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Abstract

Wildland fires (or wildfires) occur on all continents ex-
cept for Antarctica. These fires threaten communities,
change ecosystems, destroy vast quantities of natural re-
sources and the cost estimates of the damage done an-
nually is in the billions of dollars. Controlling wildland
fires is resource-intensive and there are numerous ex-
amples where the resource demand has outstripped re-
source availability. Trends in changing climates, fire oc-
currence and the expansion of the wildland-urban inter-
face all point to increased resource shortages in the fu-
ture. One approach for coping with these shortages has
been the sharing of resources across different wildland-
fire agencies. This introduces new issues as agencies
have to balance their own needs and risk-management
with their desire to help fellow agencies in need. Using
ideas from the field of multiagent systems, we conduct
the first analysis of strategic issues arising in resource-
sharing for wildland-fire control. We also argue that the
wildland-fire domain has numerous features that make
it attractive to researchers in artificial intelligence and
computational sustainability.

Introduction

A wildland fire (also referred to as a wildfire, bushfire, veld-
fire, etc.) is typically defined as an unplanned non-structural
fire burning in forested, grass, scrub-covered etc. areas. All
continents, except for Antarctica, regularly experience wild-
land fires which threaten communities, change ecosystems
destroy vast amounts of natural resources, and the cost esti-
mates of the damage done annually is in the billions of dol-
lars. For example, in the beginning of January 2013 alone,
wildland fires in Tasmania, Australia destroyed at least
80 homes, left thousands of people stranded and resulted
in over 42 million USD in insurance claims (AUS 2013;
Henshaw 2013). Changing climate is leading to both in-
creased fire-occurence in areas already prone to wildland
fires (Westerling et al. 2006), as well as large fires occur-
ring in areas previously not considered to be at significant
risk (Jones et al. 2009; Mack et al. 2011).

Controlling and combating wildland fires is resource in-
tensive, requiring specialized equipment, aircraft and highly
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trained personnel. For example, during the summer of 2003
in British Columbia, Canada, over 10,000 firefighters and
support personnel were involved in fire suppression. Two air
tanker crew members and a helicopter pilot were killed and
it has been estimated that the cost of control and suppression
alone was close to one billion CAD (BC 2013). Determining
the right level of resources for wildland fire agencies is chal-
lenging. It is not financially feasible to maintain resource
levels so as to handle situations like seen in British Columbia
in 2003, since most seasons are not that severe. Relying on
historical averages may also not be appropriate due to the
unpredictability and variability of wildland fires. For exam-
ple, in Canada during 2011, the number of wildland fires
was two thirds that of the previous ten year average and the
area burned was 15% lower. However, these numbers do not
show the entire picture since 2011 was also the year of the
Slave Lake fire in northern Alberta, which burned into the
community of Slave Lake, destroying over 400 homes and
causing $700 million CAD in insurable losses (CIF 2011).

Agencies responsible for wildland fire control and sup-
pression are faced with the challenge of maintaining their
resource establishment levels while also requiring the flex-
ibility to access additional resources during peak demand.
Resource sharing across agencies is one approach that is
used to this end. The idea is very simple. An agency in need
contacts other agencies, who lend any resources they are not
currently using. Resource sharing mechanisms are in place
in a number of countries including the US, Canada, and Aus-
tralia, and there are international agreements which also sup-
port resource-sharing across international borders.

In this paper we study the strategic issues which arise
when wildland fire agencies share resources. We propose
a model which highlights some of the key features of re-
source sharing in this domain, including the problem of bal-
ancing the desire to help another agency against taking on
additional risk in a highly uncertain environment, and the
difficulty of determining whether excess resources are avail-
able in the first place. Given our model, we show that lend-
ing decisions are strategic; they depend both on the protocol
being used to select and allocate offered resources and on
the decisions of other agencies. We conclude the paper with
a discussion of future work related to resource sharing for
wildland fire control, and an argument that this is an inter-
esting domain for Al researchers and practitioners.



Resource Sharing in Canada

Our model and analysis is based on the Canadian system
as overseen by the Canadian Interagency Forest Fire Cen-
tre (CIFFC). CIFFC’s primary mandate is to facilitate the
exchange of wildland fire fighting resources inside Canada,
and it has been doing this for over 25 years. In Canada, wild-
land fire control is the responsibility of the provinces and ter-
ritories. Each province or territory has its own agency and
resources, and is responsible for fires inside its borders. In
times of need, an agency contacts CIFFC, and requests ad-
ditional resources. CIFFC sends these requests to all other
agencies across the country, who each check their resource
availability and report back to CIFFC. CIFFC is responsi-
ble for deciding which of the offered resources will be used,
arranging the logistics for transporting the resources to the
agency in need (and returning them). Details on the for-
mal sharing arrangements are specified in the Mutual Aid
Resources Sharing (MARS) Agreement which outlines the
terms under which resources can be legally shared, how re-
sources will be made available, what costs will be involved
and the conditions for their return.

Model

In this section we describe our model of resource-sharing for
wildland fire.! There are three key components in the model:
the distressed agency, the broker responsible for resource al-
location, and the lending agencies.

The Distressed Agency The distressed agency, D, finds
itself in a situation where its current level of resources is in-
adequate. It submits a request for additional resources, Rp,
to the central broker. We assume D is non-strategic, that its
request for resources represents its actual needs, and that all
other participants are aware of this.’

The Broker The broker, B, is responsible for receiving
the resource request from D), broadcasting the request to
the lending agencies, receiving the offers of resources, O,
from each lending agency, and then selecting which re-
sources will be used. In particular, we assume B follows
a protocol, Sp, that specifies how resources will be se-
lected. If lending agencies announce resource availability
(r1,...,7,) where r; is the set of resources agency ¢ can
share, then Sg(r1,...,m) = (c1,...,¢,) Where ¢; C 7
is the set of resources the broker selects and allocates to D.
This protocol is common knowledge. Finally, the broker is
also responsible for setting the payment, pay(r), agencies
receive for sharing r resources. This payment function is
fixed, set in advance, and common knowledge.

'The model was developed through a series of consultations
with wildland fire-control agencies and CIFFC which took place
between October 2011 and March 2012.

2Our interviews seemed to indicate that if there was any strate-
gizing by distressed agencies, it was more likely to be under-
reporting their needs instead of over-reporting. While the phenom-
ena contributing to this are very interesting, it is beyond the scope
of this study.
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Lending Agencies Once the broker announces that Rp re-
sources are needed, the lending agencies are faced with a
difficult decision. They need to balance their own resource
needs with the benefits and costs of lending some of their re-
sources to the distressed agency. A lending agency benefits
both from monetary payments it receives as well as the so-
cial goodwill generated by helping a fellow agency in their
time of need.

The costs of lending are two-fold. First, if an agency lends
resources then it has less resources available for its own use
in case of wildfires. This additional risk depends on future
fire events, which are difficult to predict in advance. Abusing
terminology somewhat, we say fireload, w, is the amount of
resources required to successfully control a fire event (this
could include multiple wildfires). We let 2 be the set of
all possible fireloads, and assume during the lending period
(i.e. after the lending decision has been made, but before the
lent resources have been returned) the fireload of agency ¢ is
drawn from 2 with cdf F; and pdf f; and that this is common
knowledge. The second challenge faced by agencies is that
they need to determine whether they have resources they can
lend, and have to ensure that their remaining resources are
deployed effectively. This typically involves solving com-
plex allocation and logistic problems in times of pressure.

We define a lending agency as follows.

Definition 1 A lending agency, i, is defined by its type
0; = (R;, F;, damage, (-, -), goodwill,(+), search;(+))
where:

e R, is the total resources controlled by agency 1,

o F} is the cdf over (),

e damage, : Q x R; — R where damage,(w,r) is the
fire damage i would sustain if it had r resources available
under fireload threshold w. If r > w then damage(w, ) =
0, but for r < w, damage(w, r) is convex.?

e goodwill, : R; — R is the social goodwill that i experi-
ences. We assume that goodwill, (r) > 0 for all r > 0.

e search; : R; — R is the cost that i incurs when deter-
mining its resource availability. This search cost captures
the effort and overhead of finding available resources and
making the decision to lend them. This includes generat-
ing alternative plans to cover situations which might arise
once those resources are gone. We assume that search;(+)
is convex so as to capture diminishing marginal returns of
searching for additional resources.

The actions available to an agency consist of selecting a
subset of its resources to make available for the broker to
send to the distressed agency. We use the notation O; € 2%
to represent the action or offer made by agency i. We fur-
ther make the assumption that resources across agencies are
comparable and substitutable.*

3This captures the increasing severity of the consequences as
the shortfall of resources increases for a given fireload.

“This assumption is not unrealistic given the setting. Either re-
sources are completely incomparable (i.e. airtankers vs axes) and
so can be treated as separate categories or are standardized across
all agencies and so are truly interchangeable.



The utility of agency ¢ with fireload w; which offers re-
sources O; and is selected by the broker to contribute C; C
O; resources is
—damage; (w;, R; \ C;)
—search; (O;).

WC deﬁne ul(ﬁz, Oi, Cz) = qu‘EQq‘, [ul(ez, Oi, Ci, wz)]

Analysis of Resource Sharing

There is a clear interdependency between a particular
agency’s utility and the actions taken by others. An agency’s
utility depends on both the resources it offers to lend (O;)
and the resources it actually contributes (C;), where the lat-
ter may depend on the offers of others. Thus, ideas from
multiagent systems and game theory are appropriate analy-
sis tools for this setting.

A key feature of the lending-agency model is that it
falls into the general deliberative agent framework stud-
ied in the multiagent systems literature (e.g. (Larson and
Sandholm 2001; 2005; Thompson and Leyton-Brown 2007;
2011)). In this framework, agents are uncertain about their
true preferences or valuations for outcomes, but can invoke
costly effort or deliberation to remove this uncertainty. In
our resource-sharing model, a problem faced by the agen-
cies is determining how much resources they actually have
available to lend and balancing the effort or cost required to
determine their resource availability becomes a key strategic
decision.

A strategy for an agency is a mapping from its type to
the effort it exerts to determine its resource availability and
the amount that it declares to the broker. We let resource
levels represent the effort involved in determining the avail-
ability of those resources. This is without loss of generality
due to the existence of the function search;(-) which pro-
vides a mapping from resources to cost or effort. The formal
definition of a strategy is as follows.

Definition 2 A (pure) strategy for agency i with type
0; = (R;, F;, damage(-,-), goodwill(-), search(-)), when
the broker is using protocol Sp, is

o5 0 x 2 (01,05)

where O; is the resources i determines to be available and
O; is the resources i reports to the broker.

In the rest of the paper we make the assumption that
0; = O; and so will write af 5(0;,w) = O;. There are two
reasons for making this assumption, First, it simplifies the
strategy space and allows us to focus on the issue of agen-
cies searching for available resources. Second, while it is
possible that there are scenarios where an agency may have
incentive to report a different resource-value than their true
availability, both back-of-the-envelope calculations and con-
sultations with actual agencies indicate that these tend to be
pathological cases. While it might be interesting to charac-
terize, for example, how extreme risk attitudes could lead to
misreporting of resource availability, we leave this to future
work.
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iven a strategy profile 02 = (0%, 0°F) where 0% =
G trategy profile o5 55 595 ) where 075
(afB,...,affl,affl,...,asB), the utility of agency i

with type 6; under fireload w; is u; (o (6;,w;), 0%
ui(0;, 057 (6;), Sp(057 (6;),0°%),w;). The solution con-
cept used in the analysis is the Bayes-Nash equilibrium.
A strategy profile o* = (oF,0*,) is a Bayes-Nash equi-
librium if for all ¢ and for all 6;, E[u;(c},0%,)|0;] >
E[UZ(UZ,U*_Z)WZ] for all ag; 75 O';»k.

The Broker’s Protocol, Sp: Prioritizing a priori The
protocol used by the broker to select resources to send to D
is key since it influences the strategies of the lending agen-
cies significantly. While the broker’s main interest is collect-
ing enough resources for the distressed agency, it also has
certain preferences as to where those resources come from.
For example, the broker is responsible for handling the lo-
gistics of moving the resources from the lending agencies
to the distressed agency and so the desire to minimize this
overhead can play a role in how resources are selected. In
the rest of this section, we assume the broker ranks agencies
before they make any resource offers, and that this ranking
is fixed and is common knowledge. We also analyse in detail
the case where there are two agencies and then explain how
the analysis can be extended to the n-agency case.

Definition 3 Assume there are two agencies, © and j. As-
sume that the broker uses priority scheme protocol S where
i > j. Then Sp(0;, 0;) = (C;, C;) where

o IfRD C O; then C; :RDande = (.

o IfOZ C Rpand Rp C Oj then C; :(Z)Clnde = Rp.

e IfO; C Rpand Oj C Rp then C; = O; and C; =
(RD \ Ol) n Oj.

That is, the broker prefers to fill Rp by using a single agency
(with ¢ preferred to 7), but if no single agency can fulfill Rp,
B will select ¢’s resources before j’s. This protocol allows us
to partition the strategies of agencies into different classes.
We say that if agency ¢ submits O; O Rp then it makes a
full offer. If it submits O; such that ) C O; C Rp then it
makes a partial offer, and if it submits O; = () then it makes
no offer. Table 1 captures the possible outcomes and utilities
for the different classes of strategies.

Analysis of the 2-Agency Case There are certain obser-
vations that can be made directly from Table 1.

Observation 1 Ifuz (91‘, RD, RD) > Uq (9“ Oi, Ol) for all
O; C Rp then the dominant strategy of i is to offer Rp,
and j’s best response is to search (and offer) nothing. The
equilibrium is c* = (Rp, 0).
Observation 2 [f u;(0;,0;,0;) < 0 for all O; D ) then
1’s dominant strategy is to offer nothing. Agency j’s best re-
sponse is to offer OF = arg maxo, u;(0;, 0, O;).

What is more interesting is what happens if agencies make
partial offers of resources. Since, according to the protocol,

Sp, agency ¢ has priority, as long as agency j does not make
a full offer, the best strategy for i is to find

Of = argmoaxui(gi,oi,oiawi)'



Partial (O; C Rp) Nothing (@)

i\ j Full (Rp)

Full (Rp) u;(0;, Rp, Rp), —search; (Rp)
Partial (O; C Rp) —search;(O;), u;(0;, Rp, Rp)
Nothing (@) 0.u;(0;, Rp, Rp)

ui(0;, Rp, Rp), —search;(O;)
wi(0i,04,0:),u;(0;,0;,(Rp \ O:) N O;)

ui(0;, Rp, Rp),0
ui(0;,0;,0;),0

0,u;(0;,0;,05) 0,0

Table 1: The outcomes when two agencies compete to fullfill a request of resources. We assume that agency 1 has priority over
agency j. Note that this is not the real normal form game representation since there are muliple partial O;.

Since w; may be unknown, agency ¢ will typically maximize
its expected utility.

For a given Oj, if agency j finds and offers O, resources,
then the maximum set of resources in which it will actually
lend is

E; = (Rp\07)NO;.

Agency j’s utility is
u; (05,0, Ejs wj)

pay(E;) + goodwill; (E;)
—damage; (w;, ;)
—search;(0;).

There are two cases.

Case 1 (unconstrained), O; C Rp \ O;: Agency j’s ex-
port is limited by its own capacity. Thus, F; = O;. The
utility of agency j is

’ng-l) ZUj(9j7Oj,Oj,wj'). (1)

Case 2 (constrained) O; D Rp \ Of: Agency j’s export
is limited by the size of the outstanding request. Thus,
E; = Rp \ Of. The utility of agency j is

ul? = u;(0;,05, Rp \ Oi,w;). @)
Note that as O] or O; increases, it is more likely that the
utility of agency j is constrained. Figure 1 illustrates the ef-

fect the above constraints have on the utility of agency j.

The z-axis is the resources found and offered by agency j

and the y-axis is the utility. We show the case where j is un-

constrained in that whatever it finds and offers is used (solid,
blue line), the case where the amount lent by j is constrained
to be at most 50 resources (the dashed, red line) and the case
where the amount lent by j is constrained to be at most 30 re-

sources (the dotted green line). We set the fireload, w; = 70,

and assume that all other things being equal, the social good-

will and payments received from lending resources is higher

than the cost incurred by searching for their ability. Figure 1

show that under these assumptions, if any offer made by

agency j is accepted, then it is best off by offering the max-
imum amount before fire-damage becomes an issue. Offer-
ing any additional resources beyond the threshold results in
significant utility loss. For the constrained cases, the utility
of j increases as it approaches the maximum possible ac-
cepted amount of resources, subject to the offer of ¢. After
this point, its utility decreases, but not in the same dramatic
rate as for the unconstrained case. This is because, while the
agency has incurred additional search costs for finding re-
sources which will not be used, the amount lent never drains
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Constrained and Unconstrained Utility
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Figure 1: Constrained and Unconstrained Utility Curves.

its own resources to the extent that fire-damage becomes an
issue.

For agency j to determine its optimal resource offer, it
must reason about the offer made by i, O}, as this deter-
mines whether its utility falls into the constrained or uncon-
strained case. To this end, we assume that j maintains a set
of beliefs about O} . These beliefs incorporate information
about other agencies’ resources and capabilities, and the in-
formation about expected future fireload as captured by F.
We let p(r) be the probability with which j believes ¢ has
made an offer O = r and let P(r) be the associated cdf.
As new information becomes available, j updates its beliefs
using Bayes’ Rule. The utility for j with fireload threshold
w; when it makes an offer O; depends on whether it is con-
strained by O} or not. Recall that if O; C Rp \ O} then
Jj is unconstrained, while if O; > Rp \ O then it is con-
strained. These conditions are, equivalently, Of C Rp \ o
and Of D Rp \ O;. The expected utility of j is thus

Elu;|0j,w;] = u;j(0;,04,0;,w;)P(Rp \ Oy)
+ Y u(0;,05,Rp \)p(r).
Rp\O;CrCRp

The optimal resources to be found and offered by j (i.e. its
best response) is OF = arg maxo,; Eu;|0;, wj].

Extending to Many Agencies So far we have assumed
that there are only two lending agencies. However, the pro-
tocol used by the broker can be extended to multiple agen-
cies in a natural way. The broker generates a list of agen-
cies in decreasing order of priority. An agency j treats the
preceding agencies 1,2,...,5 — 1 as a single meta-agency,
and maintains a belief about the amount of resources still
required. The same reasoning is required, as described ear-



lier, to incorporate the fact that an agency from 5+ 1,...,n
might offer Rp, pre-empting all previous offers.

Empirical Examples

In this section we instantiate our model and illustrate how
different parameters influence the behavior and utility of
agency j. We emphasize that the contribution of this section
is to highlight qualitative properties and that no quantitative
conclusions should be drawn. Obtaining precise quantitative
results is beyond the scope of this paper and falls into future
work.

Unless stated otherwise, we used the following instanti-
ation of the model. Let Rp = 100 and assume that the
benefits of lending resources is linear in the amount of re-
sources. That is, pay(r) + goodwill(r) = v - r for some
constant v > 1. For search costs, we use the convex func-
tion search(r) = c¢-r® with ¢ > 0 and o > 1. Unless stated
otherwise, we set ¢ = 0.2 and o = 1.136. The damage(-, -)
has the following form:

q _J 0o ifr > w;
amage (w;, ) = k(w; —r)?  otherwise
with # > 1 and £ > 0. Unless otherwise noted, we set
B = 1.8, and k£ = 0.25. Finally, while we experimented
across numerous settings of w; in all shown graphs we have
set w; = 50. Our qualitative conclusions did not change
when varying w; and so we keep it constant here so as to
serve as a consistent benchmark.

Agency j’s utility depends critically on how much agency
i has offered to export. Because O] depends strongly on
the fire-load of ¢, and wildland fireload is typically modeled
using Poisson distributions (see, for example (Witala 1999;
Alvarado, Dansberg, and Pickford 1998; Jiang, Zhuang, and
Mandallaz 2012)), we make the assumption that the maxi-
mum contribution possible for j (which depends on i’s con-
tribution), C%, is distributed according to a Poisson distribu-
tion where Pr(C) = Acg;[ * 5 We initially set A = 50.

Figure 2 shows the expected utility for agency j under our
initial parameters. This figure depicts both the expected util-
ity of agency j if it was not competing with another agency
(the unconstrained utility), and the expected utility after ac-
counting for the other agency. In this case, there is an ap-
parent advantage of having the second agency in the system.
While the optimal offer made to the broker is the same, by
constraining the amount that j will actually lend, it is po-
tentially protected from severe extreme fire damage as it has
extra resources available.

In Figure 3 we show the utility of agency 7 when A = 20.
This corresponds to a situation where ¢ has made a large
contribution of resources, constraining the amount that will
be accepted from j. The optimal offer of j is shifted accord-
ingly, and we observe that if j tries to over-contribute, its

3This assumption can be interpreted as j having a fairly clear
understanding of ¢’s capabilities and resources, but is uncertain as
to the fireload ¢ is experiencing. This uncertainty is informing j’s
beliefs about ¢’s contribution.
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Figure 2: Expected utility under default parameters.
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Figure 3: The expected utility of agency j in both constrained
and unconstrained settings when A = 20.

utility decreases due to search costs. However, the magni-
tude in the utility loss is less than that of the fire damage
when it contributes in full (unconstrained curve).

In Figure 4 we adjusted the search(r) function by increas-
ing the exponent, «, to 1.4. As search costs increase, they
begin to outweigh the social goodwill and payments derived
from lending resources. Thus, there is little benefit to offer-
ing significant resources, irrespective of the contributions of
the other agencies. We also experimented with increasing
the coefficient in the search function and observed similar
trends.

Protocol S’;: Highest-Offer First So far our analysis has
focused on the case where the broker assigns different pri-
orities to the agencies, before they even offer any resources.
In this section, we empirically compare the utility of agency
j under this protocol with an alternate one which selects re-
sources depending on the amounts offered. We assume that
each agency submits their offers, and then the broker or-
ders the agencies based on the size of the offer. That is, if
O; D Oj then ¢ > j. The broker then begins filling Rp
based on this ordering. This policy could be advantageous to
the broker since it minimizes the number of agencies lend-
ing resources (and potentially reducing the logistical over-
head of the broker when coordinating transportation of re-
sources). Figures 5 and 6 compare the expected utility of
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Figure 5: Expected utility of agency j under different alloca-
tion protocols (A = 40 and Rp = 120).

agency j under both protocols and we include the uncon-
strained utility for reference. Note that the different proto-
cols do lead to different best-responses for agency j, given
agency ¢’s expected offer. The highest—offer first policy en-
courages agency j to search for and offer larger bundles of
resources than the prioritization scheme. However, this can
also lead to the agency taking on more risk, and thus suffer
increased losses due to fire damage.

Discussion

We introduced the first model for wildland fire resource shar-
ing. Using ideas and analysis techniques from the multi-
agent systems and game theory literature, we highlighted
the strategic issues which arise in this domain, investigated
best-response strategies for agencies under various resource-
sharing protocols, and illustrated how these strategies are
sensitive to different parameters.

There are several points we want to highlight from our
analysis. First, agencies must be strategic when reasoning
about the resources they make available. Even though there
are benefits from sharing resources, agencies need to miti-
gate their own risk and account for added difficulties they
face when some of their resources are sent abroad. Second,
there are inefficiencies in the system, and these inefficiencies
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Figure 6: Expected utility of agency j under different alloca-
tion protocols (A = 30 and Rp = 60).

are mainly due to uncertainty. If agencies better understood
the types of the other agencies and had more accurate infor-
mation about fireloads overall, then better lending decisions
could be made. Finally, the protocol used by the broker for
selecting amongst offered resources is important. It changes
agencies’ strategies and affects their utilities.

There are a number of future directions this work can
take. First, while our model is based on a series of consul-
tations with experts in the field and, we believe, captures
the key aspects of wildland fire resource sharing, it can be
made richer. Ideas developed in the preference elicitation
literature could be used fine-tune aspects like the goodwill
function (Boutilier 2013), techniques from machine learn-
ing could be used to develop better models of fire dam-
age (Cortez and Morais 2007), while the planning prob-
lems faced by agencies when searching for resources is well
suited for constraint programming techniques (Coffrin and
Hentenryck 2012). Second, we studied two protocols that
the broker might use when selecting resources. It would be
interesting to characterize the optimal protocol in terms of
different constraints. While in practice an optimal protocol
may not be adopted due to a variety of reasons, it would still
be interesting to see what the limits are in terms of resource-
sharing. Finally, while our model and analysis was based
on the Canadian method of wildland-fire resource sharing,
we believe that the ideas and techniques presented are appli-
cable to other wildland-fire resource sharing protocols, and
may be useful for researchers studying resource allocation
in other domains.

We also wanted to introduce the general wildland fire do-
main to the broader Artificial Intelligence community. There
are a number of features of the domain which make it ap-
pealing for Al research in general: there are challenging
planning and logistic problems which are time critical, de-
cisions need to be made under highly dynamic and uncer-
tain circumstances, risks need to be carefully controlled, and
there are interesting issues balancing cooperative and com-
petitive interests. Finally, the problems caused by wildland
fires are global, have great impact on both ecosystems and
economies, and, due to climate change, are expected to be-
come more severe in the future.
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