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Abstract
The weather has a major impact on the profitability, safety, and environmental sus-
tainability of the routes sailed by seagoing vessels. The prevailing weather strongly
influences the course of routes, affecting not only the safety of the crew, but also the
fuel consumption and therefore the emissions of the vessel. Effective decision support
is required to plan the route and the speed of the vessel considering the forecasted
weather. We implement a genetic algorithm to minimize the fuel consumption of a
vessel taking into account the two most important influences of weather on a ship: the
wind and thewaves. Our approach assists route planners in finding cost minimal routes
that consider the weather, avoid specified areas, and meet arrival time constraints. Fur-
thermore, it supports ship speed control to avoid areas with weather conditions that
would result in high fuel costs or risk the safety of the vessel. The algorithm is evaluated
for a variety of instances to show the impact of weather routing on the routes and the
fuel and travel time savings that can be achieved with our approach. Including weather
into the routing leads to a savings potential of over 10% of the fuel consumption. We
show that ignoring the weather when constructing routes can lead to routes that cannot
be sailed in practice. Furthermore, we evaluate our algorithm with stochastic weather
data to show that it can provide high-quality routes under real conditions even with
uncertain weather forecasts.
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1 Introduction

Adverse weather conditions pose a significant danger to ships, their crews, passengers,
and cargo and represents one of themain causes of delays in the shipping industry (Not-
teboom 2006). Since over 90% of the world trade is carried by ships (Hoffmann and
Sirimanne 2017), considering the weather when finding safe and efficient routes for
ships is of utmost importance. Furthermore, finding good routes for ships lowers fuel
consumption, leading to lower CO2 emissions. Finding routes that are not only safe
and efficient, but also ensure that the ship arrives on time is a complex task that is
difficult to do by hand, especially when considering the weather.

In this paper, we present an approach for finding routes between two points on the
globe considering the current weather along the route. For this, we use a real-coded
genetic algorithm (GA) with specialized mutation and crossover operators for the
weather routing of ships. Our goal is to minimize the fuel consumption of the vessel
while respecting a constraint on the latest arrival time at the vessel’s destination. Our
GA finds realistic, smooth routes that are not restricted to an arbitrary grid and avoid
adverse weather conditions, such as strong storms, considering spatial and temporal
aspects of the weather.

Our approach contains the following novel components:

1. We provide a general routing algorithm that does not have preset values for the
longitudes/latitudes of the waypoints along the path.

2. The speed of the vessel is variable, allowing for, e.g., slow-steaming.
3. The generated routes avoid sharp changes in direction to ensure they can be sailed

by even large vessels.

We test our algorithm with instances based on many different geographies and
weather conditions. Our results show that the minimization of fuel consumption leads
to routes avoiding areas with adverse weather conditions, as weather and sea con-
ditions largely effect the different factors travel time, safety and fuel consumption
simultaneously. Due to the high bunker consumption of container vessels, even small
percentage improvements lead to high cost savings. However, it is also possible to sail
through areas with favorable weather conditions to increase the speed of the vessel.
The weather data we use in our algorithm is provided by an industrial partner so that
we have reliable, real-life information. Overall, the different instances show a wide
range of possible savings potentials of up to 13.9% over ignoring the weather. Fur-
thermore, our results also show that the consideration of weather conditions can have
a high impact on the route depending on the weather intensity. Our algorithm is also
faster than existing approaches, requiring only a single minute of CPU time even for
large instances. For smaller instances, the runtime falls to under 30 s.

This paper is organized as follows. The weather routing problem is described in
detail in Sect. 2. In Sect. 3, the main algorithms for weather-dependent routing of
vessels are summarized. Our genetic algorithm is presented in Sect. 4. In Sect. 5,
we show computational results for the algorithm for different instances. Section 6
summarizes the paper.
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2 Weather routing of ships

Consider a decision maker who wants to determine a route for a vessel over the ocean
between two ports. The route clearly must avoid landmasses, shallows, and any other
undesirable area as specified by a planner [e.g., pirate zones, or Sulphur Emission
Control Areas (SECA)]. SECA zones are areas in which the emission of sulphur and
sulphur oxides by ships is restricted by law. Planners may also specify a maximum
time duration (due date) for the voyage.

We allow vessels to vary their speed along their voyage, thus parameters related to
the fuel consumption and impact of weather on the speed of the vessel (draft, displaced
volume, waterline length, block coefficient and design speed; the design speed is a
speed of the vessel for which the fuel consumption is known.) must be determined.
The vessel also has a minimum and a maximum speed between which the speed can
be chosen throughout the route. Typically, the problem of weather routing is modeled
as a minimum time problem or a minimum fuel consumption problem subject to some
constraints (avoiding unfavorable weather, etc.). We solve the problem as a minimum
fuel consumption problem, since in the variable speed setting, minimizing only the
time leads to expensive solutions with high CO2 outputs. In this work, we use a model
of speed consumption that takes into account wind and waves. It is possible to use a
more sophisticated model for the calculation of the fuel consumption, but we note that
this has no impact on the algorithmic aspects of our approach.

2.1 Computation of the fuel consumption

Accurately representing the fuel consumption of vessels is critical for making realistic
weather-dependent routes. We use the formula

F(v) = (v/v∗)3 · f ∗ (1)

from Brouer et al. (2013) to compute the fuel consumption (subsequently referred to
as the bunker consumption), where v is the speed of the vessel in knots, v∗ is the design
speed and f ∗ is the fuel consumption at the design speed. We split the route into n
segments each with a fixed speed vi . The bunker consumption of the whole route is
then calculated by summing the consumption of each segments.

The weather has a strong influence on the realized speed of the vessel. We calculate
a speed loss coefficient that accepts the parameters of the vessel and the currentweather
to determine the actual speed. This speed is determined by the direction and speed of
the wind and the direction and height of the waves. We use the approach from Larsson
and Simonsen (2014) to calculate the speed loss that takes into account both waves and
wind simultaneously. The percentage of speed loss is calculated with the following
formula (Kwon 2008):

vloss = αcorr · μred · Δv

v
100%, (2)

where vloss is the speed loss in percent, αcorr is the correction factor for the block
coefficient of the vessel and μred is the weather direction reduction factor. The block
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coefficient of a vessel is the ratio of the underwater volume of the ship to the volume
of a rectangular block having the same length, breadth and depth. The factor αcorr

depends on the block coefficient of the vessel and its loading condition. A full list of
formulas for the calculation ofαcorr for all different combinations of block coefficients
and loading conditions can be found in Larsson and Simonsen (2014). The parameter
μred changes with the intensity of the weather and the angle of the wind/waves with
respect to the ship. The speed loss in head weather is given as Δv

v
100%. The speed

loss is represented with Δv and the planned speed with v. The ratio is calculated by
one of

Δv

v
100% = 0.5BN + BN 6.5

2.7� 2
3

, (3)

Δv

v
100% = 0.7BN + BN 6.5

2.7� 2
3

, or (4)

Δv

v
100% = 0.5BN + BN 6.5

22� 2
3

(5)

depending on the loading condition of the vessel. The parameter BN is the Beaufort
number and � is the displaced volume of the vessel. Equation 3 is used for vessels
in laden condition and Eq. 4 for vessels in ballast condition. We use Eq. 5 for our
experiments as this is the one for container ships and vessels in normal condition. The
Beaufort number characterizes the strength of the waves and the wind.

3 Related work

Existing approaches in the literature for ship weather routing can be divided into
three groups: exact approaches, single objective heuristic approaches, and multiob-
jective evolutionary approaches. Exact approaches to solve the problem are especially
found in early works, whereas recent approaches are mainly heuristics. The following
overview is divided into the three groups of approaches and summarizes the most
important ones. We further identify differing objective functions for the approaches.
Touati and Jost (2012) partitions the objective functions found in the ship routing liter-
ature into three groups: economic, climate/sustainability and regional fairness/health.
The most frequent objective functions are the minimization of fuel consumption and
distance traveled. The optimization of fuel consumption is also often combined with
the minimization of risk related to a route, resulting in a multiobjective optimization
problem. In the last part of this section, we present some papers related to the problem
of weather routing.

3.1 Exact approaches

One of the first approaches for ship weather routing is the isochrone method (James
1957). It minimizes the travel time of the ship and allows the manual construction
of a route. This method is improved by Hagiwara and Spaans (1987), who make it
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suitable for a computer and include fuel consumption in addition to travel time in
the objective function. Another approach for the problem is the calculus of variations
method proposed by Haltiner et al. (1962). It is an analytic approach to weather
routing that determines the path and the engine power of the ship. There are also many
approaches using dynamic programming such as DeWit (1990) andMotte and Calvert
(1990) or based on shortest path algorithms such as Montes (2005), Panigrahi et al.
(2012), Sen and Padhy (2015) and Mannarini et al. (2016).

3.2 Single objective heuristic approaches

Evolutionary approaches are well suited algorithms for solving path finding problems
because they allow the inclusion of a wide range of constraints and objectives into
problems that are hard to solve with exact algorithms. The optimization of only one
objective makes these approaches additionally fast compared to the multiobjective
ones. Walther et al. (2018) propose a genetic algorithm (GA) that supports variable
ship speed andminimizes fuel costs. They compare agraph algorithm for a shipweather
routing problem with a GA. The exact details of the GA are not clear, however to the
best of our knowledge, our GA differs in its domain specific heuristics and variable
length encoding.

Wang et al. (2018) propose a real-coded GAwith fixed longitudes for the waypoints
thatmake up the solution representation. This approach therefore has a problemfinding
paths around vertical obstacles, meaning circumnavigating landmasses can be very
difficult or even impossible if the path must traverse a high range of latitude in only
a small range of longitude. They integrate further constraints in their optimization
including a restriction of the sailing area, avoidance of land obstacles and shallow
waters, an interval for the ship’s speed and weather alarm zones that are caused by
severe weather conditions and wave heights exceeding a certain value. Furthermore,
they introduce a general mathematical model for the problem. Yuankui et al. (2014)
introduce a simulated annealing algorithm minimizing the travel time of the vessel.

3.3 Multiobjective evolutionary approaches

Multiobjective evolutionary approaches allow for the simultaneous optimization of
several objectives. Evolutionary algorithms (EA) are the most commonmultiobjective
solution procedures forweather routing, such as thework of Tsou (2010) andAzariadis
(2017) who combine an EA with a modified A* algorithm. The A* algorithm is
used to compute one-third of the initial population, and the remaining two-thirds are
computed randomly. Tsou (2010) calculates routes avoiding obstacles that are given
to the evolutionary algorithm as the first population. The EA then tries to find the
optimal route incorporating the safety and economy of routes.

Li and Zhang (2017) propose a GA that minimizes the turning variation and fuel
consumption of vessels while considering fixed orientations of the vessel at the start
and end position for the vessel as their approach is used to find the optimal trajectory in
close-rangemaneuvering. The real-codedGApresented byMaki et al. (2011) supports
variable ship speed by varying the propeller revolutions for each segment of the route.
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However, the longitudes of the route points are fixed and only the latitudes can be
changed, severely limiting the possibilities of the algorithm. This leads to the same
problems as the algorithm from Wang et al. (2018). Furthermore, the authors do not
mention how to avoid obstacles (land masses, etc.) in the algorithm. Tsou and Cheng
(2013) implement an ant colony algorithm that is combined with the crossover and
mutation concept of GAs for finding routes while considering weather conditions. If
ants pass the same waypoint, a crossover of both routes is conducted.

Krata andSzlapczynska (2012), Szlapczynska andSmierzchalski (2009), Szlapczyn-
ska (2013) and Szlapczynska (2015) use a multicriteria weather routing algorithm
based on the concept of the Multi-objective Evolutionary Weather Routing Algorithm
proposed by Szlapczynska (2007) to solve the problem of finding routes taking into
account changeable weather conditions. All these approaches focus on minimizing
the passage time, fuel consumption and the risk factor of routes. The constraints in
Szlapczynska (2015) include regions to avoid and the variables of the algorithm are the
coordinates of the waypoints and the settings of the ship’s engine. There is no infor-
mation given about how the mutation and crossover in this algorithm are performed
and therefore the quality of the algorithm cannot be evaluated.

Li et al. (2017), Veneti et al. (2015,2018) apply the NSGA II approach. Veneti
et al. (2018) compare it to an implementation of the SPEA (Zitzler and Thiele 1999).
Veneti et al. (2015) define a non linear integer programming problem and present a
modified version of the NSGA II (Deb et al. 2002). The algorithm uses nodes in a grid
to find an optimal path from the origin to the destination. The velocity of the ship is
fixed, meaning adverse weather can only be avoided through route changes. Vettor and
Guedes Soares (2016) perform their search only with the Strength Pareto Evolutionary
Algorithm 2 from Zitzler et al. (2001) to minimize the the fuel consumption, time of
arrival and risk related to rough weather. The optimization of the initial routes is
done with a version of the grid-based Dijkstra’s algorithm and the speed may differ
between two waypoints. Within the evolutionary algorithm the mutation only changes
one waypoint at once strongly restricting the changes within one iteration. To select
the most favorable route the hyperplane strategy distance method also presented by
Vettor and Guedes Soares (2016) is used. It is used to select a solution out of a Pareto
set according to user preferences specifying the importance of the different objectives.

3.4 Related problems

Several problems exist that are similar to the vessel weather routing problem. One
of them is the routing of planes instead of vessels. The basis of the Flight Planning
Problem (FPP) as presented by Knudsen et al. (2018) is a directed graph with nodes
representing waypoints at different altitudes. The arcs are associated with a resource
consumption and costs. These costs depend on the fuel consumed so far and on the
weather conditions that depend on the time when the arc is traversed. Therefore, in
contrast to our approach, the problem is solved with the help of a graph structure.
The variant of the problem presented by Knudsen et al. (2017) assume a fixed altitude
for the flight making the problem similar to ours. Normally, there are different flight
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levels and therefore a third dimension for each waypoint. Furthermore, variations in
speed are often not considered in the FPP.

Shortest path problems over roads are also related to our problem [see Madkour
et al. (2017) for a survey]. The key difference comes in the freedom ofmovement at sea
as well as the varying speed of the ship. Although cars and trucks can vary their speed
while driving, considering this in the planning phase is difficult since crowded roads
and tight deadlines prevent speed variation in practice. Furthermore, the weather has
much less impact on the quality of solutions and is therefore not included in approaches
found in literature. One approach to solve these shortest path problems is the use
of contraction hierarchies as presented by Geisberger et al. (2008) and extended in
Geisberger et al. (2012). This approach is designed for road network specific structures
where the visited points are directly linked, in contrast to the situation on oceans where
the connections of the ports are flexible.

Another area of related problems is the path planning of Unmanned Aerial Vehicles
(UAVs). Arantes et al. (2016), for example, use a genetic algorithm (GA) to plan
the paths of drones and mention no-fly zones and obstacles that are similar to the
land masses in the weather routing problem. They include position uncertainty of the
aircraft due to turbulence, which does not occur in the weather routing problem. The
multi-population genetic algorithm is combined with a visibility graph maintaining
all feasible paths for the drone, which would not be possible for the weather routing
problem because of the much larger solution space. Hasircioglu et al. (2008) also use
a GA to plan paths offline for UAVs. The GA uses three different mutation operators
that update, insert and delete control points visited by the UAV. Hence, there are no
operators that are specific to the case of UAV path planning. In contrast to this, we
are using customized operators involving the weather and the speed of the vessel
when changing a solution to achieve better improvements than with general operators.
Ragusa et al. (2017) also investigate a GA for “micro aerial vehicles”. The algorithm
is similar to the approach presented by this paper for finding routes for an initial
population for our GA. However, for the problem of weather routing, intersections
are infeasible, which is different than in the approach of Ragusa et al. (2017). In
their approach, intersections are allowed and the algorithm focuses on minimizing the
degree of intersection with obstacles. Furthermore, the routes used by Ragusa et al.
(2017) have fewer waypoints than in the case of ship routing, because the routes are
much shorter and need fewer waypoints.

4 A genetic algorithm for realistic weather-dependent routes

We use a genetic algorithm (GA) to find weather-dependent routes for vessels. GAs
provide an ideal framework for weather routing for a couple of reasons. First, GAs
allow us to combine parts of routes in a natural way in the hopes of forming a high
quality solution. Second, the population of a GA offers diversity that is important for
avoiding local optima that can be induced by large storms or weather systems. Our GA
uses a variable length, real-valued solution representation in which each individual is
composed of waypoints, each characterized by a longitude, latitude and the planned
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speed of the vessel on the segment preceding the waypoint. The set A defines the arcs
between the waypoints.

We fill the initial population with feasible routes that have randomwaypoints added
to ensure diversity (Sect. 4.1). The crossover and mutation operators used within our
algorithm are adapted to the weather routing problem and we use multiple operators,
unlike in standard GA implementations (Sects. 4.2 and 4.3). The fitness function used
for evaluating each individual of the population is the bunker fuel required to sail
the route under the given weather conditions, and the computations for this are given
in Sect. 2. We further add penalty costs to the fitness function for sailing through
undesirable areas (e.g., areas with pirates) or not meeting temporal constraints. The
GA terminates when the improvement between two iterations falls below a threshold
value or after a given number of iterations. The objective function used to evaluate a
solution is represented as

minimize
∑

a∈A

(
ca · Farc(a)

) + ppirate · ypirate + pdelay · tdelay (6)

where Farc(a) =
{∞, if the wave height on arc a exceeds h

F(v
plan
a )
24 · da

vreala
, otherwise.

The set of all arcs used to construct the route from the start to the destination is
denoted as A. The binary variable ypirate is set to 1 if the route has at least one arc
intersecting a pirate zone and the vessel sails slower than 18 knots. Furthermore, tdelay

specifies the delay of the vessel in days if a time limit for the travel time exists. The
penalty for additional safety costs is given by ppirate and the parameter pdelay specifies
the penalty for not meeting the arrival deadline, if one is specified. The function
Farc(a) calculates the fuel consumption for a single arc between two way points of a
complete route, where v

plan
a is the planned speed, da is the length and vreala specifies

the real speed calculated with the loss factor vlossa for arc a. When the maximum
acceptable wave height h is exceeded for an arc, the fuel consumption is set to ∞,
because solutions containing such arcs are infeasible and must therefore be ignored.
For feasible solutions, the fuel consumption is multiplied by the cost of fuel per ton
ca to determine its cost for the objective function.

We define two types of high cost zones: areas with increased risk of pirate attacks,
and the SECA zone in the North Sea. We specify four different pirate zones based on
public information about pirate encounters: the Caribbean Sea, the Gulf of Guinea,
around Somalia/the Horn of Africa/the Gulf of Bengal, and the South China Sea. In
these zones, it is necessary to sail at a speed of at least 18 knots as recommended by
The Baltic and International Maritime Council (2011) or to pay additional safety costs
of 50,000 USD, as for example suggested byWrede (2013). Therefore, ppirate is set to
this value for our calculations. In the SECA zone, we assume more expensive fuel is
used and adjust the bunker consumption function of the vessel accordingly.1 The cost
factor ca is set to 450 USD except in the SECA zone where it is 850 USD. The penalty
pdelay for arriving too late is set to 25,000 USD and is calculated by multiplying a

1 With the adoption of scrubbers and low/no-sulpher engine technologies, the SECA zone may not be
relevant to all ships. It can be easily ignored in the GA when this is the case.
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Fig. 1 Visualization of the generation of an initial route from Perth, Australia to Brisbane, Australia in 12
steps

penalty of 100 USD per container per day, as suggested by Li et al. (2015), with an
assumed number of transported containers of 2500, which is the half of the capacity of
the vessel we use. The parameter h is set to 9 m corresponding to a Beaufort number
of 10 for our calculations.

4.1 Initial route generation

Our initial solution algorithm creates a route by first directly connecting the origin
and destination and iteratively moving the midpoint of the line segments over land
orthogonally into the water until no segments intersect with the land anymore. Note
that a buffer zone could also be specified around land to ensure that ships travel
further offshore. More specifically, a segment is divided into two parts by inserting
and moving its midpoint. This is done until the distance between the start and end
of a new segment falls below a set threshold, and therefore does not need be divided
anymore. This process is visualized in Fig. 1. The left half of the route is arbitrarily
chosen to be moved into the water before the right half (note that the order does not
matter), leading to the evolution of a route as shown. To generate individuals for the
initial population, this algorithm is used to find a route that has to visit one random
point between the starting and the target point. The pseudocode for this algorithm is
given in Algorithm 1. The algorithm accepts a start node s, an end node e, a threshold
t for the length of segments and a distance d for the movement of middle points. The
algorithm returns the node sequence from the start node to the end node, with the
end node missing, which therefore still needs to be added. We use this algorithm to
generate some initial solutions and then use the crossover and mutation procedures
to expand the initial population so that the first generation has the full population
size. Start and end points of connections generated with this algorithm can be chosen
arbitrarily, however, we only use ports for our computational experiments.
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Algorithm 1 Initial Route Generation
1: function IRG(s, e, t, d)
2: N ← ∅ � Sequence of nodes along path
3: if Distance(s, e) > t then
4: m ← Midpoint(s, e)
5: v ← vector orthogonal to the connection s to e with length 1
6: i ← 0
7: while m is over land do
8: for j ∈ {1,−1} do
9: m′ ← m + v · i · d · j
10: if m′ is in water then m ← m′
11: i ← i + 1
12: N ← N ∪ IRG(s,m, t, d) ∪ IRG(m, e, t, d)

13: else
14: N ← N ∪ {s}
15: return N

4.2 Crossover operators

In this step of theGA, the routes of two random individuals from the current population
are combined into a single, new route. The selection of the individuals is based on a
roulette wheel selection with quadratic fitness scaling. We use two different crossover
methods.Thefirst combines the routes by choosing apoint to join the routes somewhere
near the middle of each route, preferably at a position in which both routes are near
each other. This operator is similar to the one from Vettor and Guedes Soares (2016)
who combine the first k waypoints of a route with the waypoints of a second route from
k + 1 to the end, but do not search for a waypoint in the middle of the route first. The
second combines the routes using a random position from the first half of one route and
a random position from the second half of the other route. Veneti et al. (2015,2018)
also use a crossover operator combining routes at random points, but it requires the
same node to be contained in both parent routes to perform a recombination, meaning
it is rarely applicable. Furthermore, for both of our operators we post-process the route
to ensure that it is completely located in the water using the same procedure as for
the initial routes. The result of one of our crossovers is visualized in Fig. 2 by means
of the website geojson.io, in which the two black routes are combined to obtain the
red one. We use the great circle distance2 for the length of all routes presented in this
paper, but in the visualizations the way points are connected with straight lines for
ease of visualization.

4.3 Mutation operators

The mutation operators are used to make different changes to random individuals
of the population. These operators delete or move waypoints or change the speed at

2 The great circle distance specifies the shortest distance between two points on the sur-
face of a sphere. The distance of two points on the earth is calculated by d = 2r ·
arcsin

(√
sin2

(
φ2−φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2−λ1

2

))
, where φ1 and φ2 are the latitudes, λ1 and

λ2 are the longitudes of the two points and r is the radius of the earth.
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Fig. 2 Visualization of the crossover operator

waypoints and allow the GA to search for new solutions that are not just combinations
of existing individuals. We use several different operators to introduce a domain-
specific heuristic for dealing with weather conditions and obtain realizable routes.
The operator applied to an individual is selected uniformly at random from the list of
nine operators.
Deleting a single point/deletingmultiple pointsWefirst introduce two simplemutation
operators that delete a single point or multiple points within a given interval, respec-
tively. The now disconnected parts of the route are reconnected with the initial route
algorithm to avoid any landmasses.
Moving a single point/moving multiple points Our second set of operators tries to
move one point or an interval of a route by a random distance limited by a parameter
in a random direction. Should any part of the route now intersect with land we use the
same procedure as in the initial route algorithm to repair the route.
Moving a point with the maximum wind This operator takes the current weather on
the route into account. In the first step the position along the route with the maximum
influence of the wind on the vessel is determined. In the second step this waypoint is
then moved in a randomly determined direction. Afterwards, the route points around
the moved one are recalculated with the initial route algorithm to smoothen the route.
Moving a point with the maximum angle/Moving multiple points with the maximum
angle Routes with sharp angles are difficult to realize in practice, as the turning radius
of large vessels is limited. This operator thus tries to remove points or multiple points
with large angles from the route. We select the point with the maximum angle and
remove a given percentage defined by a parameter of all nodes in each direction.
Afterwards, the initial route algorithm is used to adjust the route should it end up over
land. This process can be repeated for multiple points with large angles. This leads
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to the second operator of this group that moves the points around the several largest
angles with one application.
Mutating the speed of the vessel Our final operator adjusts the speed of the vessel for
a segment of the route. The new speed is randomly determined in the interval between
80 and 120% of the current speed in the segment.

4.4 Stochastic optimization

We adjust the objective function to allow the GA to handle stochastic weather. Thus,
instead of optimizing the fuel consumption for only a single weather scenario, we
evaluate a route given multiple scenarios, giving us an expected fuel consumption.
The multiple weather scenarios are forecasts for the true weather and are generated
by modifying the historical weather data. The generation of scenarios is discussed in
detail in Sect. 5.5. We note that this could be adjusted by risk averse users to use, e.g.,
conditional value at risk or other functions.

5 Computational results

In this section, we present computational results for our approach tested on 15
instances that we have constructed. The scenarios model various times of departure,
starting/ending locations and travel times. We present two different weather routing
settings: one with perfect information about the weather data and one where we plan
under uncertainty. The first setting shows the performance of our approach under per-
fect information. In the second case, we show how the algorithm performs in a more
realistic situation. We are able to conclude from both settings that including weather
is critical for generating realistic routes. We implement the GA in C# and run it on a
computer with an Intel Core i7-7700K 4.2 GHz processor and 32GB of RAM. The
computation time for the solutions for all instances is less than 1 min. Every instance
has been run 5 times and we report the average of these runs. Furthermore, we provide
the standard deviation of the values for the fuel consumption of the five solutions. We
cut the algorithm off at 60 CPU seconds or when the improvements within a single
iteration become too small after a minimum number of iterations have been com-
pleted. We note that letting the GA run longer than 60 s can sometimes lead to slightly
improved results on long routes.

5.1 Parameters for the GA

Our GA includes a number of parameters that influence the quality of the solutions
found. Table 1 lists these parameters and the values used. The values have been deter-
mined using the GGA algorithm configurator (Ansótegui et al. 2009, 2015). We tune
our GA with GGA for 5 days using 45 instances in our training set covering different
departure times and locations. We use a Panamax vessel for all of our experiments,
but it is also possible to run our algorithm with other vessel types having different
vessel-specific parameters.
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Table 1 Parameters for the GA Parameter Value

Population size 194

Mutations per iteration 529

Number of chromosomes used for crossover 43

Number of chromosomes used for mutation 34

Crossovers per iteration 40

Number of initial routes 31

Minimal number of iterations 130

5.2 Weather data

The weather data used in our experiments is provided by an industrial collaborator. It
includes three months of weather information in a 0.5◦ × 0.5◦ grid with a 3 h interval
for the time fromAugust to October 2017. For each latitude, longitude, and timestamp,
we are provided the wind direction and the wave height.

5.3 Experimental results for weather data with perfect information

We create 15 problem instances and try to include coverage of routes in a variety of
locations around the world. Our instances also have a number of different weather con-
ditions, ranging from “normal” inclement weather to Hurricane Irma in the instance
from USNYC (New York, USA) to SRPBM (Paramaribo, Suriname). The computa-
tional results for all 15 instances using perfect information about the weather (one
weather scenario) are listed in Table 2. The average of the five runs ignoring the
weather is compared to the runs including the weather in terms of route length in
nautical miles (nm), duration in days (d) and fuel consumption (FC) in tons (t) of fuel.
The results of the tests with and without weather optimization (WO) can be found in
the two rows for each instance and the difference of the values is given below each
pair of values. The duration and fuel consumption were calculated both with and with-
out the influence of weather to evaluate the quality of the routes leading to the two
columns for each of the two key figures. The instances with more extreme weather
(Beaufort scale 9 or higher) are marked with a star (*). The solutions for all instances
are visualized in Fig. 5. Weather-optimized routes are colored black and non-weather-
optimized routes gray. The map is shaded based on the influence of the weather (dark
red is worse weather, meaning stronger winds and higher waves) over the entire time
period. The weather is visualized for the points in time when the ship following the
weather-optimized route traverses the area or is near the visualized area.

In general, considering the weather leads to less costly routes with shorter travel
times. In only one case, the instance from ZACPT (Cape Town, South Africa) to
INBOM (Mumbai, India), including the weather leads to a route with less fuel con-
sumption even when evaluating it without weather because the combination of the
shorter route west of Madagascar and the strong wind and high waves along that path
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Fig. 3 Route from Hamburg to Reykjavík and the SECA-zone

make it hard for the GA to move its path to the east of Madagascar when generating
a route without considering the weather.

For some scenarios there is only a small change in the vessel routing when weather
is considered, usually when regions with adverse weather can be easily avoided. How-
ever, there are also instances where the weather has a decisive influence on the routing.
The instances from USNYC (New York, USA) to SRPBM (Paramaribo, Suriname)
and from AUPER (Perth, Australia) to AUBNE (Brisbane, Australia) show that a path
without the influence of weather would lead to routes that are not feasible in reality due
to very strong wind and high waves, leading to an infinite value for the fuel consump-
tion and the duration. On the route fromNewYork to Paramaribowe have the strongest
weather conditions of all instances (11 on the Beaufort scale). Therefore, the longer
routes are necessary here to guarantee safety for the vessel and lead to huge improve-
ments. The instances located in the Mediterranean region (ITTRS to EGALY, ESALG
to EGALY, and NLRTM to FRMRS.) show that taking the weather into consideration
also makes sense for short/medium distance routes. Our three instances in this region
show reductions of the fuel consumption of up to about 3%. The SECA-zone in the
North Sea does not have a high impact on the routing in the affected instances because
it is not possible to leave it to save costs.

In the instance fromDEHAM (Hamburg, Germany) to ISREY (Reykjavík, Iceland)
it is not efficient to leave the SECA-zone on a route other than the generated one
because the zone reaches far north. The route and the zone are visualized in Fig. 3.
One instance with a relatively small difference between the weather-optimized and
the non-weather-optimized path is the connection fromUSDUT (Dutch Harbor, USA)
to USLAX (Los Angeles, USA). Despite this small deviation in the routing, it leads
to an improvement in travel time and fuel consumption of approximately 1.6% when
comparing the weather-optimized route with the non-weather-optimized route. The
weather-optimized route is visualized in Fig. 5a in black.

The routes running from ZACPT (Cape Town, South Africa) to INBOM (Mumbai,
India) show one of the biggest differences as the weather-optimized routes run east
of Madagascar while routes ignoring the weather run west of it. This is the case
because the western routes are shorter, but the weather to the west is worse than to
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the east. This is visualized in Fig. 5d. This leads to an average improvement of fuel
consumption by almost 7% considering the weather during optimization. The routes
from USNYC (New York, USA) to DEHAM (Hamburg, Germany) show a similar
observation with routes running north and south of the United Kingdom depending
on the use of weather data. The weather-optimized routes run south of the United
Kingdom although this path is longer because the weather conditions in the north are
worse than in the south. Another important aspect for the routing in the Arabian Sea
is the pirate zone that covers a large part of it. The weather-optimized routes, which
already run east of Madagascar, take a right turn to bypass the zone as far as possible,
while the routes running west of Madagascar run directly through it. This can be seen
in Fig. 4, which shows the pirate zone. The routes from AEDXB (Dubai, UAE) to
AUPER (Perth, Australia) and the routes from MYTPP (Tanjung Pelepas, Malaysia)
to OMSLL (Salalah, Oman) are not visibly affected by the zone because the pirate
zone covers the complete coast and cannot be avoided. The greatest savings potential
can be found for the last instance from JPTYO (Tokyo, Japan) to GUGUM (Guam),
in which an approximately 4.3% longer distance leads to savings savings of fuel and
travel time of nearly 14%.

Overall, the results for the instances using perfect information about the weather
show that there is a huge savings potential when including weather conditions into
the optimization of routes for vessels. The improvements range from about 1% to
almost 14% excluding the instances for which infeasible routes were generated when
not considering weather.

5.4 Pirate zones and travel time limitations

In addition to higher speeds in pirate zones, the objective function can be penalized
to account for security services (e.g., armed mercenaries). Increasing the costs within
pirate zones by 10%, as well as requiring a higher speed leads to routes similar to
the one in Fig. 4. This route has been generated without considering the influence
of weather conditions to show the effect of the increased costs for a higher level of
security. Our approach generates a solution that completely avoids the pirate zone
marked in orange, and requires no modifications to our heuristics to identify such
zones.

Another aspect that can be included into the routing problem is the addition of
penalty costs for a delayed arrival at the destination port. Very high penalty costs can
be used to force the algorithm to meet the deadline at any cost (if it is at all possible).
Therefore, the course of the routes are changed for some instances and the speed on
the routes must be increased in most cases.

5.5 Experimental results for stochastic weather data

In reality, reliable weather forecasts are only available for the beginning of a route.
Thus, we must plan a route under uncertainty and replan whenever a new weather
forecast is available. Table 3 shows the results for the previously given instances
using multiple stochastic weather scenarios instead of planning under certainty for

123



816 S. Kuhlemann et al.

Ta
bl
e
2

C
om

pa
ri
so
n
of

ro
ut
es

co
m
pu
te
d
co
ns
id
er
in
g
w
ea
th
er
to
on
es

co
m
pu
te
d
ig
no
ri
ng

th
e
w
ea
th
er
re
ga
rd
in
g
le
ng
th
in
na
ut
ic
al
m
ile
s
du
ra
tio

n
in
da
ys

an
d
fu
el
co
ns
um

pt
io
n

in
to
ns
,a
ve
ra
ge
s
ov
er

fiv
e
ru
ns

E
va
lu
at
ed

du
ra
tio

n
Fu

el
co
ns
um

pt
io
n

L
en
gt
h

Ig
no

ri
ng

w
ea
th
er

In
cl
ud

in
g
w
ea
th
er

Ig
no

ri
ng

w
ea
th
er

In
cl
ud

in
g
w
ea
th
er

U
SD

U
T

W
ith

ou
tW

O
23

74
.5
4

8.
25

8.
90

12
8.
39

13
8.
49

to
W
ith

W
O

23
76

.2
8

8.
26

8.
76

12
8.
49

13
6.
29

U
SL

A
X

D
if
fe
re
nc
e

0.
1%

0.
1%

−1
.6
%

0.
1%

−1
.6
%

U
SN

Y
C

W
ith

ou
tW

O
22

95
.9
7

7.
98

∞
12

4.
14

∞
to

W
ith

W
O

23
24

.0
2

8.
07

8.
74

12
5.
78

13
6.
24

SR
PB

M
*

D
if
fe
re
nc
e

1.
2%

1.
2%

−1
00

%
1.
3%

−1
00

%

U
SN

Y
C

W
ith

ou
tW

O
34

04
.3
0

11
.8
3

14
.2
1

18
4.
07

22
1.
03

to
W
ith

W
O

35
37

.1
7

12
.2
9

13
.7
6

19
1.
26

21
4.
02

D
E
H
A
M
*

D
if
fe
re
nc
e

3.
9%

3.
9%

−3
.2
%

3.
9%

−3
.2
%

Z
A
C
PT

W
ith

ou
tW

O
46

31
.2
8

14
.3
6

16
.6
3

35
1.
80

39
6.
48

to
W
ith

W
O

46
90

.6
9

14
.9
1

16
.8
6

33
2.
74

36
8.
87

IN
B
O
M

D
if
fe
re
nc
e

1.
3%

3.
9%

1.
4%

−5
.4
%

−7
.0
%

A
U
PE

R
W
ith

ou
tW

O
24

94
.4
2

8.
67

∞
13

4.
87

∞
to

W
ith

W
O

25
63

.1
7

8.
91

9.
63

13
8.
59

14
9.
89

A
U
B
N
E
*

D
if
fe
re
nc
e

2.
8%

2.
8%

−1
00

%
2.
8%

−1
00

%

A
E
D
X
B

W
ith

ou
tW

O
48

77
.6
9

15
.9
2

17
.9
0

32
4.
28

35
9.
06

to
W
ith

W
O

49
54

.7
6

16
.2
0

17
.3
2

32
7.
34

34
6.
78

A
U
PE

R
D
if
fe
re
nc
e

1.
6%

1.
8%

−3
.2
%

1.
0%

−3
.4
%

M
Y
T
PP

W
ith

ou
tW

O
31

72
.5
2

8.
57

9.
72

31
4.
87

34
9.
00

to
W
ith

W
O

31
88

.6
0

8.
60

9.
48

31
6.
92

34
5.
24

O
M
SL

L
D
if
fe
re
nc
e

0.
5%

0.
4%

−2
.5
%

0.
7%

−1
.1
%

B
R
SS

Z
W
ith

ou
tW

O
34

07
.1
9

11
.8
4

13
.2
5

18
4.
23

20
6.
09

to
W
ith

W
O

34
33

.0
5

11
.9
3

12
.6
8

18
5.
68

19
7.
32

123



A genetic algorithm for finding realistic… 817

Ta
bl
e
2

co
nt
in
ue
d

E
va
lu
at
ed

du
ra
tio

n
Fu

el
co
ns
um

pt
io
n

L
en
gt
h

Ig
no

ri
ng

w
ea
th
er

In
cl
ud

in
g
w
ea
th
er

Ig
no

ri
ng

w
ea
th
er

In
cl
ud

in
g
w
ea
th
er

Z
A
C
PT

D
if
fe
re
nc
e

0.
8%

0.
8%

−4
.3
%

0.
8%

−4
.3
%

IT
T
R
S

W
ith

ou
tW

O
11

83
.4
0

4.
11

4.
46

63
.9
9

69
.3
3

to
W
ith

W
O

11
97

.4
4

4.
16

4.
32

64
.7
5

67
.2
6

E
G
A
LY

D
if
fe
re
nc
e

1.
2%

1.
3%

−3
.0
%

1.
2%

−3
.0
%

E
SA

L
G

W
ith

ou
tW

O
17

93
.8
4

6.
23

6.
49

96
.9
9

10
0.
97

to
W
ith

W
O

18
00

.5
2

6.
26

6.
37

97
.3
8

99
.1
1

E
G
A
LY

D
if
fe
re
nc
e

0.
4%

0.
4%

−1
.9
%

0.
4%

−1
.8
%

N
L
R
T
M

W
ith

ou
tW

O
20

19
.5
0

7.
02

7.
88

10
9.
20

12
2.
60

to
W
ith

W
O

20
46

.4
0

7.
11

7.
77

11
0.
65

12
0.
87

FR
M
R
S

D
if
fe
re
nc
e

1.
3%

1.
4%

−1
.4
%

1.
3%

−1
.4
%

N
O
O
SL

W
ith

ou
tW

O
55

5.
25

1.
93

2.
16

30
.0
2

33
.5
5

to
W
ith

W
O

56
5.
52

1.
96

2.
06

30
.5
9

32
.1
0

G
B
FX

T
D
if
fe
re
nc
e

1.
9%

1.
8%

−4
.3
%

1.
9%

−4
.3
%

D
E
H
A
M

W
ith

ou
tW

O
30

2.
63

1.
05

1.
32

16
.3
6

20
.4
7

to
W
ith

W
O

31
4.
74

1.
09

1.
22

17
.0
2

19
.0
0

G
B
FX

T
D
if
fe
re
nc
e

4.
0%

4.
0%

−7
.1
%

4.
0%

−7
.2
%

D
E
H
A
M

W
ith

ou
tW

O
11

73
.0
9

4.
08

4.
83

63
.4
3

75
.0
8

to
W
ith

W
O

11
76

.2
4

4.
09

4.
73

63
.6
0

73
.6
2

IS
R
E
Y
*

D
if
fe
re
nc
e

0.
3%

0.
3%

−2
.0
%

0.
3%

−2
.0
%

JP
T
Y
O

W
ith

ou
tW

O
13

29
.2
1

4.
62

6.
32

71
.8
7

98
.3
1

to
W
ith

W
O

13
86

.6
7

4.
82

5.
44

74
.9
8

84
.6
0

G
U
G
U
M
*

D
if
fe
re
nc
e

4.
3%

4.
3%

−1
4.
0%

4.
3%

−1
3.
9%

123



818 S. Kuhlemann et al.

Fig. 4 Route optimized with additional costs for security

a single scenario as shown previously. The route length, duration and fuel usage are
computed using the “true” weather, averaging over five different executions of our
approach. The route planning uses either perfect information (“PI”), the expected
value over five scenarios with replanning (“Stochastic”), the expected value over five
scenarios without replanning (“Stoch. NR”), or plans without considering the weather
(“No WO”). Percentage differences to the plan with perfect information are given for
each value. Furthermore, the standard deviation for the calculated values for the fuel
consumption of the five different solutions is given. Figure 6 shows an example for
the four different routes for the second instance from USNYC (New York, USA) to
SRPBM (Paramaribo, Suriname). The weather is left out for this figure as it differs
too much for the different solutions and would be misleading regarding the quality of
the routes.

We perform stochastic routing by first generating five potential forecasts of the
weather from the “true”weather. This is done bymodifying the components (direction,
wind speed, wave height) by a random factor between −50% and +50%. We plan a
route from the starting location using these five forecasts and minimize the expected
value over the scenarios. As the ship moves closer to a given location, the better the
forecast becomes. Perfect information is provided for the exact location of the vessel
and for all locations within seven days, a forecast is provided for other locations as an
average of the “true” weather and randomized forecast weighted by the time needed to
arrive at this point.3 We therefore replan the route in regular intervals. These scenarios
are then used to provide the algorithm with information about the possible weather on
the route.

3 We note that while we use real, historical weather data, we do not have detailed forecasts for different
locations, hence we use the procedure described for stochastic data.
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Fig. 5 Visualization of the solutions for the instances
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Fig. 6 The four different routes from USNYC (New York, USA) to SRPBM (Paramaribo, Suriname). “PI”
in black, “Stochastic” in orange, “Stoch. NR” in green and “No WO” in blue (Color figure online)

Overall, the results presented in Table 3 show that the use of stochastic weather
data and replanning the route when new data becomes available leads to lower total
fuel consumption than only planning with stochastic data at the start of the route, or
planning using no weather data at all. Our approach is generally only a few percent
worse than the solution found planningwith perfect information.Replanning the routes
during the journey leads to shorter travel times for all instances. For two cases, not
replanning the route even leads to infeasible routes (ZACPT to INBOMandAUPER to
AUBNE) meaning replanning is essential in these cases. The fuel consumption is also
improved and the second instance (USNYC to SRPBM) shows the biggest difference
with a deviation of 21.2% (without replanning) compared to a deviation of 9.8% (with
replanning). We observe that the best route found is often not much longer or shorter
than the best route without replanning.

Comparing the results without the usage of weather data to the results with the
usage of stochastic weather shows that there are two special cases. For the instance
from ZACPT (Cape Town, South Africa) to INBOM (Mumbai, India), the route has a
longer travel time caused by the fact that the fuel consumption is the optimization goal
and a longer travel time leads to a lower fuel consumption in this case. The only case
where the the stochastic results are worse than the results generated without weather is
the instance from ESALG (Algeciras, Spain) to EGALY (Alexandria, Egypt), which
is due to unstable weather in front of the coast of Egypt.

Using stochastic data leads to longer travel times and higher fuel consumption
than using perfect information, but not necessarily to longer routes. For 10 of the 15
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instances the routes are longer when using stochastic scenarios instead of the perfect
information about the weather. The travel times increase by 0.6–9.3% and the fuel
consumption increases by 0.6–9.8%, respectively. Uncertainties regarding the weather
conditions on the remaining route make it difficult for the algorithm to find a route
that is good for all weather scenarios.

The best example of difficulty in planning the speed and the route of the ship to
avoid strong weather with very high waves is the instance from USNYC (New York,
USA) to SRPBM(Paramaribo, Suriname). For this instance, the largest deviation of the
stochastic results from the results using perfect information is observed. The uncertain
forecasts result in the route partly passing through unfavourable areas. Nevertheless,
areas that are impassable due to strong waves and wind are avoided. Furthermore, the
replanning of the route has a very high impact on the fuel consumption, showing the
importance of the adaption to current weather data.

It is essential to adapt the route during the journey, as is exemplified by the instance
from ZACPT (Cape Town, South Africa) to INBOM (Mumbai, India). Here, the route
runs east of Madagascar because of the strong weather conditions west of it, which
we also observed when using perfect information. The same observation can be made
for the instance from AUPER (Perth, Australia) to AUBNE (Brisbane, Australia).
However, there are many instances where the replanning does not have a large impact,
we note that since replanning is computationally cheap, there is no reason not to do
it. Usually, replanning has little impact when there are no large storms or extreme
weather along the planned route.

It can be concluded that our approach provides high quality solutionswhen provided
stochastic data and can effectively replan the route in the face of adverse weather
conditions. We are further able to show that the routes we find are not much worse
than those generated with perfect information, meaning our algorithm could be used
in a real system.

6 Conclusion

In this paper, we presented a GA for the weather-dependent optimization of routes for
vessels.We introduced an algorithm for generating initial routes as a useful supplement
for the GA and listed a variety of domain-specific mutation operators for the GA to
find good routes adapted to the present weather. The combination of this algorithm and
the GA is highly effective at finding weather-dependent routes. Overall, the solutions
for the different instances indicate that there is a need for the consideration of weather
when generating routes for vessels. Weather-optimized routes lead to lower costs,
and in some cases these routes are the only feasible routes. The experimental results
showed that the proposed GA is able to find high quality solutions in a short amount
of time. We have shown that the algorithm can handle stochastic weather data and
generate reasonable routes that are not much worse than routes generated with perfect
information. Furthermore, it makes sense to recalculate the route when new weather
data becomes available. For future work, we plan to include more external factors, for
example tides. The function for the bunker consumption will have to be extended then
as well to include the new factors.
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Table 3 Comp. results for stochastic optimizationwith replanning along the route under perfect information
(“PI”), stochastic optimization with replanning (“Stochastic”), stochastic optimization with no replanning
(“Stoch. NR”), and without weather routing (“No WO”)

Length [nm] Duration [d] Fuel [t]

Avg. % Avg. % Avg. % σ

USDUT to USLAX PI 2376 8.76 136.29 0.57

Stochastic 2385 0.4 8.89 1.5 138.33 1.5 1.02

Stoch. NR 2406 1.2 9.00 2.7 140.01 2.7 0.45

No WO 2375 −0.1 8.90 1.6 138.49 1.6 0.71

USNYC to SRPBM PI 2324 8.74 136.24 0.61

Stochastic 2356 1.4 9.56 9.3 149.53 9.8 0.85

Stoch. NR 2353 1.3 9.34 6.9 165.07 21.2 5.65

No WO 2296 −1.2 ∞ 100 ∞ 100 0.00

USNYC to DEHAM PI 3537 13.76 214.02 0.24

Stochastic 3583 1.3 14.16 2.9 220.35 3.0 1.00

Stoch. NR 3613 2.2 14.25 3.6 226.78 6.0 2.72

No WO 3404 −3.8 14.21 3.3 221.03 3.3 2.35

ZACPT to INBOM PI 4691 16.86 368.87 9.57

Stochastic 4938 5.3 18.25 8.3 381.36 3.4 8.05

Stoch. NR 4631 −1.3 15.50 −8.0 ∞ 100.0 ∞
No WO 4631 −1.3 16.63 −1.4 396.48 7.5 5.43

AUPER to AUBNE PI 2563 9.63 149.89 0.26

Stochastic 2524 −1.5 9.82 1.9 152.71 1.9 1.17

Stoch. NR 2561 −0.1 9.19 −4.6 ∞ 100 ∞
No WO 2494 −2.7 ∞ 100 ∞ 100 0.00

AEDXB to AUPER PI 4955 17.32 346.78 2.8

Stochastic 4927 −0.6 17.84 3.0 354.56 2.2 3.1

Stoch. NR 4888 −1.4 17.25 −0.4 365.56 5.4 2.1

No WO 4878 −1.6 17.90 3.3 359.06 3.5 3.5

MYTPP to OMSLL PI 3189 9.48 345.24 1.58

Stochastic 3195 0.2 9.61 1.5 348.29 0.9 1.60

Stoch. NR 3225 1.1 9.65 1.8 352.98 2.2 2.18

No WO 3173 −0.5 9.72 2.6 349.00 1.1 2.70

BRSSZ to ZACPT PI 3433 12.68 197.32 1.08

Stochastic 3427 −0.2 13.09 3.3 203.74 3.3 3.95

Stoch. NR 3428 −0.1 13.14 3.7 204.45 3.6 0.37

No WO 3407 −0.8 13.25 4.5 206.09 4.4 1.03

ITTRS to EGALY PI 1197 4.32 67.26 0.11

Stochastic 1195 −0.2 4.46 3.1 69.32 3.1 0.13

Stoch. NR 1194 −0.3 4.46 3.1 69.38 3.2 0.21

No WO 1183 −1.2 4.46 3.1 69.33 3.1 0.37
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Table 3 continued

Length [nm] Duration [d] Fuel [t]

Avg. % Avg. % Avg. % σ

ESALG to EGALY PI 1801 6.37 99.11 0.45

Stochastic 1806 0.3 6.83 7.2 106.23 7.2 0.19

Stoch. NR 1803 0.1 6.85 7.5 106.50 7.5 0.20

No WO 1794 −0.4 6.49 1.9 100.97 1.9 0.08

NLRTM to FRMRS PI 2046 7.77 120.87 0.24

Stochastic 2047 0.0 7.81 0.6 121.55 0.6 0.22

Stoch. NR 2055 0.4 7.84 0.9 121.94 0.9 0.08

No WO 2019 −1.3 7.88 1.4 122.60 1.4 0.29

NOOSL to GBFXT PI 566 2.06 32.10 0.14

Stochastic 565 −0.2 2.07 0.5 32.72 1.9 0.55

Stoch. NR 564 −0.3 2.11 2.2 32.75 2.0 0.65

No WO 555 −1.8 2.16 4.5 33.55 4.5 0.12

DEHAM to GBFXT PI 315 1.22 19.00 0.10

Stochastic 318 1.1 1.23 0.7 19.18 0.9 0.36

Stoch. NR 323 2.8 1.24 1.5 19.37 1.9 0.43

No WO 303 −3.8 1.32 7.7 20.47 7.7 0.20

DEHAM to ISREY PI 1176 4.73 73.62 0.11

Stochastic 1178 0.2 4.78 1.1 74.39 1.0 0.55

Stoch. NR 1176 0.0 4.78 1.1 74.45 1.1 0.18

No WO 1173 −0.3 4.83 2.0 75.08 2.0 0.21

JPTYO to GUGUM PI 1387 5.44 84.60 0.22

Stochastic 1380 −0.4 5.74 5.5 89.91 6.3 3.19

Stoch. NR 1409 1.6 5.82 7.0 90.54 7.0 0.41

No WO 1329 −4.1 6.32 16.2 98.31 16.2 0.77

The line with the smallest deviation from the value for perfect information is marked bold
Percentage gaps relate to perfect information and the standard deviation is given for the fuel
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