capacity and time.
In contrast to the procedure followed by Brønmo et al. [23],
Malliappi et al. [25] present a variable neighborhood search
heuristic; the results show that this procedure outperforms
the previous heuristics. Recent research efforts [26, 27] were
conducted in solving problems where cargo may be split
among several ships.

This paper revisits themodel in [3] and proposes heuristic
procedures for solving large-scale problems. Gatica and
Miranda [3] developed a network basedmodel for the routing
and scheduling of a heterogeneous tramp fleet that aims to
minimize the total operating cost of serving a set of trip
cargo contracts considering time window constraints at both
the origin and destination of cargoes. To the best of our
knowledge, this is the first paper that proposes a discretiza-
tion of time windows for picking up and delivering cargoes.
This characteristic allows for a broad variety of features and
practical constraints to be considered such as navigation
speed to control fuel consumption.

3. Discretized Time-Window
Approach for Solving a Ship Scheduling
and Routing Problem

In this section, we present the description of the ship schedul-
ing and routing problem with discretized time windows.
Section 3.1 presents the details of the discretized modeling
approach and the characteristics of the problem. Section 3.2
presents the mathematical model proposed by Gatica and
Miranda [3] which is considered in this paper.

3.1. Problem Description. We consider the routing and
scheduling problem for tramp shipping which has been
addressed by Gatica and Miranda [3]. This is one of the most
relevant and challenging problems faced by decision makers
at shipping companies along with planning and operation of
the liner fleets. An important difference between tramp and
liner operations is that liner shipping allows a more static
and long-run operation planning than tramp shipping. Liner
shipping operates under fixed routes. In contrast to liner case,
tramp shipping faces a more dynamic demand and changes
in contracts and routes. This emphasizes the importance to
address this problem and to provide optimization models for
designing the routes and schedules of the ships as well as the
need of developing algorithms that allows efficiently solving
this problem repeatedly andwithin reasonable computational
times due to the dynamism of the tramp shipping.

As is typical in tramp shipping, contracts and their
required schedules are known beforehand by ship contrac-
tors. Contracts correspond to a single shipment between two
ports, both with time windows for loading and unloading
the cargo. Each ship can serve one contract at a time. The
fleet of ships is nonhomogeneous in terms of capacity, speed,
fuel consumption, and, hence, costs. Not all ships can serve
all contracts because the specific characteristics required per
contract (cargo-ship or port-ship incompatibilities), which
conditions the arc set of the model’s underlying network.
Incompatible cargoes may make it infeasible for the corre-
sponding trips to be done consecutively by the same ship
which also conditions the network.

For each sequence of cargoes to be served by a single ship,
a ballast or empty trip must take place from the delivery port
of each cargo to the origin of the next cargo in the sequence,
unless the delivery port and next origin happen to coincide.
Costs for the trips are computed based on fuel consumption
and the distance travelled as well as some other operational
variables and may vary from ship to ship due to the hetero-
geneity of the fleet. Furthermore, the speed of the ship is a key
factor that affects cost. On the other hand, income is fixed for
each contract and hence profit is maximized by minimizing
total costs. Then, the problem consists of defining the set of
cargoes to be served by each ship as well as the times of arrival
and departure and waiting times at each port, with the aim of
serving all cargoes at minimal total cost.

3.2. Mathematical Formulation. We adopt the discretized
modeling approach used in [3] for the time windows for
picking up and delivering cargoes, assuming that the arrival
time to the origin port must occur only at discrete times.The
same applies for cargo delivery times. Thus, each contract
consists of a discrete set of possible time instants in which
cargo may be picked up and/or delivered.

The nodes, indexed by 𝑖 = 1, . . . , 𝑁, of the network
represent discrete and feasible starting times for each cargo.
For each node 𝑖, the cargo associated with that node is
represented by 𝑛(𝑖). The set of nodes for cargo 𝑛(𝑖) is
represented by 𝐷

𝑖
. Ships are indexed by 𝑘 = 1, . . . , 𝐵. Each

arc(𝑖, 𝑗, 𝑘) represents the service of cargoes 𝑛(𝑖) and 𝑛(𝑗)
consecutively by ship 𝑘 and is included in the network if both
the trips and the ship are compatible. Arc(𝑖, 𝑗, 𝑘) is included
in the network if it is feasible for ship 𝑘 to begin service of
cargo 𝑛(𝑖) at the time instance represented by node 𝑖, which
candeliver the cargowithin the corresponding timewindows,
make the ballast trip from the destination port of cargo 𝑛(𝑖)
to the origin of cargo 𝑛(𝑗), and be available to begin service
of cargo 𝑛(𝑗) at the time instance associated with node 𝑗.

For each arc, the cost parameter 𝑐
𝑖𝑗𝑘

represents the total
minimal cost incurred when the ship delivers cargo 𝑛(𝑖)
immediately followed by cargo 𝑛(𝑗). Costs include travel costs
for trip between the ports associated with 𝑛(𝑖), waiting times,
and the ballast trip to the origin port of 𝑛(𝑗). To complete
the network, a fictitious node 0 is created to represent the
source of all ships. For each ship 𝑘 and node 𝑖, if cargo 𝑛(𝑖)
is compatible with ship 𝑘, there are an arc(0, 𝑗, 𝑘) and an
arc(𝑖, 0, 𝑘). Cost 𝑐

0𝑖𝑘
is calculated based on the real initial

position of ship 𝑘, and cost 𝑐
0𝑖𝑘

represents the minimum total
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Figure 1: Graph representation of the problem. Source: Gatica and Miranda [3].

cost incurred if ship 𝑘 serves cargo 𝑛(𝑖). It is assumed that ship
𝑘 will stay at the port of destination of its last assigned cargo.

We can observe a single-ship view of the graph in Figure 1.
The segmented ovals group all nodes (feasible starting times)
related with the same cargo. Some arcs for a single ship 𝑘 are
drawn, based on the feasible trips that can be selected. Each
arc, as previously mentioned, takes into account the ballast
trip between destination port of cargo 𝑛(𝑖) and the origin of
cargo 𝑛(𝑗).

The mathematical formulation of the problem from [3] is
as follows:

Min ∑

(𝑖,𝑗,𝑘)∈𝐴

𝑐
𝑖𝑗𝑘
⋅ 𝑥
𝑖𝑗𝑘 (1)

s.t. : ∑

𝑖∈𝑉/(0,𝑖,𝑘) ∈𝐴

𝑥
0𝑖𝑘
≤ 1 𝑘 = 1, . . . , 𝐵 (2)

∑

(𝑖,𝑗,𝑘)∈𝐴/𝑗∈𝐷𝑛

𝑥
𝑖𝑗𝑘
= 1 𝑛 = 1, . . . , 𝑁 (3)

∑

𝑖∈𝑉/(𝑖,𝑗,𝑘)∈𝐴

𝑥
𝑖𝑗𝑘
= ∑

𝑙∈𝑉/(𝑗,𝑙,𝑘)∈𝐴

𝑥
𝑖𝑗𝑘

𝑗 ∈ 𝑉, 𝑘 = 1, . . . , 𝐵

(4)

𝑥
𝑖𝑗𝑘
∈ {0, 1} (𝑖, 𝑗, 𝑘) ∈ 𝐴, (5)

where 𝑁 is number of cargoes or contracts to be served, 𝑉
is set of nodes in the network, 𝐷

𝑛
is set of nodes associated

with cargo 𝑛 (i.e., set of possible starting times for trip 𝑛), 𝐵 is
number of available ships,𝐴 is set of arcs in the network, and
𝑐
𝑖𝑗𝑘

is cost of arc(𝑖, 𝑗, 𝑘). Consider

𝑥
𝑖𝑗𝑘
= {

1 if arc (𝑖, 𝑗, 𝑘) is selected as part of the solution.
0 otherwise.

(6)
Selecting arc(𝑖, 𝑗, 𝑘) as part of the solution (𝑥

𝑖𝑗𝑘
= 1)

implies that ship 𝑘 will serve cargo 𝑛(𝑖) and will serve cargo

𝑛(𝑗) immediately afterwards. Selecting arc(0, 𝑖, 𝑘) implies that
𝑛(𝑖) is the first cargo to be served by ship 𝑘, and selecting
arc(𝑖, 0, 𝑘) implies that 𝑛(𝑖) is the last cargo to be served by
ship 𝑘.

The objective function (1) represents the total solution
cost. Constraints (2) ensure that each ship is employed at
most in one route. A route is defined as a sequence of cargoes
to be served. Constraints (3) ensure that, for each cargo 𝑛,
exactly one arc entering set 𝐷

𝑛
is selected, establishing that

each cargo must be served exactly once, by exactly one ship,
which begins service at exactly one of the nodes or time
instants in the discretized time window for cargo pick up.
For nodes other than the central fictitious node, constraints
(4) state that if an entering arc is selected, a leaving arc must
also be selected and that both arcs must be associated with
the same ship. For the fictitious node, this constraint states
that if a leaving arc associated with ship 𝑘 is selected, then
an entering arc associated with the same ship must also be
selected (i.e., if a ship exits the node), and then it must return
to it. Arcs leaving the fictitious node represent the ships that
are, in fact, used in the solution.

4. Proposed Methodology

There are several contributions related to ship routing and
scheduling problems in the literature and several mathemati-
cal models have been proposed to optimize related decisions.
In addition, diverse solution approaches based on either
metaheuristics or mathematical programming methods have
been developed. Heuristic procedures are frequently used
when exhaustive enumeration and/or optimal solutionmeth-
ods are impractical.

The difficulty of the ship routing and scheduling problem
with discretized time windows motivated us to propose
a heuristic procedure based on a Variable Neighborhood
Search (VNS) metaheuristic structure. In VNS, the basic
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idea is to explore different vicinities in a systematic way.
The majority of local search algorithms use a single neigh-
borhood. VNS is based on three basic concepts: (1) a local
minimumwith respect to a structure of vicinity is not related
to another local minimum with respect to another structure
of vicinity; (2) a global minimum is a local minimum with
respect to all possible structures of vicinity; and (3) local
minima with respect to one or more structures of vicinity are
close to each other [21].

Originality of the proposed algorithm relies on the adap-
tation of a local search heuristic to a routing and scheduling
problem that is very challenging and recent, that is, the
routing and scheduling of a tramp fleet with variable speed
and discretized time windows (Gatica and Miranda [3])
which has not been extensively addressed in the literature
(seeChristiansen et al. [8]).Theproposed heuristic procedure
provides a solution to the routing and scheduling problem
of a tramp fleet with discretized time windows and variable
speed in a more reasonable computational effort which
enhances the usability of the proposed method to address
large scale instances faster than using CPLEX (as numerical
results in Chapter 5 display).

The proposed algorithm consists of two main stages.
The first stage searches for a feasible solution that defines a
route for each ship. The second stage seeks to improve the
initial solution by a local search procedure similar to a VNS
mechanism. For this, different neighborhood structures were
defined which are sequentially applied in a steepest descent
fashion. A solution to the problem consists of a route for
each ship in which the route is defined as the set of contracts
to be performed by the ship as well as the departure and
arrival time at each port (as allowed by the discretized
times). Pseudocode 1 presents the pseudocode of the general
procedure.

4.1. Stage 1. Construction of an Initial Feasible Solution. As
shown in Pseudocode 1, the first stage refers to the construc-
tion of an initial feasible solution. For this, we employ a
greedy procedure. In order to describe this procedure, we
introduce the nomenclature described in Table 1, in which
each node represents an allowable and discrete time instant
in which cargo can be picked up or delivered. Each contract
consists of a group of nodes in which the cargo is able to be
picked up at an origin and delivered at a destination. Arcs
joining nodes represent the associated cost of the trip, based
on the distance between the origin-destination pair and the
speed required to arrive at the correct time instant at the
destination.

TheConstruction() procedure analyzes each contract with
the aim of assigning it to a ship. For this, a sorted list of
contracts based on their due dates is formed with the earliest
due date contract at the top of the list.The ships are also sorted
on a list. Initially, the ships are in a random order. The first
iteration of the procedure begins by selecting the first contract
of the list and the first ship on the list in order to analyze if it is
possible to assign the contract to the ship at the earliest time
instant in the discrete set of time instances in the timewindow
of the contract. If this is possible, the contract is assigned to
the ship and the ship is placed at the last position of the list

Table 1: Overview of graphical nomenclature.

Graphical nomenclature: Represents
i

Ship 𝑖.

1 Node or instant of time.

1 2 3 4

Contract

Contract with the corresponding
discrete feasible starting times for
cargo of the trip. Consider the

illustration that the node 1 is
the earliest time instant and 4

is the latest time instant.

i j
(i, j, b)

Arc representing a ship 𝑏 that
departs at time instant 𝑖 from the
origin port and arrives at time
instant 𝑗 at the destination port.

of ships. Otherwise, we select the next ship of the list and
repeat the same procedure until the contract is assigned to
a ship in the earliest possible time instant. In each iteration,
the ship to which the contract is assigned is placed in the last
position of the list of ships. Therefore, the greedy function of
this procedure is based on prioritizing the earliest due date
contracts and seeking to assign each contract at the earliest
possible instant to a ship.

Figure 2 illustrates the procedure. In the example, we
consider four ships and twelve contracts. The first contract
is assigned in its earliest time window to the first ship. The
process is repeated for contracts 2 to 5. However, when we
analyze contract 6 with the corresponding sequential ship 2,
we realize that it is not possible to assign the contract in its
earliest time instant to ship 2, so ship 3 must be considered.
Given that it is possible to assign the contract to ship 3, this
is assigned. Then, we consider contract 7. At the top of the
list of ships we still have ship 2, so we explore the possibility
to assign it to contract 7 in its earliest time instant. Given
that this is possible, we assign the contract. The procedure
is repeated until all contracts are assigned to ship at some
time instants, always striving to assign the contracts as early as
possible. As can be seen in Figure 2, there are some contracts
that get assigned to later time instants because it was not
possible to assign them to any ship at earlier time instants.

4.2. Stage 2. Local Search Procedure. Once a feasible initial
solution has been constructed, a local search procedure is
applied in order to improve the solution. For this, we propose
to explore iteratively and in a steepest descent fashion,
using four neighborhood structures. If no improvement of
the solution is attained, then we consider two additional
alternative neighborhood structures that will be also explored
in a steepest descent fashion. Pseudocode 2 presents the
pseudocode of the general procedure.

4.2.1. ImproveRoute(). This neighborhood of solution 𝑥 con-
sists of the set of solutions that results from exploring all
feasible combinations of arcs that connect two contracts in
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Figure 2: Example of Construction() procedure.

Ship route Procedure
Input: 𝑃 := a problem instance (𝑁, 𝑉,𝐷

𝑛
, 𝐵, 𝐴, 𝑐

𝑖𝑗𝑘
)

Output: 𝑥∗ := Route for each ship 𝑘,
or empty set with no feasible solution.

𝑥 ← Construction();
Set 𝑓∗= 𝑓(𝑥); 𝑥∗ = 𝑥

Do until a stopping condition is met
𝑥 ← Local-Search();
If 𝑓(𝑥) < 𝑓∗ then
𝑓
∗
= 𝑓(𝑥) and 𝑥∗ = 𝑥;

End Do
Return 𝑥∗

Pseudocode 1: Pseudocode of the solution procedure.

1 2

3 4
c2

1

c1

Figure 3: Illustration of an iteration of the ImproveRoute() proce-
dure.

the route of a ship, selecting the pair of arcs with lowest cost.
The procedure aims to improve solutions based on an analysis
of the timewindows of each contract, respecting the contracts
assigned to the route of a ship. Figure 3 shows different
options for a ship (each dotted line color corresponds to an
option).

4.2.2. InsertionContractsN(). This neighborhood structure
consists of the set of solutions that results from moving a
contract from a route to insert it into another route. For this,
the procedure considers a pair of ship routes and evaluates
both the active nodes and nonactive nodes (not included in

the initial solution). If moving a contract from one route to
another improves the solution reducing total costs, then the
move is performed. The order of the contracts is maintained
at all times.

Figure 4 illustrates the procedure. The initial solution
(black lines) consists of the routes of ship 1 (contract 1 at time
instant 2, followed by contract 2 at time instant 3) and ship
2 (contract 3 at time instant 6). The procedure then analyzes
the insertion of a contract from the route of ship 1 into the
route of ship 2. The yellow arcs are an example of an option
that includes nonactive nodes of the initial solution.

As observed in Figure 4, analyzing the insertion of con-
tract 2 into the route of ship 2, it turns out that costs are
reduced if contract 2 is inserted into the route of ship 2 as
shown by the red lines. The resulting route for ship 2 selects
contract 2 at time instant 3 followed by contract 3 at time
instant 6.

4.2.3. InterchangeContractsN(). This neighborhood structure
consists of the set of solutions that results from interchanging
contracts between two routes of ships considering both the
active nodes and nonactive nodes (those nodes that are part
of the current solution as well as those that are not) and
respecting the initial order of contracts in the routes. The
exchange is performed only if the new configuration provides
lower costs.

Figure 5 illustrates this method. Consider the initial
solution presented in part (a) of the figure and assume that
we will evaluate the exchange of contracts 1 and 3 (c1 and c3).
As can be seen in part (b) of the figure, we add arcs to get a
new solution (red, blue, pink, and yellow dotted lines). Black
dotted lines correspond to the initial solution and the black
line indicates that contract 2 should be performed by ship 1. If
the new configuration provides lower costs, the contracts are
interchanged and a new solution is obtained. Suppose this is
the case for solution found with pink and yellow dotted arcs,
as shown in (c).

4.2.4. TwoOptUpward(). This neighborhood of solution 𝑥
consists of the set of solutions that results from crossing
over a pair of routes, based on a variation of the 2Opt local
search algorithm proposed by [22]. The procedure considers
a pair of arcs to be crossed and the upward part of the each
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Figure 4: Illustration of InsertionContractsN() procedure.
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Figure 5: Illustration of InterchangeContractsN() procedure.

route is swapped. The procedure differs with respect to the
2Opt procedure in that segments of several contracts are
exchanged and not only the individual route is improved.
Figure 6 illustrates the procedure.

4.2.5. InsertionContractsN2(). This neighborhood of solution
𝑥 is a variant of the InsertionContractsN() but differs in that
when a contract is inserted between a pair of contracts of
another route, for the previous contract to the one inserted,
we select the earliest possible node for its departure and for
the following contract in the route to the one inserted, we
select the latest possible node for arriving. The insertion is
performed only if lower costs are obtained. The procedure is
illustrated in Figure 7.

4.2.6. InterchangeContracts S(). This neighborhood struc-
ture is a simplification of the InterchangeContractsN() pro-
cedure in which solutions that result from all possible pair

of contracts to be exchanged between two ship routes are
evaluated, considering only active nodes (those that are
currently part of the solution). The exchange is performed
only if the new configuration provides lower costs.

4.2.7. InterchangeContracts C(). This neighborhood struc-
ture is a variant of previous one (Interchange Contracts-
S) in which a pair of contracts is exchanged but instead of
searching among a pair of ships, the search is performed on a
contracts sequence.

5. Computational Experimentation

This section describes the test instances generation and the
computational results. The heuristic procedure was imple-
mented in JAVA SE 6 and numerical experimentation was
performed to test its performance. We generate a set of
instances of different sizes. Previous instances solved in [3]
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Figure 6: Illustration of an iteration of the TwoOptUpward() procedure.
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c1 c2 c3

Prior contract: select the  
earliest possible node (1)  Inserted contract 

Posterior contract: select  
the  latest possible node (6) 

Figure 7: Pseudocode of the local search procedure.

were not available, so that new instances were generated
using the test instances generator code developed by [3].
For comparison purposes, all instances were also solved by
CPLEX 11.1. Numerical experiments were performed using
a 2.00GHz Pentium processor with 2GB of RAM running
under Windows XP.

5.1. Instance Generation. An instance of the problem consists
of a list of contracts and the corresponding set of nodes for
arrival and departure arrivals, as well as a set of arcs for all
the feasible trips that could be performed. Each arc possesses
an initial node, a final node, a ship number, and an associated
cost. As it was previously mentioned, we employed the test
instances generator developed by [3] which is composed of a
real based database containing potential contracts in a port-
port matrix, including distances of trip estimated to each
potential contract.

The database contains 400 potential cargo contracts, a
port-port matrix which contains distances of trips estimated
for ach potential cargoes among 87 different ports. For each
potential cargo, a pair of ports was chosen with real place
of arrival which is frequently used in practice. Information
regarding the necessity of going through a channel for each
trip is used as well as the channel fees. In order to generate
an instance, a subset of the cargoes from the database
is randomly selected, according to the instance size. For
the generation of random numbers, 45 different seeds are

employed.The application is coded in JAVA SE 6. It is impor-
tant to recall that the instances generated should guarantee
that it is possible to obtain a feasible solution.

Eighteen groups of instances were generated, each group
composed of a combination of ships, timewindownodes, and
contracts. The set of discrete time window consists of 3, 6, or
15 nodes.The number of ships was varied over the values of 4,
5, 7, and 9.The number of contracts was varied over the values
of 30, 40, and 50. Each group contains 15 different instances.
Instance sizes consider between 14,000 and 2,000,000 arcs. In
total, we generated 3 × 4 × 3 × 15 = 540 instances.

5.2. Results and Discussion. In this section, a comparison of
the results obtained by using CPLEX and the heuristic is
presented. Tables 1 and 2 present the results according to
the instance groups (18 groups generated with 15 instances
each). Stopping rules consider a limit time of 7200 seconds
for CPLEX. For the heuristic no limit time was set, con-
sidering only a maximum number of iterations without any
improvement in the solution as stopping criterion based on
an epsilon which was defined in terms of the instance size.
For comparison purposes, instance sizes in which CPLEX
could find at least a feasible solution are considered which
are of similar size as those solved in [3]. Hence, for each
instance solved, we compare the results obtained by CPLEX
and the heuristic and estimate a gap with respect to the
best integer solution reported by CPLEX (which for some
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Table 2: Summary of results of instances of 30 contracts.

Instance CPLEX Heuristic

Contracts Ships Nodes per
window

Optimum
found

Only feasible
solution No solution Average

time (sec)
Solution not

found
Average
time (sec)

GAP
O.F. (%) average

30 4 3 13 0 2 1 3 4.80 4.79
30 4 6 13 0 2 4.84 2 15.92 5.36
30 4 15 13 0 2 171.84 2 93.15 5.53
30 5 3 15 0 0 1.13 0 7.06 4.34
30 5 6 15 0 0 12.73 0 26.53 5.49
30 5 15 15 0 0 140.60 0 151.40 5.49

Local-Search()
Input: 𝑥 := Initial Feasible solution (Route for each ship 𝑘)
Output: 𝑥∗ := Best Solution found (Route for each ship 𝑘)

Do until no further improvement is achieved
InsertionContractsN()
ImproveRoute()

End do
Do until no further improvement is achieved

InterchangeContractsN()
ImproveRoute()

End do
Do until no further improvement is achieved

2OptUpward()
ImproveRoute()

End do
Do until no further improvement is achieved

InsertionContractsN2()
ImproveRoute()

End do
If no improvement of the initial solution was found, then

InterchangeContracts S()
If no improvement was previously found, then

InterchangeContracts C()
End if

End If
Return 𝑥∗

Pseudocode 2: Pseudocode of the Local Search Procedure.

instances corresponds to the optimal solution) as described
by (7) in which 𝑍 corresponds to the value obtained by the
heuristic. Positive gaps are obtainedwhenCPLEXfinds better
solutions. Consider

variation = 𝑍 − CPLEX
CPLEX

∗ 100. (7)

Tables 2, 3, and 4 show a summary of all results obtained
for those instances of 30, 40, and 50 contracts, respectively.
Each instance type is indicated according to its combination
of contracts, ships, and nodes which account for 15 replicates
of each instance type. The averages of 15 replicates are shown
for the execution times of CPLEX and the execution times of
the heuristic. Furthermore, average gaps computed according
to (7) are also presented, considering only those cases in

which at least a feasible solution was obtained by CPLEX or
by the heuristic. The tables indicate, for each instance type,
the number of instances in which an optimum solution was
found, the instances inwhich a feasible (nonoptimal) solution
was found, and also those cases in which no feasible solution
was obtained by CPLEX. Similarly, for the heuristic proce-
dure, the tables present the number of instances in which an
initial solution could not be found and, consequently, could
not apply the methods of local search.

Table 2 shows instances of 30 contracts corresponding to
the smaller size instances in which the difference on compu-
tational times between CPLEX and the heuristic resulted no
significant. In terms of the quality of solutions, average gaps
of the solution found by the heuristic with respect to CPLEX
is less than 5.5%.

Instances of 40 contracts are medium size instances and
we can observe from Table 3 a more significant difference
between computational times of CPLEX and the heuristic. In
terms of the gaps found by the heuristic solutionswith respect
to CPLEX, the maximum average gap corresponds to 8.11%.
In most of the instances, CPLEX found an optimal solution
or at least a feasible solution.

Table 4 shows instances of 50 contracts correspond to the
biggest size instances, and computational times of CPLEX
and the heuristic present more significant differences. In
terms of average gaps, we observe even lower gaps with
respect to the instances of 40 contracts, where the maximum
average gap corresponds to 6.69%. It is noteworthy that the
heuristic improves the execution times for large problems,
which indicates that it can be employed for solving larger
size instances. On the other hand, we can observe a good
performance of the procedure with relatively small gaps with
respect to the optimum solutions found by CPLEX, with a
maximum value of 8.11%, which corresponds to a medium
size instance (40 contracts) and does not increment propor-
tionally to instance size.

Tables 5, 6, and 7 present results classified according to
the number of ships and nodes per window for the instances
of 30, 40, and 50 contracts, respectively.The tables present the
percentage of instances in which CPLEX found an optimum
solution, a feasible solution, and no solution, based on the
number of instances ran for each type. Results found by
the heuristic procedure are also presented in terms of the
percentage of instances in which no solution was found.
Average computational times are presented for both CPLEX
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Table 3: Summary of results of instances of 40 contracts.

Instance CPLEX Heuristic

Contracts Ships Nodes per
window

Optimum
found

Only feasible
solution No solution Average

time (sec)
Solution not

found
Average
time (sec)

GAP
O.F. (%) average

40 5 3 14 0 1 3.85 6 21.55 5.00
40 5 6 15 0 0 42 3 82.50 8.11
40 5 15 15 0 0 719.40 3 442.58 7.49
40 7 3 15 0 0 8.66 0 33.93 6.27
40 7 6 15 0 0 447.53 0 137.13 7.38
40 7 15 12 3 0 1870.86 0 645.53 7.76

Table 4: Summary of results of instances of 50 Contracts.

Instance CPLEX Heuristic

Contracts Ships Nodes per
window

Optimum
Found

Only Feasible
Solution No Solution Average

Time (sec)
Solution not

Found
Average

Time (sec)
GAP

O.F. (%) Average
50 7 3 14 0 1 18.71 2 109.30 5.95
50 7 6 13 0 2 183.53 4 358.45 5.35
50 7 15 8 7 1 4291.85 2 1551.38 5.87
50 9 3 15 0 0 23.80 0 134.06 6.69
50 9 6 15 0 0 371.53 0 558.40 6.53
50 9 15 7 8 0 4450.20 0 2795.53 6.09

Table 5: Results per contracts.

Type of
instance CPLEX Heuristic

Contracts Optimum
found

Only feasible
solution No solution Average

time (sec)
Solution not

found
Average
time (sec)

GAP % time
average

GAP % OF
average

30 93.33% 0.00% 6.67% 55.36 7.78% 49.81 −0.1001 5.17
40 95.56% 3.33% 1.11% 515.38 13.33% 227.20 −0.5591 7.00
50 80.00% 16.67% 4.44% 1556.60 8.89% 917.85 −0.4103 6.08

and the heuristic. Average gaps of the heuristic with respect
to CPLEX are also presented for each type of instance.

As observed in Table 5, computational times for CPLEX
and the heuristic increase as long as the number of con-
tracts also increase. However, not necessarily the number of
instances in which CPLEX cannot find an optimal solution
increases proportionally as the number of contracts increases,
given that for 40 contracts the percentage of optimal solutions
found by CPLEX is higher than for 30 contracts, but for 50
contracts it is observed significant reduction on the number
of optimal solutions found by CPLEX. In the case of the
heuristic, similar results are found in which the percentage of
cases in which no feasible solution is found decreases for the
50 contracts instances. For the 50 contracts instances, com-
putational times of the heuristic procedure are significantly
lower than CPLEX times.

As observed in Table 6, the number of ships does not
significantly increase the difficulty of the instance. Similar
results in terms of the number of optimal solutions are found
by CPLEX for most of the cases. For the heuristic procedure,
very similar gaps are obtained for all the instances which,

on average, are about 6%. Average times increase for both
CPLEX and the heuristic for the instances with more ships
which was expected.

As shown in Table 7, as the number of nodes increases, it
becomes more difficult to obtain exact solutions by CPLEX
and computational times increase significantly and, in this
case, the heuristic performs better. On the other hand, gaps
of the heuristic with respect to CPLEX do not increase
proportionally with respect to the difficulty of the problem
and are about 6%.

Provided that in some instances CPLEX found more
efficient solutions than the heuristic procedure; Tables 8 and
9 present an analysis of the results to determine which the
cases are in which the proposed heuristic is efficient. Table 8
presents a comparison of computational times between the
heuristic and CPLEX considering the number of nodes per
window and the number of contracts. An index is computed
as indicated at (8). When the index is less than 1, the heuristic
achieves better results. Consider

Index = TimeHeuristic
TimeCPLEX

. (8)
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Table 6: Results per ships.

Type of instance CPLEX Heuristic

Ships Optimum
found

Only feasible
solution No solution Average

time (sec)
Solution not

found
Average
time (sec)

GAP % time
average

GAP % OF
average

4 86.67% 0.00% 13.33% 59.23 15.56% 37.96 −0.3591 5.23
5 98.89% 0.00% 1.11% 153.29 13.33% 121.94 −0.2045 5.99
7 85.56% 11.11% 4.44% 1136.86 8.89% 472.62 −0.5842 6.43
9 82.22% 17.78% 0.00% 1615.18 0.00% 1162.66 −0.2801 6.44

Table 7: Results per nodes per window.

Type of instance CPLEX Heuristic

Nodes per window Optimum
found

Only feasible
solution

No
solution

Average
time (sec)

Solution not
found

Average
time (sec)

GAP % time
average

GAP % of
average

3 97.33% 0.00% 2.67% 9.525 10.67% 51.78 4.4365 5.50
6 95.56% 0.00% 4.44% 177.03 10.00% 196.49 0.1099 6.370
15 77.78% 20.00% 3.33% 1940.79 7.78% 946.60 −0.5122 6.371

Table 8: Analysis of computational times.

Contracts/nodes 3 6 15
30 5.568075117 2.416050085 0.78271028
40 4.434852118 0.448654832 0.420077521
50 5.724770642 1.651803409 0.497241494

As observed in Table 8, the heuristic does not present an
advantage for the smallest size instances (those with 3 nodes
and for the 3 variations of contracts). For the medium size
instances (those with 6 number of nodes), results are not
conclusive (for some cases the heuristic performs better and
for other it does not). However, for the bigger size instances
(those with 15 nodes), the heuristic presents better results
independent of the number of contracts. Hence, the heuristic
is more effective (in terms of computational effort) when
the instance contains more nodes. As observed in Table 8,
the number of contracts does not increase significantly the
complexity of the instance. This can be attributed to the fact
thatwhen the number of contracts is increased, the number of
ships also increases. Based on the results, when the number
of nodes (and consequently the complexity of the problem)
is increased, the heuristic is a more attractive option. It is
worth noting that the discretization of time windows was the
approach followed to tackle a continuous time problem in
this paper. As more precision is demanded (i.e., more time
windows or nodes are needed), the heuristic results in a more
attractive option than using CPLEX.

Table 9 presents an analysis of the quality of the heuristic
in terms of the GAP obtained with respect to CPLEX
considering the number of contracts and nodes per window.
The average gaps of each type of instance are shown. As
observed in the table, gaps do not increase with respect to
the size of the instance and are relatively similar for all the

Table 9: Analysis of quality of the heuristic.

Contracts/nodes 3 6 15
30 4.565 5.425 5.51
40 5.635 7.745 7.625
50 6.32 5.94 5.98

instance types, with an average of about 6% which is a good
feature of the proposed heuristic.

6. Conclusions and Further Research

We present a heuristic based on variable neighborhood
search heuristic to solve a routing and scheduling problem
for tramp shipping operations that are modeled adopting a
time based discretization as proposed in [3]. This heuristic
approach is an alternative method for solving large instances
that CPLEX cannot solve efficiently or even find a feasible
solution in reasonable times. Several special features such
as navigation speed and time windows are introduced as
network parameters in the instances, without increasing the
complexity of the heuristic.

Numerical results show that the proposed solution
approach requires reasonable computational times with rea-
sonable gaps with respect to the solution found by CPLEX
which in general were less than 8% and were about 6% in
average. Instances tested in this work represent the size of
real instances for a medium size shipping company for tramp
mode.

As observed in Section 5, numerical results show that the
number of nodes per window is the main parameter that
affects the difficulty of the instance. It was observed that the
heuristic procedure works better for bigger size instances;
hence, if more precision is demanded for the problem (more
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nodes), then the heuristic represents an efficient method.
Furthermore, numerical results indicate that the heuristic
presents a similar performance for all the instances and gaps
do not increase with respect to the instance size, which is an
important element of the heuristic and it may be expected
a good and robust performance for bigger size instances in
which no comparison with respect to CPLEX is possible.

The usability and applicability that the proposed heuristic
provides to solve the routing and scheduling problem of a
tramp fleet with discretized time windows and variable speed
allow addressing instances of bigger size with less computa-
tional times than when using CPLEX. Due to comparison
purposes, only instances in which CPLEX is able to find
a solution were solved but it is expected that bigger size
instancesmay be able to be solved in reasonable timeswithout
decreasing the quality of the solutions as it was observed in
the numerical results where the quality of the heuristic did
not decrease when the size of the instance increased.

Other features that can be easily incorporated into the
heuristic are, for instance, congestion at the ports or priorities
of the cargoes, which for the case of the mathematical model
may increase its complexity. In particular, for the case of
variable navigation speed, a very complex problem is gen-
erated even for median size instances, resulting in high
computational times even for instances or reduced size. This
can be observed in the discretization approach. An instance
of 50 cargoes and 15 window times generates 50 × 15 = 750
nodes.

The approach model and heuristic presented in this
paper provide a decision-support tool for helping shipping
companies in the design of the routes and schedules of their
tramp fleets. This problem is frequently faced by the industry
of international trade which presents an increasing trend in
the current global environment andmaritime shipping repre-
sents the bigger participation among the different transporta-
tion modes. Maritime industry presents a high dynamism
and variability on its operations; thus, decision-support tools
to improve their operations are extremely important. This
model and solution procedure provide a mechanism to
efficiently plan the routes of the fleet in order to minimize
costs associated with the consumption of fuel (which can
be, to a large extent, controlled by navigation speed) and
to reduce lead times. In this regard, both governments and
private industry may potentially benefit from the reduction
of logistics costs in which the maritime fleet cost represents
an important percentage of the total logistical costs.

For further research we recommend generating instances
in which the navigation speeds and the discretized time
windowsmay be determined through the local search instead
of including fixed values within the network model. Addi-
tionally, mathematical programming techniques for solving
the algorithm could be explored. For instance, Branch and
Cut algorithms have been widely used for solving vehicle
routing problems andmay prove to be useful for this problem
aswell.We also propose applying themodel and solution pro-
cedure in some real-world case studies in order to measure
real improvements with respect to the current operations.
Another avenue of research could involve attempting to
apply similar models with discretized time windows to liner

shipping operations, where themain difference is that usually
no ballast or empty trips are required as in tramp shipping.
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