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Abstract
Standard disaster response involves using drones
(or helicopters) for reconnaissance and using peo-
ple on the ground to mitigate the damage. In this
paper, we look at the problem of wildfires and
propose an efficient resource allocation strategy to
cope with both dynamically changing environment
and uncertainty. We propose Firefly, a new resource
allocation algorithm, that can provably achieve op-
timal or near-optimal solutions with high probabil-
ity by first efficiently allocating observation drones
to collect information to reduce uncertainty, and
then allocate the firefighting units to extinguish the
fire. For the former, Firefly uses a combination
of maximum set coverage formulation and a novel
utility estimation technique, and it uses a knapsack
formulation to calculate the allocation for the latter.
We also demonstrate empirically by using a real-
world dataset that Firefly achieves up to 80 − 90%
performance of the offline optimal solution, even
with a small number of drones, in most cases.

1 Introduction
In recent years, forest fires pose an increasing challenge for
the local and statewide government agencies around the globe
due to human and natural causes (e.g., effects of climate
change). Over the last ten years in the United States, it is
estimated that 54% and 46% of the wildfires are caused by
human and lightning.With growing forest fire sizes and in-
stances and demand for suppression resources, fighting forest
fires has developed into a major budgetary concern for many
nations. In the United States alone, the National Interagency
Fire Center (NIFC) reports that in 2017, 71,499 fires burned
a total of 10,026,086 forested acres resulting in a suppression
cost of $2,918,165,000, making 2017 the most expensive year
on record1. In 2018, according to the California Department
of Forestry and Fire Protection (Cal Fire) and the NIFC, the
infamous California wildfire season had 8,527 fires with a to-
tal burning area of 1,893,913 acres resulting in an operational

∗The authors equally contributed to the paper.
1National Interagency Fire Center. Historical Wildland Fire infor-
mation: Suppression Costs”. https://www.nifc.gov/fireInfo/fireInfo
documents/SuppCosts.pdf

cost of $432 million and insurance claims of $12 billion. His-
torical (NIFC) data on the costs of forest fires reveals that both
the number of acres being burned and the number of suppres-
sion resources utilized to suppress fires are rising. How can
we utilize these resources to suppress fires in the most effec-
tive way? How can we dispatch the resources appropriately
to different zones? These are the questions we aim to address
in this paper.

According to the United States Forest Service, the resource
dispatch processes begins when a fire center receives reported
incidents or sighting. The incidents are reported to the corre-
sponding center that manages the surrounding areas or dis-
patch areas. The center divides its dispatch areas into smaller
dispatch zones and determines the types of resources to be
dispatched depending on various conditions. The fire con-
ditions are categorized into low, moderate or high dispatch
levels. The resources dispatched to a particular zone depend
on the zone’s value, which depends on various factors and
fire conditions. In addition, each zone’s value encompasses
some measures of life, private property, critical infrastructure,
cultural/natural resources, and other factors. When there are
multiple simultaneously fires in the dispatch areas, the fire
center then needs to prioritize the zones and resources. The
resources are usually shared between all other (local, state, or
federal) agencies that are responsible for the areas so that the
fire can be managed more efficiently.

Various resources have been used to aid in the fight against
forest fires. In recent years, agencies such as the Los Angeles
Fire Department, the United States Department of Agricul-
ture, and the United States Forest Service have been combin-
ing drones with more traditional units to help combat wild-
fire2. The primary purpose of drones is to provide the agen-
cies or firefighters information (i.e., the fires and the sur-
rounding areas). As a result, we can characterize the re-
sources into two main types: surveillance and fire fighting
resources. For simplicity, we will call the surveillance re-
sources drones and the firefight resources firefighters. As dis-

2https://www.latimes.com/local/lanow/
la-me-ln-lafd-drone-skirball-fire-20171214-story.html
https://www.nbcnews.com/mach/science/
drones-are-fighting-wildfires-some-very-surprising-ways-ncna820966
https://www.usda.gov/media/blog/2019/07/09/
drones-provide-eye-sky-help-fight-fires
https://www.fs.fed.us/managing-land/fire/aviation/uas/
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cussed, drones provide us information about the zones and
fires such as the strength of the fire in the deployed zones,
and firefighters combat the fire in the deployed zones. Note
that the latter can be either humans or machines.

It is not hard to see that if the number of firefighters is suf-
ficient for a zone, we can extinguish the fire. However, both
drones and firefighters are limited, and we must make some
trade-off and prioritize when we don’t have enough resources
for fires in all of the zones with fires. In addition, when a fire
breaks out in some zones of the forest, we do not a prior know
the strength of the fires. As a result, determining the number
of resources (e.g., firefighters and drones) needed to put out a
fire in any zone is a necessary and challenging problem. Note
that the strength of a wildfire in a zone changes dynamically
over time (e.g., days, months, seasons, and years). Even if we
know its strength in a particular time step, we are sure to be
uncertain in the future time step. Finally, we need to be able
to dispatch resources to fight fires in multiple zones, which is
a challenging problem in itself. As a result, to successfully
fight a wildfire, we need to address the above challenges and
learn about the strength of the fires over time and allocate
resources to fight the fires.

To tackle the domain challenges in fighting a forest fire, we
propose Firefly, a novel algorithm to allocate a limited quan-
tity of both drones and firefighters among several zones. In
particular, this algorithm first formulates the drone allocation
as a maximal set coverage problem, and uses a greedy algo-
rithm to allocate, and therefore, observe both the fire strength
and value of a subset of zones. It then calculates an unbi-
ased estimator of the fire strength and value of the remaining
zones. Using both the observed and estimated data, Firefly
then solves the firefighter allocation problem as a knapsack.
We prove that if the number of drones is Θ(ln2 (n)) where n
is the number of zones, and the topology of the zones (i.e.,
how the zones are adjacent to each other - see Section 2 for
the precise definition) follows a random graph structure, then
Firefly can solve the firefighter allocation problem optimally
with high probability. Furthermore, we show that if the topol-
ogy of the zones is an arbitrary graph, but the total amount of
environmental changes within T time steps (see Section 3.5
for a more precise definition of environmental changes) is
limited by a budget B, then a modified version of Firefly
can achieve an additive approximation of Õ(n1/3B1/3T 2/3),
compared to the offline optimal solution, where Õ hides away
all the logarithmic dependencies. Finally, we numerically
evaluate the performance of Firefly in a large variety of set-
tings. Our results show that Firefly, when equipped with a
relatively small number of drones (e.g., 10− 20% of the total
number of zones), can achieve up to 80− 95% of the optimal
performance in most cases.

1.1 Related Work
In this section, we briefly cover related work on resource
allocation for wildfire mitigation. From the perspective of
wildfire modeling, [Bendix and Commons, 2017] study the
distribution and frequency of wildfire in California riparian
ecosystems. [Malamud et al., 2005] present a methodology
for characterising fire regimes based on past data. [Salis

(a) (b) (c)

Figure 1: (a) Fire Hazard Severity Zones of Marin County, CA (Yel-
low = Moderate, Orange = High, Red = Very High), (b) 10 x 10
Zoning Example (of a sub-zone), (c) Undirected Grid Graph Repre-
sentation of the 10 x 10 Zones.

et al., 2012] study the behaviour of wildfire in North Sar-
dinia, Italy. [Piñol et al., 1998] and [Westerling et al., 2006]
study the effect of climate change on wildfires in differ-
ent regions. While these works help us learn more about
the nature of wildfire, none of them address the problem
of resource allocation or uncertainty. To capture the uncer-
tainty of the nature of wildfire, [Cruz et al., 2008] develop a
model to predict wildfire behaviour in pine plantations. [Ro-
driguez Aseretto et al., 2013] and [de Rigo et al., 2013] pro-
pose data-driven models to predict wildfire behaviour. [Yan-
jun Li et al., 2006] and [Sabit et al., 2011] propose wireless
sensor network based wildfire detection and monitoring sys-
tems. [Boulton et al., 2016] propose using social media to
detect and map wildfires. [Kyzirakos et al., 2014] use satel-
lite images to monitor wildfire. While these works do re-
duce the uncertainty involved in wildfires, they do not pro-
pose any algorithm to allocate resources efficiently. From the
resource allocation perspective, [Donovan and Rideout, 2003;
Hu and Ntaimo, 2009; Ntaimo et al., 2012; Lee et al., 2012]
all propose algorithms to deploy firefighters to suppress wild-
fires. Our work differs from theirs in two aspects. First, all
of their work assumes knowledge about the behaviour of the
wildfire. Second, they ignore the exploration aspect of this
problem and only consider the allocation of firefighting re-
sources. [Belval et al., 2014] and [HomChaudhuri and Co-
hen, 2010] propose algorithms to efficiently place firefighters
within a region so as to maximize the fire which gets sup-
pressed. This is a parallel problem and their work can be
used along with ours. [Tsang et al., 2013] study resource
sharing among different fire departments. However, they
do not provide an algorithm to allocate these resources ef-
ficiently. Finally, a number of works have focused on ef-
ficient drone allocation (e.g., [Chmaj and Selvaraj, 2015;
Yuan et al., 2015]). However, these works do not take into
account the problem of firefighting resource allocation and
thus cannot be applied to our setting.

2 Problem Description
We formulate our optimization problem as follows: Consider
a set of forest zonesN = {1, 2, . . . , n}, which are vulnerable
to catching fire. While there exist various definitions of vul-
nerable, the most known or common vulnerability measure
is the probability of ignition. The probability of ignition is
the chance that a firebrand will cause an ignition when it is
combined with fuels. The vulnerability or the probability of

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4323



ignition of a zone typically depends on the current tempera-
ture, shading from forest canopy or cloud cover, and 1-hr fuel
moisture content [Andrews, 2014] (see also National Wildfire
Coordinating Group.) We allocate to each of these zones a
priority value ki, ∀i ∈ N , that captures the importance of the
zone. That is, how valuable is it for us to protect that partic-
ular zone? The importance of a zone or value can be defined
appropriately based on the particular ecosystems (e.g., trees,
species, and lands) in the zone.

We use the directed graph GR to represent the topology of
these zones: Each zone is a node and a directed edge con-
nects node i with node j if node j can be observed from node
i. That is, if (i, j) is an edge of GR, then, by deploying a
drone at i, we will obtain information (e.g., the fire strength)
about both i and j. Note that this graph is useful for drone de-
ployment (see Section 3.1 for more details). Figure 1 presents
an illustration of the representation of Marin County, CA 3.

For each time step t = {1, 2, . . . , T}, zone i can catch fire
with strength 0 ≤ ai,t ≤ C (with ai,t = 0 indicating there
is no fire). In Ecology, the strength of fire can be associated
with fire intensity [Keeley, 2009], which can be described and
measured as fire energy released, for instance, using fireline
intensity [Keeley, 2009]. Roughly speaking, fireline inten-
sity is the rate of heat transfer per unit length of the fire line.
Therefore, fireline intensity is a good measure of the diffi-
culties of suppressing fire and the number of firefighting re-
sources required to put out the fire with a certain intensity.
As a result, we associate the strengths (i.e., ai,t) as the num-
ber of firefighter units required to extinguish the fire. It is also
reasonable to assume that such upper bound valueC exists. A
possible justification for this is, e.g., the fact that the strength
of fire (e.g., fire intensity) could be limited by the total num-
ber of trees within the zone, which is finite. We consider a
realistic setting where ai,t is unknown to us a priori, and can
only be revealed if at least one firefighter unit is allocated to
zone i, or the zone is covered by at least one observer drone
at time step t (see later for more details). This is typically the
setting where some fire has started in some zones, and the fire
incidents are reported to agencies, which will determine the
resources to deploy to zones depending on the fire’s strengths.

In our setting, we have r firefighters (who can be both ma-
chines such as drones or ground vehicles, and human units)
andm observer drones. To extinguish the fire at zone i at time
step t, we need to allocate sufficient numbers of firefighters to
zone i. We let di,t to be the firefighter units allocated to zone
i at time t. The reward of this allocation or action is given by

fi(di,t) =

{
ki,t di,t ≥ ai,t > 0

0 otherwise
(1)

That is, we only receive reward ki,t if there is a fire in zone
i and we have deployed a sufficient amount of firefighters in
that zone. The value of ki,t can vary over time. For example,
partially burnt zones might lose their values in the future, or
due to some seasonal changes, some zones can become more

3https://osfm.fire.ca.gov/divisions/wildfire-prevention-planning-engineering/
wildland-hazards-building-codes/fire-hazard-severity-zones-maps/

important. We obtain the following optimization problem:

max{di,t}

T∑
t=1

n∑
i=1

fi(di,t)

subject to ∀t :
n∑

i=1

di,t ≤ r, ∀i, t : di,t ∈ N
(2)

That is, our goal is to identify the optimal allocation of fire-
fighter units that maximises the total rewards4. If we know the
exact value of ai,t fire strength and ki,t, the problem can be
reduced to a 0 − 1 knapsack problem with bounded weights
(as fire strengths are bounded above by C), which can be op-
timally solved within running time complexity polynomial in
the number of zones [Pisinger, 1999]. However, as described
earlier, the exact value of ai,t and ki,t is not known unless a
drone covers zone i or a firefighter unit is sent to that zone.
Thus, our model consists of the following practical settings:
• At each time step t, each zone i has a pair of values ki,t

and ai,t ≥ 0, which are not fully observed unless we
allocate firefighters and/or drones to cover them.
• If we allocate a drone to a specific zone, we assume it

gives us information regarding the strength of fire at that
particular zone and at all the zones adjacent to it in GR.
• If we allocate a certain number of firefighters (di,t > 0)

to zone i at time step t, even if we do not receive any
positive utility (i.e., di,t < ai,t), we assume that we get
to know the strength of fire (ai,t) in that zone.

Regarding the nature of uncertainty about ai,t and ki,t, we
consider the worst-case scenario, that is, the sequences of
ai,1, . . . ai,T and ki,1, . . . ki,T can arbitrarily change over
time. Note that in practice, both ai,t and ki,t can be dictated
by some (hidden) processes. For example, if the time step is
relatively rapid (e.g., it represents days), then if a fire is not
extinguished yet, its strength will be increased over time (up
to upper bound C). On the other hand, if time step represents
seasons, then it could be the case that ai,t does not change
much over time (e.g., as fire might be caused and governed
by nature and its laws). However, to make our model generic
(and thus, to be able to cover as many different scenarios as
possible), we do not impose any further assumptions on the
nature of ai,t and ki,t. To reduce the uncertainty of the fire
strengths, we can deploy drones to observe the zones. Let
vt ∈ {0, 1}n denote the indicator vector where vt(i) = 1 if
a drone is allocated to zone i at time step t. In addition, let
N (vt) ∈ {0, 1}n denote the neighbourhood of vt inGR. That
is, N (vt)(i) = 1 if and only if vt(i) = 1 or there exists j 6= i
such that (i, j) is an edge in GR and vt(j) = 1. Note that in
our setting, any zone withinN (vt) is observable (i.e., we can
observe the fire’s strength in that zone).

Let D(vt) denote the set of firefighter allocation policies
that take into account the information received from drone

4We can also formulate our model as a loss/damage minimization
problem. In particular, fi(di,t) can be replaced with a loss function
li(di,t), which provides a positive loss ki if ai,t > 0 and di,t < ai,t.
The reason we formulate our model as a maximization problem is
that the underlying optimization problem is the same, namely the
knapsack model. Using the loss minimization model would need an
extra conversion step to fit it into the knapsack setting.
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allocation vt. The objective in Eq (2) can be rewritten as:

max{vt},{di,t}∈D(vt)

T∑
t=1

n∑
i=1

fi(di,t)

subject to ∀t :
n∑

i=1

di,t ≤ r, ∀i, t : di,t ∈ N

(3)
Our goal thus is to identify efficient drone deployments and
their corresponding firefighter allocations that maximizes the
total utility value over T time steps.

3 The Firefly Algorithm
Given the problem description above, we now turn to the de-
sign of our algorithm called Firefly. Note that while both the
drone and firefighter allocation tasks can be combined into
a single optimization problem, we follow the route of sepa-
rating these problems from each other. The reason for this
decoupling is the fact that we can significantly reduce the
search space (both problems are difficult combinatorial prob-
lems with large search spaces). As such, the high-level work-
flow of Firefly can be described as follows. At each step t:

1. Find a drone allocation as a solution of a maximum set
coverage problem (see Section 3.1);

2. Use the learnt information from the drone allocation to
estimate the utility function of each zone (Section 3.2);

3. Use the abovementioned estimates to solve the fire-
fighter allocation as a knapsack problem (Section 3.4).

3.1 Drone Allocation as Max Coverage
The goal of this phase is to reduce the uncertainty about as
many values of ai,t (i.e., the strength of fire at zone i at
time step t) as possible. More importantly, we are inter-
ested in covering (i.e., identifying the correct fire strength)
of the zones where there is fire (i.e., ai,t > 0), while avoid-
ing sending our drones to zones without fire (to not waste our
resources). As such, our goal is to solve the following op-
timization problem for each time step t (using the notations

from Section 3): max{vt}

n∑
i=1

(
I{ai,t > 0, N(vt)(i) = 1}

)
where I{} is the indicator function. That is, we want to
identify the vt vector of drone allocation that maximizes the
number of zones on fire and are within the observation range
(i.e., neighbourhood) of at least one drone. We consider two
cases: (i) we know the zones with fire in advance (but not
their strength); and (ii) we do not have any information about
the locations of fire. The first case deals with the setting when
we receive a detail report of fire while the second case deals
with general fire or smoke sightings and reporting. Ideally,
we would like to cover the whole graph. However, due to the
limited number of drones, we are not able to cover the whole
graph. Below, we discuss how we can address this challenge
for the above cases.

We tackle the former first. In particular, let ut ∈ {0, 1}n
denote the position vector of fire (i.e., ui,t = 1 if and only if
ai,t > 0). We construct Ĝt graph from GR and ut as follows:

1. For each node i of GR we create a copy i1 in Ĝt;

Algorithm 1: The Firefly Algorithm
Inputs: GR, r, m, C, η
for t = 1, . . . , T do

Environment generates fire strength vector at and
reward vector kt
ut ← Fire location vector (if available)
vt ← Greedy max-m coverage on Ĝt (Sec 3.1)
Estimate âi,t and k̂i,t (Sec 3.2)
w∗i,t ← Solve perturbed knapsack from Eq (7)
di,t = dâi,tew∗i,t
∀i : Allocate di,t firefighters to i and observe true
reward ft(di,t) (Sec 3.4)

Update Âi,t and K̂i,t (Sec 3.2 and 3.3)
end

2. For each j with uj,t = 1 create additional copy j2 in Ĝt;
3. For each pair of i1 and j2, add edge (i1, j2) to Ĝt if there

is edge going from i to j in GR.
We can show that the optimization problem described above
is equivalent to the maximum set coverage problem. More
specifically, in the maximum set coverage problem, we are
given a collection of sets S = {S1, ..., Sm} and an integer k,
we want to find T ⊆ {1, ...,m} of size k such that | ∪i∈T Si|
is maximized. To reduce our problem to the maximum set
coverage problem, for each node i1 of Ĝt, we construct a set
of nodes that i1 is connected to in Ĝt. For each node j2 of
Ĝt, we construct a set containing only j2. Since we have m
drones, we want to findm sets (or selectm nodes) as to cover
as many of the fire locations as possible so that we can deter-
mine their strengths. While the maximum coverage problem
is known to be NP-hard, we can apply an efficient greedy al-
gorithm to find a solution that obtains at least (1− 1/e) frac-
tion of the optimal solution [Hochbaum and Pathria, 1998].
The greedy algorithm iteratively (until we have selected k
sets) adds a set that provides the maximal marginal increase
in the number of elements covered given the already selected
sets. We incorporate such greedy algorithm to find vt in our
Firefly algorithm. When we do not have access to vector ut,
we simply solve the maximum set coverage problem on GR

where the set of each node i in GR is defined to be the neigh-
bors it covers including i. For the sake of simplicity, we say
that Ĝt = GR. Firefly then uses the same greedy algorithm
to allocate the drones on Ĝt.

3.2 Utility Value Estimation
Having the drones allocated, we need to gather the informa-
tion about the true values of observed ai,t and ki,t, and pro-
vide estimates for the unobserved ones, as this is necessary to
calculate the utility function of each zone i. This part of the
algorithm is particularly important because not every zone is
observed from the drone allocation stage. We start with the
estimation of the fire strength. To do so, we maintain two
parameters for each zone, âi,t for the estimated value of the
current fire strength (i.e., ai,t), and Ãi,t is the cumulative fire
strength at zone i up to time step t. Similarly, we maintain

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4325



two parameters, k̂i,t for the estimated value of the current
reward ki,t, and K̃i,t is the cumulative reward at zone i up
to time step t. We estimate âi,t as follows: If i is covered,
âi,t = ai,t (as the true value of fire strength is observed).
Otherwise, âi,t = 1

t−1 Ãi,t−1 for t > 1, and âi,1 = 0. While
k̂i,t is estimated as: If i is covered, k̂i,t = ki,t (as the true
reward is observed). Otherwise, k̂i,t = 1

t−1K̃i,t−1 for t > 1,
and k̂i,1 = 0. The estimated utility function for each zone
will be f̂i,t(d) = k̂i if d ≥ âi,t > 0, and 0 otherwise. We
then use these utility estimates to solve the firefighter alloca-
tion problem (see Section 3.4 for more details). After the al-
location is done, and information about the true utility values
and fire strength have been collected, we finish our estimation
phase by updating Ãi,t and K̃i,t as follows: If i is covered:
Ãi,t = Ãi,t−1 + ai,t and K̃i,t = K̃i,t−1 + ki,t. Otherwise
let p̂i,t(d) denote the estimate of the probability that the fire-
fighter allocation algorithm (which can provide a randomized
allocation), described later in Section 3.4, allocates exactly d
resources to zone i at time step t. We have

Ãi,t = Ãi,t−1 + ai,t
∑
d>0

I{di,t = d}
p̂i,t(d)

(4)

K̃i,t = K̃i,t−1 +
∑
d>0

fi,t(d)
I{di,t = d}
p̂i,t(d)

(5)

The intuition behind Eqs (4) and (5) is that if we know pi,t(d),
the true probability that di,t = d, then replacing pi,t(d) into
the second term on the RHS of Eqs (4) and (5) gives an un-
biased estimate of ai,t and ki,t, whenever di,t = d. As such,
we can use it to estimate the strength of fire and reward at
zone i in many cases without being able to observe their true
value, as in expectation the unbiased estimates will return the
true values. Note that this technique is common in the on-
line adversarial learning literature for estimating unseen loss
(for more details see, e.g., [Neu and Bartók, 2013]). Now, the
main challenge is that the true probability p(di,t = d) cannot
be explicitly calculated in many situations (e.g, then the un-
derlying firefighter allocation algorithm needs to solve a com-
plex optimization problem, as it is the case in our setting). To
overcome this issue, we discuss a geometric resampling based
technique to calculate p̂i,t(d), an estimate of p(di,t = d).

3.3 Calculating p̂i,t(d) with Geometric Resampling
In this section, we provide a technique to estimate p(di,t =
d), the probability that the optimizer F , described later in
Section 3.4, would have allocated d resources to zone i. This
probability value is typically unknown, as we can only ob-
serve a concrete outcome of F (i.e., a particular allocation
{di,t}). This probability can be estimated by using a tech-
nique called geometric resampling [Neu and Bartók, 2013],
which lies on the following simple idea: if we repeatedly use
F to reallocate the resources for many rounds, and observe
whether the allocation at zone i is d at each round, then this
observation follows a geometric distribution. Therefore we
can use geometric distribution to infer p(di,t = d).

Algorithm 2: The Geommetric Resampling Algorithm
Inputs: drone allocation v; Lmax > 0, optimizer F
∀i zone: Li(d) = Lmax

for l = 1, 2, . . . , Lmax do
Recalculate firefighter allocation d̂i,t using F and v
for all zone i do

If (N(v)(i) 6= 1 and d̂i,t = d) then Li(d) =
min(Li(d), l)

end
end
return {Li(d)}i,d

More specifically, the adaptation of this technique to our
setting is given in Algorithm 2. For the sake of completeness
we explain the algorithm in detail as follows:
• Step 1: Use F to repeatedly calculate the firefighter al-

location for sufficient number of times (Step 3);
• Step 2: Let Li(d) denote the first recalculation round in

which di,t = d (i.e., F allocates d resources to zone i).
It is easy to prove that Li(d) follows a geometric distri-
bution with E[Li(d)] = 1

p(di,t=d) . As such, 1/Li(d) is a
unbiased estimator of p(di,t > d).
• Step 3: However, Li(d) can be undefined as it can

grow to infinity. Therefore, by only recalculating up to
Lmax rounds (i.e., Li(d) is capped by Lmax) and setting
p̂i,t(d) = 1/Li(d), we can still get a good (but biased)
estimate of p(di,t = d).

3.4 Firefighter Allocation as Knapsack Problem
Given the description of drone allocation and utility estima-
tion, we now turn to the discussion of the firefighter allocation
phase. In particular, taking into account the fire strength vec-
tor ât, we solve the following knapsack problem:

max{wi,t}

n∑
i=1

k̂i,twi,t

subject to
n∑

i=1

dâi,tewi,t ≤ r, ∀i : wi,t ∈ {0, 1}
(6)

where wi,t specifies whether dâi,te firefighters are deployed
to zone i at time t. The intuition behind this formulation is
that from a utility perspective, it is not useful to allocate less
than âi,t resources to zone i, as we cannot receive any re-
wards for doing so. Therefore, if we decide to allocate re-
sources to that zone, it is more beneficial to allocate at least
dâi,te (as âi,t can be fractional). However, note that âi,t is
not always the true fire strength and k̂i,t is not always the
true reward. As such, to capture the uncertainty around the
true value of âi,t and k̂i,t, we perturb the knapsack problem
in Eq (6) by adding some extra random noise to the model
to allow a certain degree of exploration, as opposed to solely
focusing on exploitation (i.e., assuming âi,t and k̂i,t are true
values and solve the knapsack). Another reason to perturb
the knapsack problem is to increase the number of zones with
positive P (di,t > 0). Recall that if P (di,t > 0) > 0 then the
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RHS of Eqs (4) and (5) give us a good estimator for the true
value of ai,t and ki,t (see Section 3.2 for more details).

Given this, for each i, let zi,t ∼ Exp(η) denote a ran-
dom variable sampled from an exponential distribution with
parameter η. Now, we define k̂i,t the perturbed value of ki
as follows: If N(vt)(i) = 1 (i.e., i is covered by a drone),
k̃i,t = ki,t. Otherwise k̃i,t = k̂i,t + zi,t. We then solve the
following perturbed knapsack problem at each time step t:

max{wi,t}

n∑
i=1

k̃i,twi,t

subject to
n∑

i=1

dâi,tewi,t ≤ r, ∀i : wi,t ∈ {0, 1}
(7)

The firefighter allocation then can be calculated as follows:
We allocate dâi,tew∗i,t to each zone i, where w∗i,t is a solution
of the knapsack problem in Eq 7. Note that as 0 ≤ ai,t ≤ C,
dâi,te are also bounded above by C. Therefore, if C is inde-
pendent from r and other parameters, this knapsack problem
can also be solved in polynomial time (by using, e.g., dy-
namic programming [Pisinger, 1999]). Given this allocation,
the total reward at time t will be Rt =

∑n
i=1 fi(dâi,tew∗i,t).

3.5 Performance Analysis of Firefly Algorithm
Based on the description of each phase in Sections 3.1 - 3.4,
the complete Firefly algorithm is depicted in Algorithm 1.
As we do not have any restrictions on how ai,t and ki,t can
change over time, it is difficult in general to provide efficient
performance guarantees for the algorithm. In particular, it is
easy to show that this problem is APX-hard, by e.g., consid-
ering the case of m = 0 (i.e., no drones for observation), and
ai,t and ki,t change arbitrarily over time (i.e., no algorithm
can do better than a uniform random allocation). However,
under some additional conditions, we can achieve theoreti-
cal guarantees. In particular, our first result shows that if we
have O(ln2(n)) number of drones, and GR follows certain
randomized structure, then Firefly can achieve optimal solu-
tion (i.e., maximal total reward) with high probability. More
precisely:

Theorem 1. Suppose that GR consists of a finite number
of Erdos-Renyi random graphs (we also allow extra edges
between these graphs). Let p > 0 be the smallest edge-
generation probability of these graphs. Then for each p > 0
and δ > 0, if m ∈ Θ(ln2 (n)), Firefly finds the optimal solu-
tion with at least (1− δ) probability.

4 Experimental Results
Our goal is to evaluate the performance of our Firefly al-
gorithm under different parameter settings and zoning/graph
structures of certain areas. Recall that the Firefly algorithm
takes GR (e.g., the zoning graph), r (e.g., the number of fire-
fighters), m (e.g., the number of drones), C (e.g., the upper
bound of the fire intensity), η (e.g., the perturbation param-
eter) as input. We vary these parameters and measure their
impact on the performance of the Firefly algorithm. While
varying parameter values, we consider synthetic and realistic

graph structures based on Erdos-Renyi random graphs and the
actual grid zoning structures (mirror those of Figure 1), re-
spectively. The synthetic experiment results are omitted due
to space restrictions. The performance of the Firefly algo-
rithm is measured with respect to the optimal solution (i.e.,
the optimal knapsack value if we know the fire intensity at
every location) at each time step. For the sake of compar-
isons, we consider the random firefighter allocation (without
any information of the fires) where we randomly allocate re-
sources to each zone (so that we don’t exceed the resource
constraints) as a baseline case. The performance will be pre-
sented as the ratio between the given algorithm (Firefly or
random) and the optimal solution. We refer the ratio to be ei-
ther Firefly/Opt or random/Opt (or more generally Alg/Opt).
We report the average ratio over the time-steps.

In the realistic fire fighting instances, we consider the 10×
10 grid graph that is based on a region in Marin County, Cali-
fornia (See Figure 1). The priorities for each zone i = 1, ..., n
at time t is ki,t = ki where ki is drawn from a Gaussian dis-
tribution with mean 0.6 and standard deviation 0.2. We then
classify zones as moderate, high or very high using data based
on the Fire and Resource Assessment Program as in Figure
1. Using this classification, we generate the fire intensity at
each zone as follows: every round the fire at a region is 0
with probability 0.5 and is p × C with probability 0.5 where
C is the upper bound of the fire intensity and p is a random
variable drawn from the following distributions: (a) A uni-
form distribution with lower bound 0.1 and upper bound 0.2
for moderate regions; (b) A uniform distribution with lower
bound 0.4 and upper bound 0.5 for high regions; (c) A uni-
form distribution with lower bound 0.8 and upper bound 0.9
for very high regions. Given the 10 x 10 grid graph structure,
we consider r ∈ {10, 50, 100, 200}, m ∈ {1, 5, 10, 50} and
C ∈ {10, 50}. For each of the combinations of the param-
eters, we generate 10 problem instances. The reported ratio
is the average over the 10 problem instances (with different
zone priorities). We omitted reporting the (small) standard
deviations for the ease of presentations. The η value is set to
be 0.5 for all of the experiments. Finally, we let T = 200 to
be the maximum number of time-steps.

Observation 1 - Varying the Number of Drones. Figure
2 shows the experimental results when we vary the num-
ber of drones (m) fixing each combination of parameters.
Each of the bright-colored solid lines and dark-colored dot-
ted lines corresponds to the average ratio of Firefly/OPT and
random/OPT over 200 time-steps, respectively. From the ob-
servation, regardless of r and C, Firefly/OPT increases as
we increase the number of drones. In particular, even with
a smaller number of drones (e.g., 5-10), Firefly achieves 60-
70% of the optimal solution. The observation suggests that
our algorithm will be benefited from having more drones, and
drones are usually tools for providing meaningful information
to fight fires.

Observation 2 - Varying the Number of Firefighters.
Figure 3 shows the experimental results when we vary the
number of firefighters (r). We observe that Firefly’s perfor-
mance depends on both m and C. In Figure 3 (a)-(c), Fire-
fly/Opt increases when C = 10 and decreases when C = 50.
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Figure 2: Realistic Instances Varying m: (a) r = 10, (b) r = 50, (c) r = 100, and (d) r = 200. The x-axis represents the number of drones, and
the y-axis represents the average Alg/Opt over 200 time steps.
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Figure 3: Realistic Instances Varying r: (a) m = 1, (b) m = 5, (c) m = 10, and (d) r = 50. The x-axis represents the number of firefighters, and
the y-axis represents the average Alg/Opt over 200 time steps.

This could be due to the fact that the fire intensity is in a
larger range with higher C and the optimal solution is harder
to approximate. Figure 3 (d) shows that when we have a large
enough number of drones (m = 50), Firefly could observe
the whole graph and allocate firefighters optimally.

5 Conclusions
In this paper, we have proposed Firefly, a novel resource
allocation problem to mitigate wildfire. In particular, our
algorithm combines solutions for maximum set cover and
knapsack problems to efficiently allocate both drones and
firefighter units. Besides providing theoretical performance
guarantees, we have also numerically evaluated the perfor-
mance of our algorithm and demonstrated that it can achieve
up to 80− 90% of the optimal performance even with a rela-
tively small number of drones.
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Francisco Lloret. Climate warming, wildfire hazard, and
wildfire occurrence in coastal eastern spain. Climatic
Change, 38:345–357, 1998.

[Pisinger, 1999] David Pisinger. Linear time algorithms for
knapsack problems with bounded weights. Journal of Al-
gorithms, 33(1):1 – 14, 1999.

[Rodriguez Aseretto et al., 2013] Dario Rodriguez Aseretto,
Daniele de Rigo, Margherita Di Leo, Ana Cortés, and
J. San-Miguel-Ayanz. A data-driven model for large wild-
fire behaviour prediction in europe. Procedia Computer
Science (ISSN 1877-0509), 18:1861–1870, 06 2013.

[Sabit et al., 2011] Hakilo Sabit, Adnan Al-Anbuky, and
Hamid GholamHosseini. Wireless sensor network based
wildfire hazard prediction system modeling. Procedia
Computer Science, 5:106 – 114, 2011.

[Salis et al., 2012] Michele Salis, Bachisio Arca, Alan Ager,
Cinzia Fois, V. Bacciu, Pierpaolo Duce, and Donatella
Spano. Extreme wildfire spread and behaviour: Case stud-
ies from north sardinia, italy. pages 10052–, 04 2012.

[Tsang et al., 2013] Alan Tsang, Kate Larson, and Rob
McAlpine. Resource sharing for control of wildland fires.
In Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, AAAI’13, pages 1355–1361. AAAI
Press, 2013.

[Westerling et al., 2006] A. L. Westerling, H. G. Hidalgo,
D. R. Cayan, and T. W. Swetnam. Warming and ear-
lier spring increase western u.s. forest wildfire activity.
313(5789):940–943, 2006.

[Yanjun Li et al., 2006] Yanjun Li, Zhi Wang, and Yeqiong
Song. Wireless sensor network design for wildfire moni-
toring. In 2006 6th World Congress on Intelligent Control
and Automation, volume 1, pages 109–113, 2006.

[Yuan et al., 2015] Chi Yuan, Youmin Zhang, and Zhixiang
Liu. A survey on technologies for automatic forest fire
monitoring, detection, and fighting using unmanned aerial
vehicles and remote sensing techniques. Canadian journal
of forest research, 45(7):783–792, 2015.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on AI for Computational Sustainability and Human Well-being

4329


	Introduction
	Related Work

	Problem Description
	The Firefly Algorithm
	Drone Allocation as Max Coverage
	Utility Value Estimation
	Calculating i,t(d) with Geometric Resampling
	Firefighter Allocation as Knapsack Problem
	Performance Analysis of Firefly Algorithm

	Experimental Results
	Conclusions

