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A disaster is an unforeseen calamity that can cause damage to properties and can bring about a loss of human lives. Usually, many
relief supplies, such as clean water, food, and medical supplies, are required by disaster victims. Quick response and rapid
distribution of essential relief items into the a�ected region can save countless lives and prevent or slow down the e�ects of
disasters. In this regard, disaster management comes into play, which is highly dependent on the topography and access of the
disaster-hit area. If the disaster-hit site has little or no road connectivity, the use of UAVs/drones becomes essential in delivering
health packages to the a�ected areas to assist with humanitarian aid. Since the battery capacity of the drone is limited, UAVs/
drones require charging stations located at various places to carry out the necessary relief work. �ese charging stations should be
transported using road infrastructure and preinstalled in disaster-prone areas, as access to these areas may be denied once the
disaster hits. �is article presents a novel optimization model to distribute relief items to disaster-hit areas. �e objective of this
model is to optimize the location and the number of the charging stations. We consider the relative priority of locations where a
preference is given to locations with higher priority levels. �e optimal number of charging stations and optimal routes has also
been determined by using our optimization model. To illustrate the use of our model, numerical examples have been simulated for
a di�erent number of targets. �rough our numerical simulation, it was observed that the drone’s maximum distance capacity is
the key factor in determining the optimal grid size, which directly correlates to the number of charging stations.

1. Introduction

Recent disasters have caused signi�cant economic and
human losses, such as earthquakes in Iran (2003, 2017) and
Chile (2011, 2015), and tsunamis in Japan (2011) [1]. Di-
saster is usually a breakdown in the normal functioning of
nature that has a signi�cant adverse impact on people, their
work, and the environment. �ere is a high rate of fatality
that results from a shortage of relief items following a di-
saster [2]. Large amounts of relief supplies, such as clean
water, food, medical supplies, water puri�cation tablets, and
vaccines are required by disaster victims in the event of
natural disasters such as hurricanes, earthquakes, and �oods.

Logistics activities in response to a disaster are com-
monly known as humanitarian logistics. Humanitarian lo-
gistics can be de�ned as the process of planning,

implementing, and controlling the e¡cient and cost-e�ec-
tive �ow of goods and related information, from a point of
origin to a point of consumption to provide relief to the
a�ected regions.

�ere are four stages of disaster management, namely,
mitigation, preparedness, response, and recovery. Our re-
search can be included in the response stage since it involves
all those activities that are performed immediately before,
during, and right after a disaster occurs.

In postdisaster situations, quick response and rapid
distribution of vital relief items into a�ected regions could
save precious lives. �e main challenges of relief items
distribution are associated with means of transport and
transport infrastructure. Humanitarian aid agencies often
face issues like poor or destroyed road infrastructure in
disaster-hit areas. In the event of a disaster, the already poor

Hindawi
Journal of Robotics
Volume 2022, Article ID 7329346, 13 pages
https://doi.org/10.1155/2022/7329346

mailto:zohaib.hassan@mail.au.edu.pk
https://orcid.org/0000-0001-5430-2918
https://orcid.org/0000-0003-1014-3622
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7329346


conditions of the transport infrastructure are further dis-
rupted, as roads are flooded or blocked and bridges are
collapsed [3]. Under these conditions, roads are impassable
and many locations are completely unreachable by land-
based means of transportation. Consequently, the distri-
bution of relief items becomes very difficult using traditional
ground transport infrastructure. Distribution of relief sup-
plies via helicopters is often not applicable due to the lack of
trained pilots. Bringing human and material resources from
outside to disaster locations is costly and often takes too
much time when the time pressure to provide relief is very
high.

)ere is a need for alternative means of transport. In this
regard, unmanned aerial vehicles, commonly known as
drones, can provide solutions to the problems associated
with ground transportation of relief items to disaster-hit
areas. )ey save time and cost compared to traditional
means of transport and make relief items supply to cut-off
regions possible in the first place, as depicted in Figure 1.

Drones are autonomous or teleoperated flying machines
that do not need constant user control. Small drones can fly
at low altitudes and can avoid obstacles at low altitudes quite
easily. )ey have many versatile applications but they also
come up with some limitations. )e limited battery capacity
of the drones puts an upper bound on the maximum dis-
tance that a drone can travel.)erefore, charging stations are
needed that can be used by the drones to recharge their
battery. )ese charging stations should be transported using
road infrastructure and preinstalled in the disaster-prone
area, as access may be denied once it is hit with disaster. In
the postdisaster phase, the already-installed charging sta-
tions can then be used by drones to recharge their batteries.

In the literature, we find several studies that address the
problem of distributing relief items in a disaster setting.
Macias et al. [4] presented an endogenous stochastic vehicle
routing problem model, in which a drone provides infor-
mation to the ground vehicle for the distribution of relief
items. Ma et al. [5] introduced the single depot vehicle
routing problem with a time window constraint. Tu et al. [6]
suggested a bilevel Voronoi diagram-basedmetaheuristic for
a multidepot vehicle routing problem. Sundar [7] and
Archetti [8] proposed, respectively, a tabu search algorithm
and an optimization-based heuristic for split delivery
capacitated vehicle routing problems. Dorling [9] proposed
two multitrip vehicle routing problems for drone delivery
that address the issues of minimizing cost and delivery time.
)e existing literature mentioned in this paragraph ad-
dresses the single and multidepot vehicle routing problems.
However, in our proposed model we have considered a
single depot that stores the relief items and drone batteries.

)e location of depot facilities is also crucial for the
efficient flow of relief items. In this regard, different models
have been proposed. Maghfiroh andHanaoka [10] and
Sundar and Rathinam [7] proposed a multimodal relief
distribution model that determined the optimal locations of
depots. EscribanoMacias et al. [11] present a novel approach
consisting of an integrated trajectory location-routing al-
gorithm to determine the optimal location of depots in the
distribution supply chain. Kim et al. [12] developed a

stochastic modeling framework to determine the locations
and transport capacities of drone facilities to counter a
disaster effectively. )e developed model applies to emer-
gency planning that incorporates drones into humanitarian
logistics while considering the uncertain characteristics of
drone operating conditions. Baharmand et al. [13] proposed
a location-allocation model that divides the topography of
affected areas into multiple layers. It considers the con-
strained number and capacity of facilities and fleets which
allows decision-makers to explore trade-offs between re-
sponse time and logistics costs. Klibi et al. [14] studied the
strategic problem of designing emergency supply networks
to support disaster relief over a planning horizon. )e
problem addresses decisions on the location and number of
distribution centers needed, their capacity, and the quantity
of each emergency item to keep in stock. Chowdhury et al.
[15] presented a continuous approximation model to de-
termine the optimal depot locations.Wei et al. [16] proposed
an integrated-location routing problem for depot selection
and vehicle assignment. Wang studied the location routing
problem of an open emergency logistics system after an
earthquake and designed a heuristic algorithm to solve a
nonlinear integer location routing problem optimization
model [17].)emodels proposed byMoshref-Javadi and Lee
[18], Wei et al. [16], and Davoodi and Goli [19] examine the
simultaneous location routing problems for supply distri-
bution operations. A biobjective location routing and
scheduling model was proposed by Wei et al. [16] with two
objective functions, consisting of the total cost and penalty
cost caused by time window violations. In the literature work
discussed here, the optimization problems of the depot
locations are discussed. In our model, the location of the
depot is fixed.

)e decisions making regarding location, allocation, and
distribution of relief items is of great importance to the
Humanitarian Relief Chain (HRC) managers in response to
disasters such as earthquakes. Sahebjamnia et al. [20] de-
veloped a hybrid decision support system consisting of a
simulator, a rule-based inference engine, and a knowledge-
based system to configure a three-level HRC. )e perfor-
mance measures including the coverage, total cost, and
response time are considered to make a trade-off analysis
between cost efficiency and responsiveness of the designed
HRC. Liu et al. [21] studied a location routing problem

Figure 1: Typical drone route for delivering relief packages to the
targets while stopping at charging stations.
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(LRP) to address the shortage of relief in disaster areas
during the early stages of an earthquake. A multiobjective
model for the fair location routing problem was developed
by lexicographic order object optimal method in consid-
eration of the urgent window constraints, partial road
damage, multimodal relief delivery, disaster severity, and
vulnerability of each demand node when its demand is not
satisfied. )e goals of this model are to minimize the
maximum loss of the demand node, the total loss of the
demand node, and the maximum time required for the
demand node to receive relief.

)e challenges faced in the disaster response phase are
numerous, due to the limited availability of resources and
the lack of centralized coordination and infrastructure. Silva
et al. [22] presented a procedure for the decision-making
process of structuring an aid distribution network in disaster
response operations with the application of drone tech-
nologies and geographic information systems. Balcik et al.
[23] considered a vehicle-based last mile distribution system,
in which a local distribution center (LDC) stores and dis-
tributes emergency relief supplies to a number of demand
locations. )e main decisions are allocating the relief sup-
plies at the LDCs among the demand locations and deter-
mining the delivery routes for each vehicle throughout the
planning horizon. )is work proposes a mixed-integer
programming model that determines delivery schedules for
vehicles and allocates resources, based on supply, vehicle
capacity, and delivery time restrictions, with the objectives of
minimizing transportation costs and maximizing benefits to
relief recipients. )e previous studies discussed in this
paragraph addresses the decision-making regarding the
allocation of relief supplies at different depots for distri-
bution purpose. We have made an assumption that the relief
supplies are present in a fixed depot location.

Some studies in the literature focus on multiple sources
of transportation for relief items distribution to the disaster
areas. Sahe [24] proposed a novel model in which multiple
drones and trucks can work together to deliver vital relief
items. A drone can depart from a truck and return to the
same or a different truck after completing the delivery
process and a truck can accommodate multiple drones.
Escribano Macias et al. [4] presented a novel endogenous
stochastic vehicle routing problem that coordinates drone
and land-based relief vehicle deployments to minimize the
mission cost. Ertem et al. [25] determined that the use of
multimodal and intermodal transportation can be alterna-
tives if relief distribution cannot be accomplished using an
infeasible single mode of transportation. One of the studies
conducted by Barbarosoglu and Arda [26] proposed a
multicommodity and multimodal network flow model for
the distribution of relief supplies in disaster responses. Najafi
et al. [27] proposed a multimodal stochastic model to
manage the logistics of both commodities and injured
persons in earthquake response operations and developed a
dynamic model for the same problem. Chung et al. [28]
present a survey of the state-of-the-art optimization ap-
proaches in the civil application of drone operations and
drone truck combined operations including infrastructure,
agriculture, logistics, disaster management, and

entertainment. )e author reviews ongoing research on
various optimization issues related to drone operations and
drone and truck combined operations including mathe-
matical models, solution methods, synchronization between
a drone and a truck, and barriers in implementing drone
operations and drone and truck combined operations.
Maghfiroh and Hanaoka [29] investigated the application of
the dynamic vehicle routing problem for last-mile distri-
bution during disaster response.)is work explored a model
that involves limited heterogeneous vehicles, multiple trips,
locations with different accessibilities, and uncertain de-
mands to build responsive last-mile distribution systems.
)e existing work mentioned in this paragraph focuses on
multimodal transportation for transporting relief items
whereas our proposed work involves only a single mode of
transportation, i.e., drones.

It is essential to determine the type, number, and lo-
cation of the demand areas for timely delivery of relief
supplies. In this regard, Sebatli et al. [30] presented a
simulation-based approach to determine the demand of
disaster-hit areas and appropriately assign depot locations.
Holguin-Veras et al. [31] discussed the effect of late deliv-
eries and unmet demand on the performance of the post-
disaster humanitarian logistic operations. Rivera Royero
et al. [32] addressed the problem of distributing relief
supplies after the occurrence of a disaster. In this work, a
dynamic model is developed to serve demand, while pri-
oritizing the response, according to the level of urgency of
demand points. Faiz et al. [33] presented a two-echelon
vehicle routing computational framework. In this work, a
hotspot drone captured the demand by providing com-
munication capabilities to the disaster-hit area, and a de-
livery drone satisfied the demand. Rivera-Royero et al. [34]
proposed a rolling horizon methodology that considered
dynamic parameters, such as demand quantity, capacities of
drones, and demand priorities, for the distribution of relief
items by including relief goods. )is methodology also in-
cluded assembling activities before the delivery of items.
Zhan et al. [35] included the reliability of the distribution
network while reflecting stochastic demand in a disaster
situation. Lu et al. [36] developed a real-time relief distri-
bution model for disaster response that includes a demand
and time estimator as well as a module for solving optimal
distribution flows. Mishra et al. [37] presented a two-phase
bounded heuristic approach for logistics distribution as a
response to the postdisaster relief operation. )e proposed
approach is focused on two major objectives: minimization
of unmet demand and travel distance.

)e arrival time of the relief itemsmainly depends on the
state of the road. We have made an assumption in our
proposed model that the type, quantity, and location of
demand points are known.

In literature, we find studies that consider factors such as
the state of the road, which affects the delivery time. Hu et al.
[38] proposed a multistage stochastic programming model
for disaster relief distribution that considered multiple ve-
hicle types and the state of the road network. Sabouhi et al.
[39] considered the expected arrival time of relief vehicles to
the disaster-hit areas keeping into consideration the
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disruptions caused due to disasters. Baskaya et al. [40] used
different route distances between centers and affected lo-
cations to reveal the disruption levels of the road network.
Alem et al. [41], Moreno et al. [42], and Ferrer et al. [43] used
binary variables to describe the state of arcs in the relief
distribution problems. Penna et al. [44] used the concept of
rich vehicle routing and considered accessibility constraints
that allowed only compatible vehicles to serve particular
routes owing to road blockage or geographical conditions.
)e existing literature discussed here addresses the effects of
the state of the road on the delivery time of the relief items to
the affected areas. Our proposed model utilizes aerial ve-
hicles (UAVs/drones) that are not dependent on the state of
the road for the delivery of the relief items.

Some studies in the literature discuss the effects of a
drone’s flight-related parameters. Poudel et al. [45] dem-
onstrated the applicability of drones in transporting
emergency medical products and investigate how different
parameters that affect the drone flight contribute to the cost
of transportation. Zafar et al. [46] proposed a distributed
method that allows a fleet of drones with diverse capabilities
to communicate and collaborate, to increase the task
completion rate of rescue operations. )e proposed solution
consists of three main modules. )e communication and
message transmissionmodule enables collaboration between
drones, the realignment module allows drones to negotiate
and occupy the best position in the air to optimize the
coverage area, and the situation monitoring module iden-
tifies the ground situation and acts accordingly. Kim et al.
[12] presented a stochastic modeling framework to deter-
mine the locations of drone facilities and transport capacities
of drones for effectively handling the disaster. Baharmand
et al. [13] proposed a location-allocation model that con-
sidered the capacity of facilities and vehicle fleets and en-
abled decision-makers to determine trade-offs between
response time and logistics costs. Rottondi et al. [47] ex-
plored the joint planning of multitasking missions using a
fleet of drones that were equipped with a standard set of
accessories, which enabled heterogeneous tasks. In our
proposed model, we have considered a drone capable of
performing homogeneous tasks for the single-tasking
mission.

In literature, some authors have addressed the problems
of drone routing and path planning. However, most of the
research focused on finding the optimal path considering
only geometrical constraints, without taking into account
the features of the robot, like maximum energy capacity,
weight, and maximum speed. Di Franco et al. [48] proposed
an energy-aware path planning algorithm that minimizes
energy consumption while satisfying a set of other re-
quirements, such as coverage and resolution. Drones
powered by batteries or fuel cells require refueling or
recharging stations for extending coverage to a wider area.
Hong et al. [49] proposed a location model to support
spatially configuring a system of recharging stations for
drone delivery service.

)e optimization techniques discussed in [50, 51] are
taken as a guide to solving our proposed optimization
model. )e work proposed in [52] is the most relevant to

our work. Huang and Savkin [52] presented a model to
investigate the deployment of several charging stations to
cover the targets in an urban demand area. In this model,
the location coordinates of the target areas are already
known. )e charging stations covering no or fewer target
locations are removed. )erefore, some areas are not
reachable by drone. Our study aims to develop a
mathematical model and use existing techniques to
optimize drone delivery of relief items to disaster-hit
areas considering the technical specifications of drones.
)e proposed model considers drone energy consump-
tion as a function of the payload and Euclidean distance.
In our proposed model, the target locations are un-
known, so we performed our simulation using random
target locations.

)e contribution of the proposed study is listed as
follows:

1. In this study, we present a novel optimization model
to optimize the location and number of charging
stations for the predisaster phase

2. )e relative priority of locations is attributed and a
preference is given to the disaster-hit areas with
higher priority levels

3. )e routes of drones are optimized for the post-
disaster phase

)e remainder of this study is organized as follows: In
Section 2, the cost function and constraints are defined to
build the optimization model. Section 3 presents the
methods used for grouping and path planning. In Section 4,
the simulation results of numerical examples are discussed.
Future work and conclusion sections are given at the end.

2. Problem Formulation

In this section, we have discussed all the parameters of our
model. Let us say we have a set of target/disaster-hit loca-
tions Ť � {T1, T2,. . .,TM} and a set of drone charging stations
Ř� {R1, R2, R3,. . .,RC}, whereM and C are the total numbers
of target/disaster-hit locations and drone charging stations,
respectively. Let the set of base stations Ή� {H} be a sin-
gleton set. Y� Ť ∪ Ř ∪ Ή is the set of all locations in the
system. We assume that the target locations are of low-,
medium-, and high-priority categories. K is the number of
clusters into which the target locations are divided. N is the
total number of drones.

Let S be the maximum distance that this drone can cover
with a maximum payload weight and maximum battery
capacity.We assume that the payload capacity of the drone is
three packages, each with a weight equal to 5 kg. )e
maximum payload weight that the selected drone can carry
is 15 kg.

We assume that the demand of every target location is
c� 1. )erefore, a drone can deliver relief packages to three
target locations in one route.

Let us discuss a scenario in which a drone follows two
different routes for the same target locations given in
Figures 2(a) and 2(b).
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Let G, the grid size, be the distance between adjacent
drone charging stations. �e number of charging stations
in a de�ned area depends on the value of the grid size G.
For a larger value of G, we have fewer charging stations in
the de�ned area and vice versa. In Figure 2(a), there are
four charging stations. �e dotted line shows the shortest
path (displacement) from target T2 to target T3. Suppose
the drone does not have enough energy to reach T3 directly
from T2. It will need to visit a nearby charging station to
recharge its battery; therefore, it covers an o�-track dis-
tance, as shown by the solid line in Figure 1(a). In
Figure 2(b), a grid of six charging stations is shown. In this
scenario, the drone travels over a shorter o�-track distance
to reach the charging station from target location T2.
When the charging stations are fewer in number, there is a
higher probability that the drone travels a longer o�-track
distance and vice versa.

2.1. Cost Function. As discussed before, there is an inverse
relationship between the number of charging stations and
the distance traveled by the drone. �e objective of our
model is to minimize both the number of charging stations
and the total traveled distance.

�e cost function is de�ned as follows:

min(uC +D), (1)

where C is the number of charging stations and D is the total
distance.We have assumed that the value of u in (1) is 10, i.e.,
the cost of traveling a distance of 10 km is equal to the cost of
installing one drone charging station.

2.2. Constraints

2.2.1. Degree Constraints. Let Ή be the singleton set of the
base stations. Ť is a set of target locations, Ř is the set of
charging stations, xij is the number of times a drone travels

from location i to j, and Y is the set of all locations in the
system. Degree constraints are given as follows:

We assume that each demand location in Ť is visited
exactly once by only one drone, as given in

∑
(i∈Y/ j{ })

xij � 1, j ∈ Ť. (2)

At least one drone is used to supply relief items to
demand locations in Ť. �erefore, the number of drone
moves xij between the depot and demand locations Ť or
charging stations Ř must be greater than 0, as expressed in

∑
(j∈Y/Ή)

xij> 0, i ∈ Ή. (3)

2.2.2. Demand Constraints. Letwij be the payload carried by
the drone when it travels from location i to j. W is the total
payload capacity of the drone, and c is the unit package
demand. �e demand constraints are given as follows:

For energy-saving purposes, the drone does not need to
carry the maximum payload on each route. We impose that
the drone returns to the depot empty, as expressed in

∑
j

wji � 0, i ∈ Ή. (4)

If the drone travels from i to j, the di�erence in the
payload (between arrival and departure) is equal to the
demand at location i, which is a unit package, given in (5),
except for the charging station locations given in (6).

∑
j

wji −∑
j

wij � c, i ∈ Ť, (5)

∑
j

wji −∑
j

wij � 0, i ∈ Ř. (6)
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Figure 2: Two di�erent drone routes for the same targets of (a) four charging stations and (b) six charging stations.

Journal of Robotics 5



)e payload on any route cannot exceed the maximum
payload of the drone, as given in

wij ≤W, i ∈ Y, j ∈ Y. (7)

2.2.3. Energy Constraints. Let eij be the energy level of the
drone when it leaves location i to travel to j. E is the
maximum battery capacity of the drone, dij is the distance
between locations i and j, ρ0 is the energy required for an
empty drone to fly one unit distance, and ρ is the additional
energy needed for a drone to fly one unit distance with one
package. )e energy constraints are given as follows.

We assume that the drone’s battery is always fully
charged when it leaves the depot or a charging station, as
expressed in

eij � E, i ∈ Ή∪ Ř, j ∈ (Y/ i{ }). (8)

)e energy level of the battery is always lower or equal to
the maximum energy level E, as expressed in

eij ≤E, i ∈ Ť, j ∈ (Y/ i{ }). (9)

Equation (10) gives the energy balance, i.e., the amount
of energy consumed to move from any location to location i
in Ť.


j∈(Y/ i{ })

eji − 
j∈(Y/ i{ })

eji � 
j∈(Y/ i{ })

dji ρo + ρwji , i ∈ Ť.

(10)

)e energy level in the battery when the drone leaves
location i must be sufficient for it to reach any charging
station Ř and demand location Ť, as expressed in

eij ≥ dij ρo + ρwij , i ∈ Y, j ∈ Ř, (11)

eij ≥ dij ρo + ρwij +

djk ρo + ρwjk , i ∈ Y, j ∈ Ť, k ∈ Ř.
(12)

All the constraints have been used just to validate the
path taken by a drone and that they do not affect the value of
the cost function in our model. Some constraints apply
before the drone makes a single move, some apply after the
drone has made a single move and some apply on the whole
route of the drone. )e constraints given in (4), (7)–(9), and
(11) apply before the drone has made a single move. )e
constraints given in (5), (6), and (10) apply when the drone
has made a single move while the constraints given in (3)
and (4) apply on the whole route.

2.3. Assumptions in Our Model. We proposed a model to
optimize the number of charging stations to be preinstalled
in the disaster-prone area. We assume that historical data is
available about the location of the disaster-prone areas,
where the charging stations will be transported and installed.
)e charging stations will be fixed facilities. In the post-
disaster phase, the location of the charging stations will not
be changed concerning the location of the targets, as it will

be costly and crucial time will be lost. We assume that the
mobile phones or the hot spot drone will be used to get the
data on the location and the priority level of the targets. We
have selected a rotary drone for our simulation. )e max-
imum distance capacity of the selected drone is 16 km. )e
payload capacity is 15 kg, with each package equal to 5 kg
that contains vital relief items like dry ration, water, and a
first-aid kit.)e base station has relief packages and a battery
charging mechanism. )e drone will look for the charging
station when its battery level is less than 50 percent of the
maximum battery capacity.

3. Methods and Strategies

In this section, we discuss the methods and strategies used
for obtaining the optimal number of charging stations and
optimal routes. We proposed an algorithm for obtaining the
optimal number of charging stations. )e flow chart is given
in Figure 3.)e flow chart determines the minimum value of
the cost function which gives us the optimal grid size and the
optimal number of charging stations. )e process is
explained as follows. )e drone’s maximum distance ca-
pacity S is used to get the maximum valid grid size, VGmax,
for a given size of the disaster area.)e “for” loop in Figure 3
is run for different values of the grid size. For each grid size
value, different number of charging stations is obtained. For
simulation, random targets of different priority levels are
scattered in the defined area. )e targets are grouped into
three targets each as the payload capacity of the selected
drone is three packages. Each drone visits three targets and
returns to the depot empty. )e total average distance
covered by the drone is calculated. For each iteration of the
“for” loop different number of charging stations and total
average distance is obtained. )e expression given in (1)
gives different values of the cost function for different
numbers of charging stations and the total average distance.
)e minimum value of the cost function determines the
optimal value of the grid size which correlates to the optimal
number of charging stations.

We randomly distribute low-, medium-, and high-pri-
ority targets within the defined area, as shown in Figure 4.

Further sections explain the modules of the grouping of
targets, group ordering, and path planning/routing.

3.1. Grouping. )e objective of making groups is to first visit
those targets that are closer to each other and have a higher
priority level value. Hence, the drone covers a shorter dis-
tance and covers more high-priority areas, also achieving a
greater summed priority score if all priority values of the
visited group are summed.

3.1.1. Selection of the First and Second Target. )e base
station is taken as the reference location for selecting the first
target of a group. )e distance between every target in a
cluster and the base station is calculated. In Figure 5, the
arrows indicate the distances between each target and the
base station. )e shortest distance is termed dmin.
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First, we calculate the value of αi for the ith target in a
cluster using

αi �
dmin

dHTi
. (13)

In equation (13), dHTi is the distance between the ith
target and the base station, and dmin is the distance of the
target that is closest to the base station.�e value of αi for the
ith target is at its maximum for the closest target from the
base station.

β i is the priority of the ith target, as given in (14), which is
at a maximum for a high-priority target.

δi � αiβi. (14)

�e target with the highest value of δ is chosen as the �rst
target of a group. For selecting the second target of a group,
the location of the �rst target is considered as the reference
location instead of the base station.

3.1.2. Selection of the �ird Target of a Group. �e �rst and
second selected targets are taken as the references for the
selection of the remaining three targets to complete a group.
�e sum of the distances of the ith target from the �rst and
second selected targets is calculated. �e arrows shown in
Figure 6 indicate the distances of the ith target from the �rst
and second selected targets.

In Figure 6, P and Q are the �rst and second selected
targets, respectively, where dPi is the distance between the ith
target and the �rst selected target P, and dQi is the distance
between the ith target and the second selected target Q. First,
we calculate the value μi of the ith target using

μi �
dmin

dQi + dPi
, (15)

where dmin is the minimum distance of the ith target from
both reference locations P and Q, dQi and dPi are the dis-
tances between the ith target and the reference locations Q
and P, respectively. μi of the ith target location will be greater
for a target that is closer to both P and Q. βi is the priority
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Figure 4: Random distribution of low-, medium-, and high-pri-
ority targets.
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Figure 5: Proposed layout showing distances between the targets
and the base station.

Maximum Valid Grid Size, VGmax

S = Drone’s maximum distance

for i = VGmax: -1 : 1
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Figure 3: Flow chart of the proposed algorithm for determining the
optimal number of charging stations.
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value of the ith target, and ζi of the ith target is calculated
using the formula given in

ςi � μiβi. (16)

�e target with the highest value of ζi is selected as the
third target location to complete the group of three targets.
Groups of the targets are shown in Figure 7.

3.1.3. Method to Order Groups. In this section, we devise a
method to arrange the groups in order, so that the groups
that are closer to the base station and have higher
throughput are visited �rst. Here, summed priority score is
the sum of the priority level values of the targets in a group.
In Figure 8, arrows indicate distances between the centroids
of groups and the base station.

�e value of λi for the ith group is calculated using the
expression in

λi �
dmin

dHi
, (17)

where dmin is the closest distance between that group and the
base station, dHi is the distance between the centroid of the
ith group and the base station, and λ is the maximum of the
group for which the centroid is closest to the base station. Ui
is the throughput of the ith group. ξi for the ith group is
calculated using (18), and the groups are arranged in
descending order concerning ξ.

ξi � λiUi. (18)

�e group with the highest value of ξ is served �rst, and
that with the lowest value of ξ is served at the end.

3.2.PathPlanning. We de�ne a route as the path followed by
a drone to visit targets and return to the base station.
Equation (12) is the energy required to visit any target

location. A drone requires a charging station when it cannot
reach the target destination directly. �e drone may need to
visit more than one charging station if the destination target
is very not reachable with the current battery level. In our
model, the drone will search for the nearby charging station
when its battery level is less than 50 percent of the maximum
battery capacity. �e drone will select the charging station
which is near to the destination if there are multiple charging
stations at an equal distance from the current location of the
drone. For each iteration of the loop in Figure 3, we get a
di�erent number of charging stations, total distance, and the
value of the cost function corresponding to the di�erent
values of the grid size.

�e optimal grid size is determined by the value of G for
which the cost function is at its minimum. �e optimal
number of charging stations corresponds to the optimal
value of the grid size for a de�ned area.
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Figure 7: Division of targets into groups of three targets each. �e
square symbol indicates high-priority targets, the diamond symbol
showsmedium-priority targets, and the triangle symbol shows low-
priority targets.
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�e algorithm given in Figure 9 determines the optimal
routes using the optimal number of charging stations ob-
tained using the algorithm given in Figure 3.

4. Simulations and Results

In this section of the paper, we present numerical examples
for predisaster and postdisaster scenarios to illustrate the use
of our proposed model. We have selected Matlab (Math-
Works) tool for our simulation. We have assumed that the
payload capacity of the drone is W� 3 packages. �e de-
mand at each target is c� 1 package. �e weight of each
package is 5 kg which contains a dry ration, water, and a �rst
aid kit. Each target is assigned a value based on its priority
level. �e high-priority value is equal to 1, the medium-
priority value is 0.7, and the low-priority value is 0.4. Ini-
tially, the drones are located at the base station at the start of
the delivery process. �e process of simulation is explained
as follows.

�e targets are divided into groups of three targets each.
�e initial value of the grid size is less than the drone’s
maximum distance capacity, S. �e grid size value deter-
mines the number of charging stations. �e route of the
drone is completed when it departs from the base station and
returns after visiting three targets for supplying relief
packages. �e simulation is run 1000 times for each value of
the grid size value. In each iteration of the simulation, the
targets change their location. �e grid size will be valid only
if the charging stations corresponding to the speci�c grid
size are accessible to the drones for recharging. �e average
minimum distance covered by the drones is calculated for
each grid size value. �e value of the cost function is cal-
culated for di�erent values of the grid size. �e minimum
value of the cost function determines the optimal value of the
grid size.�e number of charging stations determined by the
optimal grid size is the optimal charging station. Table 1
shows the average minimum distance, charging stations, and
cost function value against di�erent values of the grid size.

In scenario 1, the number of targets is M� 12. �e di-
saster area is a square with sides of 15 km each. �e optimal
charging stations are 4, corresponding to the optimal grid
size value of 9.25 km, as shown in Table 1.

Figure 10 shows the graph of the grid size and the cost
function. At a grid size value of 9.25 km, we get the minima.
(see Table2)

In the second scenario, simulations were done for the
predisaster phase to get the optimal grid size value and the
optimal charging stations for various targets. �e area of the
disaster is �xed, and the number of the targets is varied.
Figure 11 shows the graph of the grid size values and the cost
function values for the di�erent numbers of the targets. �e
simulation is done with four di�erent numbers of targets,
i.e., 6, 9, 12, and 15. �e simulation results indicate that the
optimal grid size value in all the plots is the same as 9.25 km
as shown in Figure 11. �e optimal value of the grid size is
the same for di�erent numbers of targets.

In the third scenario, simulations were done for the
postdisaster phase. �e optimal routes of the drones were
determined. �e charging stations, in this case, are optimal

charging stations determined in the predisaster phase. In this
case, the number of the targets is kept equal to 12, and the
size of the disaster area is kept equal to a square with sides of
15 km. �e number of optimal charging stations is four.
Figure 12 shows the optimal routes for the targets in four
groups.

Optimal Drone Charging Stations

Distribution of low-, medium-, and high-priority targets

Grouping of Targets

Groups Ordering

Path panning

Optimal Routes of the Drones

Figure 9: Methodology of the proposed algorithm for optimal
routes.

Table 1: Total distance and the calculated cost function.

Scenario Grid
size (km)

Charging
stations

Distance
(km)

Cost
function

1 15 4 180.93 220.93
2 14 4 155.46 195.46
3 13 4 139.40 179.40
4 12 4 131.37 171.37
5 11 4 125.12 165.12
6 10 4 123.91 163.91
7 9.5 4 122.93 162.93
8 9.25 4 121.46 161.46
9 9 4 122.53 162.53
10 8 4 125.25 165.25
11 7 9 117.53 207.53
12 6 9 117.09 207.09
�e minimum cost function value is obtained at a 9.25 km grid size.
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Figure 10: �e graph of the grid size versus the cost function. At a
grid size value of 9.25 km, we get the minima.
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4.1. Discussion on Results. We ran our simulations to get the
optimal grid size for a de�ned area and the number of
targets. Our results show that the optimal grid size is equal to
9.25 km, which determined the optimal charging stations to
be equal to four. �e simulations were also done for the
various targets. �e optimal grid size was determined to be
the same as 9.25 km for the di�erent number of targets. Our
simulation results show that the optimal grid size and the
number of optimal charging stations are independent of the
number of targets and that they only depend on the drone’s
maximum distance capacity, S.

4.2. Limitations of the Proposed Model. In our model, we
have assumed that the group size is three targets. If the
number of targets is not a multiple of three, then some
targets will be left ungrouped. As of now, we have considered
only the �yingmode of the drone in the energy equation.�e
proposed model does not take into account real-life con-
straints like the wind speed and other �ight-related pa-
rameters of the drone. We have not considered the
possibility that the charging station can be already occupied
by a drone for recharging when another drone visits that
charging station. We have allowed only one visit to a target
location. If we consider multiple visits to a target location,
the time at which the package is delivered would become a
relevant parameter in the model.

4.3. FutureWork and Recommendations. In future work, we
can consider some parameters like the speed of the wind and
other �ight-related parameters of a drone to get more re-
alistic simulations. �e vertical take-o� landing mode of the
drone may also be considered in the energy equation.
Multiple visits to a target location may be allowed to cater to
a large demand of the target locations.

Table 2: Symbols and abbreviations.

Symbol Description
Ť Set of target locations
Ř Set of charging stations
Ή Set of base stations
Y Set of all locations in the system
M Number of target locations
C Number of charging stations
S drone’s maximum distance capacity
C Demand of target location
G Grid size
D Total distance covered by all drones
x ij Number of times drone travels from location i to j
I Index used for locations
J Index used for locations
wij Payload carried while leaving location i to j
W Total payload capacity of the drone
e ij drone’s energy level while leaving location i to j
E Total energy capacity of the drone
d ij Distance between location i and j

ρ 0
Energy required for an empty drone to �y one unit

distance

ρ Additional energy needed for a drone to �y one unit
distance

d min Distance of the target that is closest to the base station
α Ratio of distances
d Hti Distance between the ith target and the base station
β i Priority value of the ith target
μ i Likelihood measure of ith target to be selected
P First selected target of a group
Q second selected target of a group

d Pi
Distance between the ith target and the �rst selected

target P

d Qi
Distance between the ith target and the second selected

target Q
Μ Ratio of distances
ζ i Likelihood measure of ith target to be selected
Λ Ratio of distances
ξ i Likelihood measure of ith group to be served �rst

C
os

t f
un

ct
io

n

0
8 10 129 11 13

Grid size (km)
14

100

200

400

300
100

9 9.5

Minima st 9.25km

150

200

Targets = 12
Targets = 15

Targets = 6
Targets = 9

Figure 11: Cost function versus the grid size values for the di�erent
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numbers of targets.
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5. Conclusion

In this work, a simulation model was used to optimize the
number and location of drone charging stations for de-
ployment in a disaster-prone area. )e relative priority of
locations was considered, and preference was given to tar-
gets with higher priority levels. For the postdisaster phase,
our model finds the optimal routes for the drones using data
on the locations and the priority levels of the targets. We
presented three scenarios to illustrate the use of our pro-
posed model. In the first scenario, the number of targets
M� 12, and the area is a square with sides equal to 15 km
each. We obtained the optimal grid size to be equal to
9.25 km. )e optimal grid size of 9.25 km corresponds to
four optimal charging stations for a given disaster-hit area.
In the second scenario, we ran our simulations for the
different numbers of targets. )e simulations showed that
the optimal grid size is the same for the different number of
targets. In the third scenario, we calculated the optimal
routes of drones using the optimal charging stations ob-
tained in the first scenario. It can be concluded that the
optimal G is independent of the number of targets in the
disaster-hit area, and it only depends on the drone’s max-
imum distance capacity S. )e presented research work can
be applied in situations where relief supplies are needed to be
provided swiftly to multiple locations hit by various kinds of
disaster, including floods, earthquakes, avalanches, land-
slides, and storms.
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