
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB®

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB®

by Jim Sizemore
and John Paul Mueller

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior writ-
ten permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. MATLAB is a registered trademark of Mathworks, Inc. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014940494

ISBN: 978-1-118-882010-0 (pbk); ISBN 978-1-118-82003-2 (ebk); ISBN 978-1-118-82434-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance
Introduction .. 1

Part I: Getting Started With MATLAB............................ 5
Chapter 1: Introducing MATLAB and Its Many Uses ... 7
Chapter 2: Starting Your Copy of MATLAB .. 19
Chapter 3: Interacting with MATLAB .. 37
Chapter 4: Starting, Storing, and Saving MATLAB Files .. 59

Part II: Manipulating and Plotting Data in MATLAB 79
Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions 81
Chapter 6: Understanding Plotting Basics .. 115
Chapter 7: Using Advanced Plotting Features.. 135

Part III: Streamlining MATLAB 151
Chapter 8: Automating Your Work .. 153
Chapter 9: Expanding MATLAB’s Power with Functions .. 171
Chapter 10: Adding Structure to Your Scripts ... 193

Part IV: Employing Advanced MATLAB Techniques..... 213
Chapter 11: Importing and Exporting Data ... 215
Chapter 12: Printing and Publishing Your Work .. 233
Chapter 13: Recovering from Mistakes ... 257

Part V: Specific MATLAB Applications 277
Chapter 14: Solving Equations and Finding Roots ... 279
Chapter 15: Performing Analysis ... 307
Chapter 16: Creating Super Plots ... 319

Part VI: The Part of Tens .. 351
Chapter 17: Top Ten Uses of MATLAB .. 353
Chapter 18: Ten Ways to Make a Living Using MATLAB ... 361
Appendix A: MATL AB Functions ... 367
Appendix B: MATLAB’s Plotting Routines .. 377

Index .. 385

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Icons Used in This Book ... 3
Beyond the Book ... 3
Where to Go from Here ... 4

Part I: Getting Started With MATLAB 5

Chapter 1: Introducing MATLAB and Its Many Uses 7
Putting MATLAB in Its Place .. 8

Understanding how MATLAB relates to a Turing machine 8
Using MATLAB as more than a calculator .. 10
Determining why you need MATLAB .. 11

Discovering Who Uses MATLAB for Real-World Tasks 13
Knowing How to Get the Most from MATLAB ... 14

Getting the basic computer skills .. 15
Defining the math requirements .. 15
Applying what you know about other procedural languages 16
Understanding how this book will help you 16

Getting Over the Learning Curve ... 17

Chapter 2: Starting Your Copy of MATLAB . 19
Installing MATLAB ... 19

Discovering which platforms MATLAB supports 19
Getting your copy of MATLAB ... 20
Performing the installation ... 21
Activating the product .. 21

Meeting the MATLAB Interface .. 22
Starting MATLAB for the first time .. 22
Employing the Command window ... 24
Using the Current Folder toolbar ... 27
Viewing the Current Folder window .. 28
Changing the MATLAB layout .. 33

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB For Dummies viii
Chapter 3: Interacting with MATLAB . 37

Using MATLAB as a Calculator .. 38
Entering information at the prompt .. 38
Entering a formula ... 40
Copying and pasting formulas ... 41
Changing the Command window formatting 42
Suppressing Command window output .. 44

Understanding the MATLAB Math Syntax .. 44
Adding, subtracting, multiplying, and dividing 45
Working with exponents ... 47

Organizing Your Storage Locker .. 48
Using ans — the default storage locker .. 48
Creating your own storage lockers.. 48

Operating MATLAB as More Than a Calculator .. 50
Learning the truth .. 50
Using the built-in functions .. 52
Accessing the function browser .. 52

Recovering from Mistakes .. 54
Understanding the MATLAB error messages 54
Stopping MATLAB when it hangs .. 55

Getting Help .. 55
Exploring the documentation ... 56
Working through the examples .. 56
Relying on peer support ... 57
Obtaining training .. 57
Requesting support from MathWorks ... 58
Contacting the authors ... 58

Chapter 4: Starting, Storing, and Saving MATLAB Files 59
Examining MATLAB’s File Structure ... 60

Understanding the MATLAB files and what they do 60
Exploring folders with the GUI ... 61
Exploring folders with commands ... 65
Working with files in MATLAB ... 69

Accessing and Sharing MATLAB Files ... 72
Opening ... 72
Importing .. 73
Exporting ... 75

Saving Your Work .. 76
Saving variables with the GUI ... 76
Saving variables using commands ... 77
Saving commands with the GUI ... 77
Saving commands using commands ... 77

www.it-ebooks.info

http://www.it-ebooks.info/

ix Table of Contents

Part II: Manipulating and Plotting Data in MATLAB 79

Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions . . . 81
Working with Vectors and Matrices .. 81

Understanding MATLAB’s perspective of linear algebra................ 82
Entering data .. 83

Adding and Subtracting .. 88
Understanding the Many Ways to Multiply and Divide 89

Performing scalar multiplication and division 90
Employing matrix multiplication ... 90
Effecting matrix division ... 94
Creating powers of matrices .. 95
Working element by element .. 96
Using complex numbers ... 97
Working with exponents ... 99

Working with Higher Dimensions .. 99
Creating a multidimensional matrix .. 100
Accessing a multidimensional matrix ... 102
Replacing individual elements ... 103
Replacing a range of elements ... 104
Modifying the matrix size ... 105
Using cell arrays and structures .. 107

 Using the Matrix Helps ... 110

Chapter 6: Understanding Plotting Basics . 115
Considering Plots .. 115

Understanding what you can do with plots 116
Comparing MATLAB plots to spreadsheet graphs 116
Creating a plot using commands ... 117
Creating a plot using the Workspace window 119
Creating a plot using the Plots tab options 120

Using the Plot Function ... 122
Working with line color, markers, and line style 122
Creating multiple plots in a single command 124

Modifying Any Plot .. 124
Making simple changes ... 125
Adding to a plot .. 125
Deleting a plot .. 128
Working with subplots .. 128

Plotting with 2D Information .. 132

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB For Dummies x
Chapter 7: Using Advanced Plotting Features 135

Plotting with 3D Information .. 136
Using the bar() function to obtain a flat 3D plot 136
Using bar3() to obtain a dimensional 3D plot 140
Using barh() and more ... 142

Enhancing Your Plots .. 143
Getting an axes handle .. 143
Modifying axes labels .. 144
Adding a title .. 145
Rotating label text .. 147
Employing annotations ... 148
Printing your plot ... 150

Part III: Streamlining MATLAB 151

Chapter 8: Automating Your Work . 153
Understanding What Scripts Do .. 154

Creating less work for yourself .. 154
Defining when to use a script ... 155

Creating a Script .. 155
Writing your first script .. 156
Using commands for user input ... 158
Copying and pasting into a script .. 159
Converting the Command History into a script 160
Continuing long strings ... 160
Adding comments to your script ... 162

Revising Scripts ... 167
Calling Scripts .. 167
Improving Script Performance ... 168
Analyzing Scripts for Errors ... 169

Chapter 9: Expanding MATLAB’s Power with Functions 171
Working with Built-in Functions .. 172

Learning about built-in functions .. 172
Sending data in and getting data out ... 177

Creating a Function ... 178
Understanding script and function differences 179
Understanding built-in function and

custom function differences ... 179
Writing your first function .. 180
Using the new function.. 182
Passing data in ... 184
Passing data out ... 185

www.it-ebooks.info

http://www.it-ebooks.info/

xi Table of Contents

Creating and using global variables .. 187
Using subfunctions .. 188
Nesting functions ... 190

Using Other Types of Functions .. 190
Inline functions ... 191
Anonymous functions ... 191

Chapter 10: Adding Structure to Your Scripts 193
Making Decisions ... 193

Using the if statement ... 194
Using the switch statement .. 199
Understanding the switch difference .. 200
Deciding between if and switch ... 201

Creating Recursive Functions .. 201
Performing Tasks Repetitively ... 205

Using the for statement ... 205
Using the while statement .. 206
Ending processing using break .. 207
Ending processing using return ... 208
Determining which loop to use .. 210

Creating Menus .. 210

Part IV: Employing Advanced MATLAB Techniques 213

Chapter 11: Importing and Exporting Data . 215
Importing Data ... 216

Performing import basics ... 216
Importing mixed strings and numbers .. 221
Defining the delimiter types ... 223
Importing selected rows or columns .. 224

Exporting Data ... 225
Performing export basics.. 225
Exporting scripts and functions ... 228

Working with Images ... 229
Exporting images ... 230
Importing images ... 231

Chapter 12: Printing and Publishing Your Work 233
Using Commands to Format Text .. 233

Modifying font appearance ... 234
Using special characters ... 241
Adding math symbols.. 243

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB For Dummies xii
Publishing Your MATLAB Data .. 248

Performing advanced script and function publishing tasks 248
Saving your figures to disk ... 252

Printing Your Work ... 253
Configuring the output page ... 253
Printing the data .. 255

Chapter 13: Recovering from Mistakes . 257
Working with Error Messages .. 258

Responding to error messages .. 258
Understanding the MException class .. 260
Creating error and warning messages .. 262
Setting warning message modes .. 264

Understanding Quick Alerts ... 265
Relying on Common Fixes for MATLAB’s Error Messages 267
Making Your Own Error Messages .. 268

Developing the custom error message ... 268
Creating useful error messages ... 272

Using Good Coding Practices ... 273

Part V: Specific MATLAB Applications 277

Chapter 14: Solving Equations and Finding Roots 279
Working with the Symbolic Math Toolbox ... 279

Obtaining your copy of the Toolbox ... 280
Installing the Symbolic Math Toolbox .. 282
Working with the GUI .. 286
Typing a simple command in the Command window 290

Performing Algebraic Tasks ... 291
Differentiating between numeric and symbolic algebra 291
Solving quadratic equations ... 293
Working with cubic and other nonlinear equations 294
Understanding interpolation .. 295

Working with Statistics ... 297
Understanding descriptive statistics .. 297
Understanding robust statistics .. 302
Employing least squares fit .. 302

Chapter 15: Performing Analysis . 307
Using Linear Algebra ... 308

Working with determinants .. 308
Performing reduction .. 308
Using eigenvalues .. 310
Understanding factorization ... 311

www.it-ebooks.info

http://www.it-ebooks.info/

xiii Table of Contents

Employing Calculus ... 312
Working with differential calculus ... 312
Using integral calculus .. 313
Working with multivariate calculus ... 314

Solving Differential Equations .. 316
Using the numerical approach ... 316
Using the symbolic approach... 317

Chapter 16: Creating Super Plots . 319
Understanding What Defines a Super Plot ... 320
Using the Plot Extras ... 321

Using grid() .. 321
Obtaining the current axis using gca .. 322
Creating axis dates using datetick() ... 322
Creating plots with colorbar() .. 326
Interacting with daspect ... 329
Interacting with pbaspect ... 332

Working with Plot Routines .. 334
Finding data deviations using errorbar() 334
Ranking related measures using pareto() 334
Plotting digital data using stairs() .. 335
Showing data distribution using stem() .. 336
Drawing images using fill .. 337
Displaying velocity vectors using quiver() 340
Displaying velocity vectors using feather() 340
Displaying velocity vectors using compass() 340
Working with polar coordinates using polar() 342
Displaying angle distribution using rose() 342
Spotting sparcity patterns using spy() .. 344

Employing Animation .. 344
Working with movies ... 346
Working with objects .. 347
Performing data updates .. 348

Part VI: The Part of Tens ... 351

Chapter 17: Top Ten Uses of MATLAB . 353
Engineering New Solutions ... 353
Getting an Education ... 354
Working with Linear Algebra ... 355
Performing Numerical Analysis ... 355
Getting Involved in Science .. 356
Engaging Mathematics .. 356
Exploring Research ... 356

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB For Dummies xiv
Walking through a Simulation .. 357
Employing Image Processing ... 358
Embracing Programming Using Computer Science 358

Chapter 18: Ten Ways to Make a Living Using MATLAB 361
Working with Green Technology ... 362
Looking for Unexploded Ordinance .. 362
Creating Speech Recognition Software ... 363
Getting Disease under Control ... 363
Becoming a Computer Chip Designer ... 364
Keeping the Trucks Rolling .. 364
Creating the Next Generation of Products ... 364
Designing Equipment Used in the Field .. 365
Performing Family Planning ... 365
Reducing Risks Using Simulation .. 366

Appendix A: MATL AB Functions . 367

Appendix B: MATLAB’s Plotting Routines . 377

Index ... 385

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

M
ATLAB is an amazing product that helps you perform math-related
tasks of all sorts using the same techniques that you’d use if you were

performing the task manually (using pencil and paper, slide rule, or abacus
if necessary, but more commonly using a calculator). However, MATLAB
makes it possible to perform these tasks at a speed that only a computer can
provide. In addition, using MATLAB reduces errors, streamlines many tasks,
and makes you more efficient. However, MATLAB is also a big product that
has a large number of tools and a significant number of features that you
might never have used in the past. For example, instead of simply working
with numbers, you now have the ability to plot them in a variety of ways that
help you better communicate the significance of your data to other people.
In order to get the most from MATLAB, you really need a book like MATLAB
For Dummies.

About This Book
The main purpose of MATLAB For Dummies is to reduce the learning curve
that is a natural part of using a product that offers as much as MATLAB
does. When you first start MATLAB, you might become instantly over-
whelmed by everything you see. This book helps you get past that stage
and become productive quickly so that you can get back to performing
amazing feats of math wizardry.

In addition, this book is designed to introduce you to techniques that you
might not know about or even consider because you haven’t been exposed to
them before. For example, MATLAB provides a rich plotting environment that
not only helps you communicate better, but also makes it possible to present
numeric information in a manner that helps others see your perspective. Using
scripts and functions will also reduce the work you do even further and this
book shows you how to create custom code that you can use to customize the
environment to meet your specific needs.

After you’ve successfully installed MATLAB on whatever computer platform
you’re using, you start with the basics and work your way up. By the time
you finish working through the examples in this book, you’ll be able to per-
form a range of simple tasks in MATLAB that includes writing scripts, writing
functions, creating plots, and performing advanced equation solving. No,
you won’t be an expert, but you will be able to use MATLAB to meet specific
needs in the job environment.

www.it-ebooks.info

http://www.it-ebooks.info/

2 MATLAB For Dummies

To make absorbing the concepts even easier, this book uses the following
conventions:

 ✓ Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step
is bold, the text to type is not bold.

 ✓ When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if
you see “Type Your Name and press Enter,” you need to replace Your
Name with your actual name.

 ✓ Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the
Internet, note that you can click the web address to visit that website,
like this: http://www.dummies.com.

 ✓ When you need to type command sequences, you see them separated
by a special arrow like this: File➪New File. In this case, you go to the File
menu first and then select the New File entry on that menu. The result is
that you see a new file created.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you —
after all, we haven’t even met you yet! Although most assumptions are indeed
foolish, we made these assumptions to provide a starting point for the book.

It’s important that you’re familiar with the platform you want to use because
the book doesn’t provide any guidance in this regard. (Chapter 2 does provide
MATLAB installation instructions.) To provide you with maximum informa-
tion about MATLAB, this book doesn’t discuss any platform-specific issues.
You really do need to know how to install applications, use applications,
and generally work with your chosen platform before you begin working with
this book.

This book isn’t a math primer. Yes, you see lots of examples of complex math,
but the emphasis is on helping you use MATLAB to perform math tasks rather
than learn math theory. Chapter 1 provides you with a better understanding
of precisely what you need to know from a math perspective in order to use
this book successfully.

This book also assumes that you can access items on the Internet. Sprinkled
throughout are numerous references to online material that will enhance
your learning experience. However, these added sources are useful only if
you actually find and use them.

www.it-ebooks.info

http://www.it-ebooks.info/

3 Introduction

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of
interest (or not, as the case may be).This section briefly describes each icon
in this book.

 Tips are nice because they help you save time or perform some task without a
lot of extra work. The tips in this book are timesaving techniques or pointers
to resources that you should try in order to get the maximum benefit from
MATLAB.

 We don’t want to sound like angry parents or some kind of maniac, but you
should avoid doing anything that’s marked with a Warning icon. Otherwise,
you might find that your application fails to work as expected, you get incor-
rect answers from seemingly bulletproof equations, or (in the worst-case
scenario) you lose data.

 Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

 If you don’t get anything else out of a particular chapter or section, remem-
ber the material marked by this icon. This text usually contains an essential
process or a bit of information that you must know to work with MATLAB
successfully.

Beyond the Book
This book isn’t the end of your MATLAB experience — it’s really just the
beginning. We provide online content to make this book more flexible and
better able to meet your needs. That way, as we receive email from you, we
can address questions and tell you how updates to either MATLAB or its
associated add-ons affect book content. In fact, you gain access to all these
cool additions:

 ✓ Cheat sheet: You remember using crib notes in school to make a better
mark on a test, don’t you? You do? Well, a cheat sheet is sort of like that.
It provides you with some special notes about tasks that you can do with
MATLAB that not every other person knows. You can find the cheat sheet
for this book at http://www.dummies.com/cheatsheet/matlab. It
contains really neat information such as the keyboard shortcuts that you
use most often to speed MATLAB use.

www.it-ebooks.info

http://www.it-ebooks.info/

4 MATLAB For Dummies

 ✓ Dummies.com online articles: A lot of readers were skipping past the
parts pages in For Dummies books, so the publisher decided to remedy
that. You now have a really good reason to read the parts pages —
online content. Every parts page has an article associated with it that
provides additional interesting information that wouldn’t fit in the book.
You can find the articles for this book at http://www.dummies.com/
extras/matlab.

 ✓ Updates: Sometimes changes happen. For example, we might not have
seen an upcoming change when we looked into our crystal balls during
the writing of this book. In the past, this possibility simply meant that the
book became outdated and less useful, but you can now find updates to
the book at http://www.dummies.com/extras/matlab.

 In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related techniques
at http://blog.johnmuellerbooks.com/.

 ✓ Companion files: Hey! Who really wants to type all the code in the book
and reconstruct all those plots by hand? Most readers would prefer to
spend their time actually working with MATLAB and seeing the interest-
ing things it can do, rather than typing. Fortunately for you, the exam-
ples used in the book are available for download, so all you need to do
is read the book to learn MATLAB usage techniques. You can find these
files at http://www.dummies.com/extras/matlab.

Where to Go from Here
It’s time to start your MATLAB adventure! If you’re completely new to MATLAB,
you should start with Chapter 1 and progress through the book at a pace that
allows you to absorb as much of the material as possible.

If you’re a novice who’s in an absolute rush to get going with MATLAB as
quickly as possible, you could skip to Chapter 2 with the understanding that
you may find some topics a bit confusing later. Skipping to Chapter 3 is possible
if you already have MATLAB installed, but be sure to at least skim Chapter 2 so
that you know what assumptions we made writing this book.

Readers who have some exposure to MATLAB can save reading time by moving
directly to Chapter 5. You can always go back to earlier chapters as necessary
when you have questions. However, it’s important that you understand how
each technique works before moving to the next one. Every technique, coding
example, and procedure has important lessons for you, and you could miss
vital content if you start skipping too much information.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I
Getting Started With MATLAB

 For great online content, check out http://www.dummies.com.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ Discover why you want to start using MATLAB to speed your

calculation.

 ✓ Install MATLAB on your particular system.

 ✓ Start working with MATLAB to become better acquainted with
the program.

 ✓ Perform some simple tasks to understand the interface.

 ✓ Become familiar with the MATLAB file system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Introducing MATLAB
and Its Many Uses

In This Chapter
▶ Understanding how MATLAB fits in as a tool for performing math tasks

▶ Seeing where MATLAB is used today

▶ Discovering how to get the most from MATLAB

▶ Overcoming the MATLAB learning curve

M
ath is the basis of all our science and even some of our art. In fact, math
itself can be an art form — consider the beauty of fractals (a visual pre-

sentation of a specialized equation). However, math is also abstract and can
be quite difficult and complex to work with. MATLAB makes performing math-
related tasks easier. You use MATLAB to perform math-related tasks such as

 ✓ Numerical computation

 ✓ Visualization

 ✓ Programming

This chapter introduces you to MATLAB, an application that performs a variety
of math tasks. It helps you understand the role that MATLAB can play in
reducing the overall complexity of math and in explaining math-related infor-
mation to others more easily. You also discover that MATLAB is already used by
a number of different organizations to perform real-world tasks in a manner that
improves accuracy, efficiency, and consistency. Of course, knowing how you
can translate these benefits of MATLAB to your own workplace is important.

Because MATLAB can do so much, it does have a learning curve. This chap-
ter also discusses what you can do to reduce the learning curve so that you
become productive much faster. The less time you spend learning about
MATLAB, the more time you spend applying math to your particular specialty,
and the better the results you achieve. Getting things done quickly and accu-
rately is the overall goal of MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

8 Part I: Getting Started with MATLAB

Putting MATLAB in Its Place
MATLAB is all about math. Yes, it’s a powerful tool and yes, it includes its own
language to make the execution of math-related tasks faster, easier, and more
consistent. However, when you get right down to it, the focus of MATLAB
is the math. For example, you could type 2 + 2 as an equation and MATLAB
would dutifully report the sum of 4 as output. Of course, no one would buy
an application to compute 2 + 2 — you could easily do that with a calculator.
So you need to understand just what MATLAB can do. The following sections
help you put MATLAB into perspective so that you better understand how
you can use it to perform useful work.

Understanding how MATLAB
relates to a Turing machine
Today’s computers are mostly Turing machines, named after the British math-
ematician Alan Turing (1912–1954). The main emphasis of a Turing machine
is performing tasks step by step. A single processor performs one step at a
time. It may work on multiple tasks, but only a single step of a specific task is
performed at any given time. Knowing about the Turing machine orientation of
computers is important because MATLAB follows precisely the same strategy.
It, too, performs tasks one step at a time in a procedural fashion. In fact, you
can download an application that simulates a Turing machine using MATLAB at
http://www.mathworks.com/MATLABcentral/fileexchange/23006-
turing-machine-emulator/content/@turing/turing.m. The code is
surprisingly short.

 Don’t confuse the underlying computer with the programming languages used
to create applications for it. Even though the programs that drive the computer
may be designed to give the illusion of some other technique, when you look
at how the computer works, you see that it goes step by step. If you’ve never
learned how computers run programs, this information is meaningful back-
ground. Refer to the nearby sidebar “Understanding how computers work” for
a discussion of this important background information.

Understanding how computers work
Many older programmers are geeks who
punched cards before TVs had transistors.
One advantage of punching cards is getting
to physically touch and feel the computer’s

instructions and data. This physicality gave
programmers a good understanding of what
happens when a program runs.

www.it-ebooks.info

http://www.it-ebooks.info/

9 Chapter 1: Introducing MATLAB and Its Many Uses

Today, the instructions and data are stored as
charges of electrons in tiny pieces of silicon too
small to be seen through even the most pow-
erful optical microscope. Today’s computers
can handle much more information much more
quickly than early machines. But the way they
use that information is basically the same as
early computers.

In those old card decks, programmers wrote
one instruction on each card. After all the
instructions, they put the data cards into a card
reader. The computer read a card and the com-
puter did what the card told it to do: Get some
data, get more data, add it together, divide, and
so on until all the instructions were executed.

A series of instructions is a program. The fol-
lowing figure shows a basic schematic block
diagram of how a computer works.

Unchanged from the old days, when cards were
read one at a time, computer instructions con-
tinue to be read one at a time. The instruction
is executed, and then the computer goes to the
next instruction. MATLAB executes programs in
this manner as well.

It’s important to realize that the flow of a
program can change. Computers can make

decisions based on specific criterion, such as
whether something is true or false, and take
the route indicated for that decision. For exam-
ple, when the computer has read all the data
for a task, the program tells the computer to
quit reading data and start doing calculations.
Mapping how the computer executes pro-
grams is called a flow chart, which is similar
to a road map with intersections where deci-
sions must be made. MATLAB relies on well-
designed flow charts to make it easy to see
what the computer will do, when it will do it,
and how it will accomplish the required tasks.

The whole concept of a program may seem
foreign to many — something that only geeks
would ever love — but you’ve already used the
concept of a program before. When using a
calculator, you first think of the steps and num-
bers you want to enter and in what sequence
to enter them to solve your problem. A pro-
gram, including a MATLAB program, is simply
a sequence of similar steps stored in a file that
the computer reads and executes one at
a time. You don’t need to fear computer
 programming — you’ve probably done some-
thing very similar quite often and can do it
easily again.

www.it-ebooks.info

http://www.it-ebooks.info/

10 Part I: Getting Started with MATLAB

Using MATLAB as more than a calculator
MATLAB is a computer programming language, not merely a calculator.
However, you can use it like a calculator, and doing so is a good technique to
try ideas that you might use in your program. When you get past the experi-
mentation stage, though, you usually rely on MATLAB to create a program
that helps you perform tasks

 ✓ Consistently

 ✓ Easily

 ✓ Quickly

With these three characteristics in mind, the following sections explore the
idea of MATLAB’s being more than a simple calculator in greater detail. These
sections don’t tell you everything MATLAB can do, but they do provide you
with ideas that you can pursue and use to your own advantage.

Exploring Science, Technology, Engineering, and Mathematics (STEM)
Schools currently have a strong emphasis on Science, Technology, Engineering,
and Math (STEM) topics because the world doesn’t have enough people who
understand these disciplines to get the required work done. Innovation of any
sort requires these disciplines, as do many practical trades. MATLAB has a
rich and large toolbox for STEM that includes

 ✓ Statistics

 ✓ Simulation

 ✓ Image processing

 ✓ Symbolic processing

 ✓ Numerical analysis

Performing simple tasks
Many developers start learning their trade using an older language named
Basic. Originally, it was spelled BASIC, for Beginner’s All-Purpose Symbolic
Instruction Code. The intent behind Basic was to make the language simple.
MATLAB retains the simplicity of Basic, but with a much larger toolbox to
solve STEM problems. The idea is that you have better things to do than
learn how to program using a complex language designed to meet needs that
your programs will never address.

 Everything has trade-offs. MATLAB is specifically designed to meet the needs
of people who use math for learning or to make a living. It gets rid of the com-
plexity found in many other languages and keeps things simple so that you

www.it-ebooks.info

http://www.it-ebooks.info/

11 Chapter 1: Introducing MATLAB and Its Many Uses

can focus on your work rather than on the tool you’re using to do it. However,
in pursuing simplicity, MATLAB is also less flexible than other programming
languages, provides fewer advanced features for tasks you’ll never perform
anyway, and offers fewer generic tools. MATLAB is designed to meet specific
needs rather than work as a general-purpose language.

Determining why you need MATLAB
It’s important to know how to use any application you adopt, but it’s equally
important to know when to use it and what it can actually do for your organi-
zation. If you don’t have a strong reason to use an application, the purchase
will eventually sit on the shelf collecting dust. This bit of dust collecting hap-
pens far too often in corporations around the world today because people
don’t have a clear idea of why they even need a particular application. Given
that MATLAB can perform so many tasks, you don’t want it to just sit on the
shelf. The following sections can help you build a case for buying and then
using MATLAB in your organization.

Relying on structure for better organization
Writing programs is all about telling the computer to perform a task one step
at a time. The better your language tells the computer what to do, the easier
the computer will be to use and the less time you’ll spend getting it to per-
form a given task.

Starting with the C and Pascal computer languages, developers began creat-
ing structured environments. In such an environment, a map of instructions
and decisions doesn’t look like a bowl of spaghetti — hard to follow and
make sense of — but looks more like a tree, with a trunk and branches that
are much easier to follow and understand. MATLAB places a strong emphasis
on structure (for example, in the way it organizes data and in the manner in
which you write code), which means that you spend a lot more time doing
something fun and a lot less time writing code (because the structure means
that you work with data in a consistent manner).

 Structure does come with a price (there really are trade-offs to everything).
Early developers could write an application quickly because they had few
rules to follow. Because newer languages do enforce structure (making the
code easier to read and update later), you have to spend time learning the
rules. The rules are what produce the learning curve in MATLAB that you
need to consider as part of working with the product. Make sure that you set
realistic goals and establish a timetable that reflects the need to learn pro-
gramming rules. You can’t rush through the MATLAB learning process and
expect to do anything useful at the end.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Part I: Getting Started with MATLAB

Avoiding the complexity of Object-Oriented Programming (OOP)
You may have heard of Object-Oriented Programming (OOP). It’s a discipline
that helps developers create applications based on real-world models. Every
element of an application becomes an object that has specific characteristics
and can perform specific tasks. This technology is quite useful to developers
because it helps them create extremely complex applications with fewer errors
and less coding time.

However, OOP isn’t something you need to know in order to work through
various types of math problems. Even though you can solve difficult math
problems using languages that do support OOP, STEM users can exploit most
of MATLAB’s power without OOP. The lack of an OOP requirement means that
you can get up and running with MATLAB far faster than you could with a
conventional modern programming language and without a loss of the func-
tionality that you need to perform math tasks.

OOP does serve a useful purpose — just not a purpose that you need when
creating math models. Leave the complex OOP languages to developers who
are creating the software used to access huge databases, or developing a new
operating system. MATLAB is designed to make things easy for you.

Using the powerful toolbox
MATLAB provides a toolbox designed to meet the specific needs of STEM
users. In contrast to a general programming language, this toolbox provides
specific functionality needed to meet certain STEM objectives. Here is just
a small sample of the areas that are addressed by the tools you find in the
MATLAB toolbox:

 ✓ Algebra

 ✓ Linear algebra — many equations dealing with many unknowns

 ✓ Calculus

 ✓ Differential equations

 ✓ Statistics

 ✓ Curve fitting

 ✓ Graphing

 ✓ Preparing reports

Reducing programming effort with the fourth-generation language
Programming languages are often rated by their generation. For example,
a first-generation language works side by side with the hardware. It’s the sort
of language that programmers used when computers first appeared on the

www.it-ebooks.info

http://www.it-ebooks.info/

13 Chapter 1: Introducing MATLAB and Its Many Uses

scene. Nothing is wrong with working directly with the hardware, but you
need specialized knowledge to do it, and writing such code is time consum-
ing. A first-generation language is so hard to use that even the developers
decided to create something better — second-generation languages! (Second-
generation languages, such as Macro Assembler [MASM] are somewhat
human-readable, must be assembled into executable code before use, and are
still specific to a particular processor.)

 Most developers today use a combination of third-generation languages such
as C, C++, and Java, and fourth-generation languages such as Structured Query
Language (SQL). A third-generation language gives the developer the kind
of precise control needed to write exceptionally fast applications that can
perform a wide array of tasks. Fourth-generation languages make asking for
information easier. For the MATLAB user, the promise of fourth-generation
languages means being able to work with collections of data, rather than indi-
vidual bits and bytes, making it easier for you to focus on the task, instead of
the language.

As languages progress from first generation to fourth generation (and
beyond), they become more like human language. For example, you might
write something like FIND ALL RECORDS WHERE LAST_NAME EQUALS
‘SMITH’. It’s not quite human language, but close enough that most people
can follow it. You tell the computer what to do, but the computer actually
decides how to do it. Such languages are useful because they take the burden
of interacting with the computer hardware off the language user and place it
on the automation that supports the language.

 MATLAB employs a fourth-generation language to make your job a lot
easier. The language isn’t quite human, but it’s also a long way away from
the machine code that developers used to write to make computers work.
Using MATLAB makes you more efficient because the language is specifically
designed to meet the needs of STEM users (just as SQL is designed to meet
the needs of database administrators and developers who need to access
large databases).

Discovering Who Uses MATLAB
for Real-World Tasks

An application isn’t very useful if you can’t perform real-world tasks with
it. Many applications out there are curiosities — they may do something
interesting, but they aren’t really practical. MATLAB is popular among STEM

www.it-ebooks.info

http://www.it-ebooks.info/

14 Part I: Getting Started with MATLAB

users whose main goal is productively solving problems in their particular
field — not problems unique to computer programming. You can find MATLAB
used in these kinds of professions:

 ✓ Scientists

 ✓ Engineers

 ✓ Mathematicians

 ✓ Students

 ✓ Teachers

 ✓ Professors

 ✓ Statisticians

 ✓ Control technology

 ✓ Image-processing researchers

 ✓ Simulation users

Of course, most people want to hear about actual users who are employing
the product to do something useful. You can find such a list at http://www.
mathworks.com/company/user_stories/product.html. Just click the
MATLAB entry to see a list of companies that use MATLAB to perform real-
world tasks. For example, this list tells you that the Centers for Disease Control
(CDC) uses MATLAB for polio virus sequencing (see http://www.mathworks.
com/company/user_stories/Centers-for-Disease-Control-and-
Prevention-Automates-Poliovirus-Sequencing-and-Tracking.
html). You also find that the National Aeronautic and Space Administration
(NASA) used MATLAB when creating the model for the X-43 — the craft that
recently achieved mach 10 (read about it at http://www.mathworks.com/
company/user_stories/NASAs-X-43A-Scramjet-Achieves-Record-
Breaking-Mach-10-Speed-Using-Model-Based-Design.html). The list
of companies goes on and on. Yes, MATLAB really is used for important tasks by
a large number of companies.

Knowing How to Get the
Most from MATLAB

At this point, you may have decided that you absolutely can’t get by without
obtaining your own personal copy of MATLAB. If that’s the case, you really
do need to know a little more about it in order to get the most value for your

www.it-ebooks.info

http://www.it-ebooks.info/

15 Chapter 1: Introducing MATLAB and Its Many Uses

money. The following sections provide a brief overview of the skills that are
helpful when working with MATLAB. You don’t need these skills to perform
every task, but they all come in handy for reducing the overall learning curve
and making your MATLAB usage experience nicer.

Getting the basic computer skills
Most complex applications require that you have basic computer skills, such
as knowing how to use your mouse, work with menu systems, understand
what a dialog box is all about, and perform some basic configuration tasks.
MATLAB works like other computer programs you own. It has an intuitive
and conventional Graphical User Interface (GUI) that makes using MATLAB a
lot easier than employing pad and pen. If you’ve learned to use a GUI operat-
ing system such as Windows or the Mac OS X, and you also know how to use
an application such as Word or Excel, you’ll be fine.

 This book points out MATLAB peculiarities. In addition, you have access
to procedures that you can use to make your tasks easier to perform. The
combination of these materials will make it easier for you to work with
MATLAB even if your computer skills aren’t as finely honed as they could
be. The important thing to remember is that you can’t break anything when
working with MATLAB. In fact, we encourage trial and error because it’s a
great learning tool. If you find that an example doesn’t quite work as antici-
pated, close MATLAB, reopen it, and start the example over again. MATLAB
and your computer are both more forgiving than others may have led you
to believe.

Defining the math requirements
You need to have the right level of knowledge to use MATLAB. Just as using
SQL is nearly impossible without a knowledge of database management,
using MATLAB is hard without the proper math knowledge. MATLAB’s ben-
efits become evident when applied to trigonometry, exponentials, logarithms,
and higher math.

 This book assumes that you have a certain level of math knowledge. The math
behind the exercises isn’t explained to any large degree unless the explanation
helps you understand the MATLAB programming language better. However,
many sites online cater to math knowledge. For example, you can find a host
of tutorials at http://www.analyzemath.com/. These tutorials come com-
plete with exercises that help you understand the math behind the MATLAB
examples in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

16 Part I: Getting Started with MATLAB

Applying what you know about
other procedural languages
One of the more significant problems in understanding how to use any lan-
guage is the procedure. The point was driven home to one fellow at an early
age when his teacher assigned his class the task of writing a procedure for
making toast. Every student carefully developed a procedure for making
toast, and on the day the papers were turned in, the teacher turned up with
a loaf of bread and a toaster. She dutifully followed the instructions each
child provided to the letter. All the children failed at the same point. Yes, they
forgot to take the bread out of the wrapper. You can imagine what it was like
trying to shove a single piece of bread into the toaster when the piece was
still in the wrapper along with the rest of the bread.

Programming can be (at times) just like the experiment with the toast. The
computer takes you at your word and follows to the letter the instructions
you provide. The results may be not what you expected, but the computer
always follows the same logical course. Having previous knowledge of a pro-
cedural language, such as C, Java, C++, or Python, will help you understand
how to write MATLAB procedures as well. You have already developed the
skill required to break instructions into small pieces and know what to do
when a particular piece is missing. Yes, you can use this book without any
prior programming experience, but the prior experience will most definitely
help you get through the chapters must faster and with fewer errors.

Understanding how this book will help you
This is a For Dummies book, so it takes you by the hand to explore MATLAB
and make it as easy to understand as possible. The goal of this book is to help
you use MATLAB to perform at least simple feats of mathematical magic. It
won’t make you a mathematician and it won’t help you become a developer —
those are topics for other books. When you finish this book, you will know
how to use MATLAB to explore STEM-related topics.

 Make sure that you also check out the blog for this book at http://blog.
johnmuellerbooks.com/categories/263/matlab-for-dummies.aspx.
This is the place to look for updates and additional information. Also, the blog
offers answers to commonly asked questions — questions asked by people just
like you. You can also write the authors: John (John@JohnMuellerBooks.com)
and Jim (jsiz@tjc.edu) with your book-related questions. We want to ensure
that you have a great reading experience and can get everything possible from
this book.

www.it-ebooks.info

http://www.it-ebooks.info/

17 Chapter 1: Introducing MATLAB and Its Many Uses

Getting Over the Learning Curve
Even easy programming languages have a learning curve. If nothing else, you
need to discover the techniques that developers use to break tasks into small
pieces, ensure that all the pieces are actually there, and then place the pieces
in a logical order. Creating an orderly flow of steps that the computer can
follow can be difficult, but this book leads you through the process a step at
a time.

To help you understand MATLAB, this book compares how to accomplish
a task in MATLAB with something you’re used to, such as a spreadsheet or
calculator. You learn by doing. Try the examples in this book and invent some
of your own. Try variations and experiment. MATLAB’s not too tough — you,
too, can discover how to use MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

18 Part I: Getting Started with MATLAB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Starting Your Copy of MATLAB
In This Chapter
▶ Obtaining and installing your copy of MATLAB

▶ Starting MATLAB and working with the interface

B
efore you can use MATLAB to do anything productive, you need a copy
of it installed on your system. Fortunately, you can obtain a free trial

version that lasts 30 days. If you’re diligent, you can easily complete this
book in that time and know for certain whether you want to continue using
MATLAB as a productivity aid. The point is that you need a good installation,
and this book helps you obtain that goal.

 After you have MATLAB installed, it’s important to introduce yourself to the
interface. This chapter provides you with an overview of the interface, not
a detailed look at every feature. However, overviews are really important
because working with lower-level interface elements is hard if you don’t have
the big picture. You may actually want to mark this chapter in some way so
that you can refer back to the interface information.

Installing MATLAB
A problem that anyone can encounter is getting a bad product installation or
simply not having the right software installed. When you can’t use your soft-
ware properly, the entire application experience is less than it should be. The
following sections guide you through the MATLAB installation so that you can
have a great experience using it.

Discovering which platforms
MATLAB supports
Before you go any further, you need to verify that your system will actu-
ally run MATLAB. At a minimum, you need 3GB of free hard drive space and
2GB of RAM to use MATLAB effectively. (It can run on systems with fewer

www.it-ebooks.info

http://www.it-ebooks.info/

20 Part I: Getting Started with MATLAB

resources, but you won’t be happy with the performance.) You also need to
know which platforms MATLAB supports. You can use it on these systems:

 ✓ Windows (3GB free disk space, 2GB RAM)

 • Windows 8.1

 • Windows 8

 • Windows 7 Service Pack 1

 • Windows Vista Service Pack 2

 • Windows XP Service Pack 3

 • Windows XP x64 Edition Service Pack 2

 • Windows Server 2012

 • Windows Server 2008 R2 Service Pack 1

 • Windows Server 2008 Service Pack 2

 • Windows Server 2003 R2 Service Pack 2

 ✓ Mac OS X

 • Mac OS X 10.9 (Mavericks)

 • Mac OS X 10.8 (Mountain Lion)

 • Mac OS X 10.7.4+ (Lion)

 ✓ Linux

 • Ubuntu 12.04 LTS, 13.04, and 13.10

 • Red Hat Enterprise Linux 6.x

 • SUSE Linux Enterprise Desktop 11 SP3

 • Debian 6.x

 Linux users may find that other distributions work. However, the list of Linux
systems represents those that are tested to work with MATLAB. If you try
MATLAB on your unlisted Linux system and find that it works well, please
let John know (at John@JohnMuellerBooks.com) and he’ll mention these
other systems in a blog post. The point is that you really do need to have the
right platform to get good results with MATLAB. You can always obtain the
current minimum requirements for MATLAB at http://www.mathworks.
com/support/sysreq/current_release/index.html.

Getting your copy of MATLAB
Before you can work with MATLAB, you need a copy installed on your
system. Fortunately, you have a number of methods at your disposal. Here
are the three most common ways of getting MATLAB:

www.it-ebooks.info

http://www.it-ebooks.info/

21 Chapter 2: Starting Your Copy of MATLAB

 ✓ Get the trial version from https://www.mathworks.com/programs/
trials/trial_request.html.

 ✓ Obtain a student version of the product from https://www.mathworks.
com/academia/student_version/.

 ✓ Buy a copy from http://www.mathworks.com/pricing-licensing/
index.html.

In most cases, you need to download the copy of MATLAB or the MATLAB
installer onto your system after you fill out the required information to get it.
Some users choose to receive a DVD in the mail instead of downloading the
product online. No matter which technique you use, you eventually get a copy
of MATLAB to install.

Performing the installation
The method you use to install MATLAB depends on the version you obtain
and the media used to send it to you. For example, there is a method for
installing MATLAB from DVD and an entirely different method when you want
to download the installer and use an Internet connection. Administrators and
users also have different installation procedures. Use the table at http://
www.mathworks.com/help/install/ug/choose-installation-
procedure.html to determine which installation procedure to use.

 MathWorks provides you with substantial help in performing the installa-
tion. Before you contact anyone, be sure to look through the materials on the
main installation page at http://www.mathworks.com/help/install/
index.html. It’s also possible to obtain installation help at http://www.
mathworks.com/support/install-matlab.html. Take the time to review
the material that MathWorks provides before you push the panic button. Doing
so will save time and effort.

Activating the product
After you complete the MATLAB installation, you must activate the product.
Activation is a verification process. It simply means that MathWorks verifies
that you have a valid copy of MATLAB on your system. With a valid copy, you
obtain support such as updates to your copy of MATLAB as needed.

As with installation, you have a number of activation types to use with MATLAB
that depend on the product version and how you’re using the product. The chart
at http://www.mathworks.com/help/install/license/activation-
types.html tells you about these activation types and helps you make a selec-
tion. The matrix at http://www.mathworks.com/help/install/license/

www.it-ebooks.info

http://www.it-ebooks.info/

22 Part I: Getting Started with MATLAB

license-option-and-activation-type-matrix.html tells you whether
your particular version of MATLAB supports a specific activation type. For
example, the individual license doesn’t support the Network Named User
activation type.

 MATLAB automatically asks you about activation after the installation process
is complete. You don’t need to do anything special. However, you do want to
consider the type of activation you want to perform — which type of activa-
tion will best meet your needs and those of your organization.

Meeting the MATLAB Interface
Most applications have similar interface functionality. For example, if you
click a button, you expect something to happen. The button usually contains
text that tells you what will happen when you click it, such as closing a dialog
box by clicking OK or Cancel. However, the similarities aren’t usually enough
to tell you everything you need to know about the interface. The following
sections provide an overview of the MATLAB interface so that you can work
through the chapters that follow with greater ease. These sections don’t tell
you everything about the interface, but you do get enough information to feel
comfortable using MATLAB.

Starting MATLAB for the first time
When you start MATLAB for the first time (after you activate it), you see a
display containing a series of blank windows. It’s not all that interesting just
yet because you haven’t done anything with MATLAB. However, each of the
windows has a special purpose, so it’s important to know which window to
use when you want to perform a task.

It’s possible to arrange the windows in any order needed. Figure 2-1 shows
the window arrangement used throughout the book, which may not precisely
match your display. The “Changing the MATLAB layout” section of this chapter
tells you how to rearrange the windows so that you can see them the way that
works best when you work. Here is a brief summary of the window functionality.

 ✓ Home tab: The Home tab of the Ribbon interface (a bar that provides
access to various MATLAB features, such as creating a new script or
importing data) is where you find most of the icons you use to create and
use MATLAB formulas. It’s the tab you use most often. Also on the inter-
face is a Plots tab (for creating graphic presentations of your formulas)
and an Apps tab (for obtaining new applications to use with MATLAB).
MATLAB calls the Ribbon interface the Toolstrip, so that’s the name we
use throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

23 Chapter 2: Starting Your Copy of MATLAB

Figure 2-1:
The initial

view of
MATLAB
is pretty

much empty
space.

 ✓ Quick Access toolbar: The Quick Access toolbar (QAT) provides access
to the MATLAB features that you use most often. Finding icons on the
QAT is often faster and easier than looking them up on the Toolstrip.

 You can change the QAT to meet your needs. To add an icon to the QAT,
right-click its entry in the Toolstrip and choose Add to Quick Access
Toolbar from the context menu. If you want to remove an icon from the
QAT, right-click its entry in the QAT and choose Remove from the Quick
Access Toolbar from the context menu.

 ✓ Minimize Toolstrip: If you find that the Toolstrip is taking up too much
space, you can click the Minimize Toolstrip icon to remove it from view.
To restore the Toolstrip, simply click the Minimize Toolstrip icon again.

 When the Toolstrip is minimized, you can still see the three tabs —
Home, Plots, and Apps. Click a tab to reveal the Toolstrip long enough
to use a MATLAB feature. As soon as you select a Toolstrip feature or
click in another MATLAB area, the Toolstrip disappears again. Using this
technique allows you full access to the MATLAB features but keeps the
Toolstrip hidden to save space.

www.it-ebooks.info

http://www.it-ebooks.info/

24 Part I: Getting Started with MATLAB

 ✓ Command window: You type formulas and commands in this window.
After you type the formula or command and press Enter, MATLAB deter-
mines what it should do with the information you typed. You see the
Command window used later in this chapter.

 ✓ Workspace window: The Workspace window contains the results of any
tasks you ask MATLAB to perform. It provides a scratchpad of sorts that
you use for calculations. The Workspace window and Command window
work hand in hand to provide you with a complete view of the work you
perform using MATLAB.

 ✓ Command History window: In some cases, you want to reissue a for-
mula or command. The Command History window acts as your memory
and helps you restore formulas and commands that you used in the
past. You see the Command History window used later in this chapter.

 ✓ Status bar: It’s important to know the current MATLAB state — whether
MATLAB is ready to perform additional work or not. The status bar nor-
mally contains one word, Ready, which tells you that MATLAB is ready
to perform tasks. However, you need to watch this window when per-
forming complex tasks to see what MATLAB is doing at any given time.

 ✓ Details window: The Details window shows specifics about any file you
select in the Current Folder window.

 ✓ Current Folder window and Address Field: The Current Folder window
contains a listing of the files you’ve created in the current folder — files
you’d use to store any data you create in MATLAB, along with any scripts
or functions you’d use to manipulate data). The Current Folder is listed
in the Address Field text box that appears directly below the Toolstrip.
Changing the Address Field text box content also changes the content of
the Current Folder window.

Employing the Command window
The Command window is where you perform most of your experimentation.
This chapter shows how to perform really simple tasks using the Command
window, but as the book progresses, you see that the Command window can
do quite a lot for you. The following sections describe some of the ways in
which you can use the Command window to learn more about MATLAB.

Typing a really simple command
You can type any formula or command desired in the Command window and
see a result. Of course, it pays to start with something really simple so that
you can get the feel of how this window works. Type 2 + 2 and press Enter in
the Command window. You see the results shown in Figure 2-2.

 Notice that it isn’t just the Command window that is affected when you type a
formula or command. Other windows are changed as well. Here are the all
windows affected:

www.it-ebooks.info

http://www.it-ebooks.info/

25 Chapter 2: Starting Your Copy of MATLAB

Figure 2-2:
A very

simple com-
mand in

MATLAB.

 ✓ Command window: Receives the output of the formula 2 + 2, which
is ans = 4. MATLAB assigns the output of the formula to a variable
named ans. Variables are boxes (pieces of memory) in which you can
place data. In this case, the box contains the number 4.

 ✓ Workspace window: Contains any variables generated as the result of
working in the Command window. In this case, the Workspace window
contains a variable named ans that holds a value of 4.

 Notice that the variable can’t contain any other value than 4 because the Min
column also contains 4, as does the Max column. When a variable can con-
tain a range of values, the minimum value that it can contain appears in the
Min column and the maximum value that it can contain appears in the Max
column. The Value column always holds the current value of the variable.

 ✓ Command History window: Displays the series of formulas or com-
mands that you type, along with the date and time you typed them. You
can replay a formula or command in this window. Just select the formula
or command that you want to use from the list to replay it.

Getting additional help
At the top of the Command window, notice three links that you can use to
quickly get additional help in using MATLAB. Each link helps you in a differ-
ent way, so you can use the links as needed to meet your specific needs. Here
is an overview of what each link provides:

www.it-ebooks.info

http://www.it-ebooks.info/

26 Part I: Getting Started with MATLAB

 ✓ Watch This Video: Opens a tutorial in your browser. The video provides
a brief introduction to MATLAB. Simply watch it for a visual presentation
of how to work with MATLAB.

 ✓ See Examples: Displays a Help dialog box that contains an assortment of
examples that you can try, as shown in Figure 2-3. The examples take a
number of forms:

 • Video: Displays a guided presentation of how to perform a task that
opens in your browser. The length of time of each video is listed
next to its title.

 • Script: Opens the Help dialog box to a new location that contains
an example script that demonstrates some MATLAB feature and an
explanation of how the script works. You can open the script and
try it yourself. Making changes to the script is often helpful to see
how the change affects script operation.

 • App: Starts a fully functional app that you can use to see how
MATLAB works and what you can expect to do with it.

Figure 2-3:
The exam-

ples give
you practi-
cal experi-
ence using

MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

27 Chapter 2: Starting Your Copy of MATLAB

 ✓ Read Getting Started: Displays a Help dialog box that contains addi-
tional information about MATLAB, such as the system requirements, as
shown in Figure 2-4. You also gain access to a number of tutorials.

Figure 2-4:
The Getting

Started
informa-

tion helps
you learn

more about
MATLAB
and pro-

vides
access to
tutorials.

Using the Current Folder toolbar
The Current Folder toolbar helps you navigate the Current Folder window
with greater precision. Here is a description of each of the toolbar elements
when viewed from left to right on the toolbar:

 ✓ Back: Moves you back one entry in the file history listing. MATLAB
retains a history of the places you visit on the hard drive. You can move
backward and forward through this list to get from one location to
another quite quickly.

 ✓ Forward: Moves you forward one entry in the file history listing.

 ✓ Up One Level: Moves you one level up in the directory hierarchy. For
example, when viewing Figure 2-9, if you are currently in the \MATLAB\
Chapter02 folder, clicking this button takes you to the \MATLAB folder.

www.it-ebooks.info

http://www.it-ebooks.info/

28 Part I: Getting Started with MATLAB

 ✓ Browse for Folder: Displays a Select a New Folder dialog box that you
can use to view the hard drive content. Highlight the folder you want to
use and click Select to change the Current Folder window location to the
selected folder.

 ✓ Address field: Contains the current folder information. Type a new value
and press Enter to change the folder.

 ✓ Search (the Magnifying Glass icon to the right of the Address field):
Changes the Address field into a search field. Type the search criteria
that you want to use, press Return, and MATLAB displays the results for
you in the Current Folder window.

Viewing the Current Folder window
The Current Folder window (refer to Figure 2-1) really does show the current
folder listed in the Address field. You don’t see anything because the current
folder has no files or folders to display. However, you can add files and fold-
ers as needed to store your MATLAB data.

 When you first start MATLAB, the current folder always defaults to the MATLAB
folder found in your user folder for the platform of your choice. For Windows
users, that means the C:\Users\<User Name>\Documents\MATLAB folder
(where <User Name> is your name). Burying your data way down deep in the
operating system may seem like a good idea to the operating system vendor,
but you can change the current folder location to something more convenient
when desired. The following sections describe techniques for managing data
and its storage location using MATLAB.

Temporarily changing the current folder
There are times when you need to change the current folder. Perhaps your
data is actually stored on a network drive, you want to use a shared location
so that others can see your data, or you simply want to use a more conven-
ient location on your local drive. The following steps help you change the
current folder:

 1. Click Set Path in the Environment group on the Toolstrip’s Home tab.

 You see the Set Path dialog box shown in Figure 2-5.

 This dialog box lists all the places the MATLAB searches for data, with
the default location listed first. You can use these techniques to work
with existing folders (go to Step 3 when you’re finished):

 • To set an existing folder as the default folder, highlight the folder in
the list and click Move to Top.

 • To stop using an existing folder, highlight the folder in the list and
click Remove.

www.it-ebooks.info

http://www.it-ebooks.info/

29 Chapter 2: Starting Your Copy of MATLAB

 2. Click Add Folder.

 You see the Add Folder to Path dialog box, as shown in Figure 2-6.

Figure 2-5:
The Set Path

dialog box
contains

a listing of
folders that

MATLAB
searches for

data.

Figure 2-6:
Look for the

folder you
want to use

or add a
new one.

www.it-ebooks.info

http://www.it-ebooks.info/

30 Part I: Getting Started with MATLAB

 This dialog box lets you choose an existing folder that doesn’t appear in
the current list or add a new folder to use:

 • To use a folder that exists on your hard drive, use the dialog box’s
tree structure to navigate to the folder, highlight its entry, and then
click Select Folder.

 • To create a new folder, highlight the parent folder in the dialog
box’s tree structure, click New Folder, type the name of the folder,
press Enter, and then click Select Folder.

 3. Click Save.

 MATLAB makes the folder you select the new default folder. (You may
see a User Account Control dialog box when working with Windows;
click Yes to allow Windows to perform the task.)

 4. Click Close.

 The Set Path dialog box closes.

 5. Type the new location in the Address field.

 The Current Folder display changes to show the new location.

Permanently changing the default folder
The default folder is the one that MATLAB uses when it starts. Setting a default
folder saves you time because you don’t have to remember to change the
current folder setting every time you want to work. If you have your default
folder set to the location from which you work most of the time, you can usually
get right to work and not worry too much about locations on the hard drive.

If you want to permanently change the default folder so that you see the
same folder every time you start MATLAB, you must use the userpath()
command. Even though this might seem like a really advanced technique,
it isn’t hard. In fact, go ahead and set the userpath so that it points to the
downloadable source for this book. Simply type userpath(‘C:\MATLAB’) in
the Command window and press Enter. You need to change the path to wher-
ever you placed the downloadable source.

To see what the default path is for yourself, type userpath and press Enter.
MATLAB displays the current default folder.

Creating a new folder
Organizing the files that you create is important so that you can find them
quickly when needed. To add a folder to the Current Folder window, right-
click any clear area in the window and choose New Folder from the context
menu. MATLAB creates the new folder for you. Type the name you want to
use for the new folder and press Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

31 Chapter 2: Starting Your Copy of MATLAB

 Each chapter in this book uses a separate folder to store any files you create.
When you obtain the downloadable source from the publisher’s site (http://
www.dummies.com/extras/matlab), you find the files for this chapter in
the \MATLAB\Chapter02 folder. Every other chapter will follow the same
pattern.

Saving a formula or command as a script
After you create a formula or command that you want to use to perform a
number of calculations, be sure to save it to disk. Of course, you can save
anything that you want to disk, even the simple formula you typed earlier in
this chapter. The following steps help you save any formula or command that
you want to disk so that you can review it later:

 1. Choose a location to save the formula or command in the Address
field.

 2. Right-click the formula or command that you want to save in the
Command History window and choose Create Script from the context
menu.

 You see the Editor window, as shown in Figure 2-7. The script is cur-
rently untitled, so you see the script name as Untitled*. (Figure 2-7
shows the Editor window undocked so you can see it with greater
ease — the “Changing the MATLAB layout” section of this chapter tells
how to undock windows so you can get precisely the same look.)

Figure 2-7:
The Editor
turns your
formula or
command

into a script.

 If you want to select multiple commands to place in a script, you can
choose them by clicking on the first command, and then using Ctrl+Click
to select any additional commands. Each time you Ctrl+Click on a com-
mand, MATLAB highlights its entry. The commands will appear in the
script file in the same order in which they appear in the Command
History window, rather than in the order in which you click on them.

www.it-ebooks.info

http://www.it-ebooks.info/

32 Part I: Getting Started with MATLAB

 3. Click Save on the Editor tab.

 You see the Select File for Save As dialog box, as shown in Figure 2-8.

Figure 2-8:
Choose a

location to
save your
script and
provide a
filename

for it.

 4. In the left pane, highlight the location you want to use to save
the file.

 5. Type a name for the script in the File Name field.

 The example uses FirstScript.m. However, when you save your own
scripts, you should use a name that will help you remember the content
of the file. Descriptive names are easy to remember and make precisely
locating the script you want much easier later.

 MATLAB filenames can contain only letters and numbers. You can’t use
spaces in a MATLAB filename. However, you can use the underscore in
place of a space.

 6. Click Save.

 MATLAB saves the script for you so that you can reuse it later. The title
bar changes to show the script name and its location on disk.

 7. Close the Editor window.

 The Current Folder window displays the folder and script file that you’ve
created using the previous steps in this chapter, as shown in Figure 2-9.

www.it-ebooks.info

http://www.it-ebooks.info/

33 Chapter 2: Starting Your Copy of MATLAB

Figure 2-9:
The Current

Folder
window
always

shows the
results of

any changes
you make.

Running a saved script
You can run any script by right-clicking its entry in the Current Folder window
and choosing Run from the context menu. When you run a script, you see the
script name in the Command window, the output in the Workspace window,
and the actual command in the Command History window, as shown in
Figure 2-10.

Saving the current workspace to disk
Sometimes you might want to save your workspace to protect work in prog-
ress. The work may not be ready to turn into a script, but you want to save it
before quitting for the day or simply to ensure that any useful work isn’t cor-
rupted by errors you make later.

To save your workspace, click Save Workspace in the Variable group of the
Toolstrip’s Home tab. You see a Save to MAT-file dialog box that looks similar
to the Select File for Save As dialog box (refer to Figure 2-8). Type a filename
for your workspace, such as FirstWorkspace.mat, and click Save to save it.

 Workspaces use a .mat extension, while scripts have a .m extension. Make
sure that you don’t confuse the two extensions. In addition, workspaces and
scripts use different icons so that you can easily tell them apart in the Current
Folder window.

Changing the MATLAB layout
The MATLAB layout is designed to make experimentation easy and comfort-
able for you. However, you may find after a while that it really doesn’t meet
your needs. Fortunately, you can reconfigure the MATLAB layout to any con-
figuration you want. The following sections provide ideas on how you can
reconfigure the MATLAB layout.

www.it-ebooks.info

http://www.it-ebooks.info/

34 Part I: Getting Started with MATLAB

Figure 2-10:
Running a

script shows
its name and

results.

Minimizing and maximizing windows
Sometimes you need to see more or less of a particular window. It’s possible
to simply resize the windows, but you may want to see more or less of the
window than resizing provides. In this case, you can minimize the window to
keep it open but completely hidden from view, or maximize the window to
allow it to take up the entire client area of the application.

 On the right side of the title bar for each window, you see a down arrow. When
you click this arrow, you see a menu of options for that window, such as the
options shown in Figure 2-11 for the Current Folder window. To minimize a
window, choose the Minimize option from this menu. Likewise, to maximize a
window, choose the Maximize option from the menu.

Eventually, you want to change the window size back to its original form.
The Minimize or Maximize option on the menu is replaced by a Restore
option when you change the window’s setup. Select this option to restore the
window to its original size.

Opening and closing windows
In some cases, you may no longer need the information found in a particular
window. When this happens, you can close the window. MATLAB doesn’t
actually destroy the window contents, but the window itself is no longer

www.it-ebooks.info

http://www.it-ebooks.info/

35 Chapter 2: Starting Your Copy of MATLAB

accessible. To close a window that you don’t need, click the down arrow on
the right side of the window and choose Close from the menu.

Figure 2-11:
The window
menus con-
tain options

for changing
the appear-
ance of the

window.

After you close a window, the down arrow is no longer accessible, so you can’t
restore a closed window by using the menu options shown in Figure 2-11.
To reopen a window, you click the down arrow on the Layout button in the
Environment group of the Home tab. You see a list of layout options like the
ones shown in Figure 2-12.

The Show group contains a listing of windows. Each window with a check
mark next to it is opened for use (closed windows have no check mark). To
open a window, click its entry. Clicking the entry places a check next to that
window and opens it for you. The window is automatically sized to the size it
was the last time you had it open.

 You can also close windows using the options on the Layout menu. Simply
click the check next to a window entry to close it.

Docking and undocking windows
Many people have multiple monitors attached to their systems. It’s often
more efficient to perform the main part of your work on your main monitor
and move supplementary windows to a second monitor. However, you really
can’t move a window until you undock the window from MATLAB so that you
can move just that window to another location.

To undock a window, click the down arrow on the right side of its title bar
and choose Undock from the menu. The window becomes a separate entity,
much like the Current Folder window shown back in Figure 2-9. You can move
the undocked window anywhere you want it, including to a second monitor.

www.it-ebooks.info

http://www.it-ebooks.info/

36 Part I: Getting Started with MATLAB

Figure 2-12:
The Layout

menu
contains

the layout
options for

MATLAB.

At some point, you may decide that you want MATLAB to have all its win-
dows in one place again. In this case, you click the down arrow on the right
side of the window’s title bar and choose Dock from the menu. MATLAB
places the window precisely where it was before you undocked it. However,
the window may not return to its original size — you may need to resize it to
make it fit as it did before.

Choosing an existing layout
One of the potential problems of changing your layout is that it may cause
MATLAB to become nearly unusable. Rather than spend a lot of time trying to
get the original layout back, you can simply choose an existing layout. To per-
form this task, click the down arrow on the Layout button in the Environment
group of the Home tab and choose one of the Select Layout options. The
Default entry returns MATLAB to the same state it was in when you started it
the first time.

Saving a new layout
After you find the perfect layout for your needs, you want to save it to disk
so that you can easily restore it later should the MATLAB display become
disorganized (perhaps you’ve moved things about to perform a particular
task). To perform this task, click the down arrow on the Layout button in the
Environment group of the Toolstrip’s Home tab and choose Save Layout. You
see the Save Layout dialog box. Type the name of the layout in the space pro-
vided and click OK. The layout now becomes available in the Select Layout
section of the Layout menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Interacting with MATLAB
In This Chapter
▶ Performing basic calculations

▶ Creating more complex calculations

▶ Interacting with variables

▶ Using MATLAB functions

▶ Overcoming errors

▶ Obtaining additional help

Y
ou can interact with MATLAB in a lot of ways and you’ll experience
quite a few of them as the book progresses. However, it pays to start out

slowly to build your skills. This chapter presents an overview of the sorts of
things you can do with MATLAB. Use this chapter to get started with a prod-
uct that can really perform complex tasks with aplomb.

Although you probably won’t spend a lot of time using MATLAB as a calcula-
tor for even complex calculations, you can do so. Rather than view this kind
of use as a waste of time, however, view it as a means of practicing as well as
experimentation. Sometimes playing with a product produces unexpected
outcomes that can help you in your daily work. To that end, this chapter
introduces you to MATLAB through the use of direct calculation entries.

Another type of interaction with MATLAP covered in this chapter occurs
through variables. Think of a variable as a kind of storage box. You put data
into a variable so that you can store that data for a while. Later, when you
need the data again, you take it out of the variable, do something with it, and
put it back in again. Variables have nothing mystical or difficult about them;
in fact, you use variables all the time in real life. For example, you could view
your refrigerator as a kind of variable. You put the bag of apples inside to
store them for a short time, take the bag out to remove an apple to eat, and
put the rest of the bag back into the refrigerator (minus one apple). The point
is that developers make a big deal out of fancy terms (that you unfortunately
also need to use in order to talk with them), but in reality there isn’t any-
thing odd about them. You get a fuller explanation of variables as part of this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

38 Part I: Getting Started with MATLAB

In the process of interacting with MATLAB, you’ll make mistakes. Of course,
everyone makes mistakes. MATLAB won’t blow up if you make a mistake, and
your computer won’t up and run away. Mistakes are part of the learning process,
so you need to embrace them. In fact, most of the greatest people in history
made a ton of mistakes (see Defining the Benefits of Failure at http://blog.
johnmuellerbooks.com/2013/04/26/defining-the-benefits-of-
failure/). This book assumes that you’re going to make mistakes, so part
of this chapter discusses how to recover from them. Knowing how to recover
means that you don’t have to worry about making a mistake because you can
always start fresh.

And finally in this chapter is the topic of additional resources for finding
help. No one wants to reinvent the wheel, and a lack of progress can become
discouraging after a while. That’s why you’ll definitely want to know where to
find help on using MATLAB. The final section of this chapter discusses tech-
niques you can use to obtain additional help. Working through issues with
MATLAB on your own is important because that’s how you learn. However,
after you’ve worked through the issues for a while, you also need to know
where to get additional help.

Using MATLAB as a Calculator
MATLAB performs math tasks incredibly well. Sometimes people get so
caught up in “what else” an application can do that they miss the most
interesting facts that are staring them right in the face. The following sec-
tions help you understand MATLAB as a calculator so that you can use it
for experimentation purposes.

Entering information at the prompt
References to using the prompt appear a few times in previous chapters, but
those chapters don’t fully explain it. The prompt is that place where you type
formulas, commands, or functions or perform tasks using MATLAB. It appears
in the Command window. Normally, the prompt appears as two greater-than
signs (>>). However, when working with some versions of MATLAB, you might
see EDU>> (for the student version) or Trial>> (for the trial version) instead.
No matter what you see as a prompt, you use it to know where to type the
information described in this book.

 Chapter 2 shows you how to use something called the userpath() func-
tion to alter the permanent path that MATLAB uses when starting up. In this
 chapter, we introduce you to a useful command known as clc. Try it now:

www.it-ebooks.info

http://www.it-ebooks.info/

39 Chapter 3: Interacting with MATLAB

Type clc and press Enter at the MATLAB prompt. If the Command window con-
tains any information, MATLAB clears it for you.

The userpath() function is called a function because it uses parentheses
to hold the data — also called arguments — you send to MATLAB. The clc
command is a command because you don’t use parentheses with it. Whether
something is a function or a command depends on how you use it. The usage
is called the function or command syntax (the grammar used to tell MATLAB
what tasks to perform). It’s possible to use userpath() in either Function
or Command form. To avoid confusion, the book usually relies on function
syntax when you need to provide arguments, and command syntax when you
don’t. So, when you see parentheses, you should also expect to provide input
with the function call (the act of typing the function and associated argu-
ments, and then pressing Enter).

 MATLAB is also case sensitive. That sounds dangerous, but all it really means
is that CLC is different from Clc, which is also different from clc. Type CLC
and press Enter at the MATLAB prompt. You see an error message like the one
shown in Figure 3-1. (MATLAB will also suggest the correct command, clc, but
ignore the advice for right now by highlighting clc and pressing Delete.) Next,
type Clc and press Enter at the MATLAB prompt. This time, you see the same
error because you made the “same” mistake — at least in the eyes of MATLAB.
If you see this error message, don’t become confused simply because MATLAB
didn’t provide a clear response to what you typed — just retype the command,
being sure to type the command exactly as written.

Figure 3-1:
MATLAB is
case sensi-
tive, so CLC,
Clc, and clc

all mean
different

things.

Notice also the “Did you mean:” text that appears after the error message.
Normally, MATLAB tries to help you fix any errors. In some cases, MATLAB
can’t figure out what’s wrong, so it won’t provide any alternatives for you.
(In other cases, MATLAB provides an alternative, so you need to check the

www.it-ebooks.info

http://www.it-ebooks.info/

40 Part I: Getting Started with MATLAB

prompt to determine whether help is available.) Because MATLAB was able
to provide the correct command in this case, simply press Enter to clear the
Command window.

 Look in the Command History window. Notice that there is a red line next to
each of the errant commands you typed. These red lines tell you when you
shouldn’t use a command or function again because it produced an error the
first time. You should also avoid adding errant commands and functions to
any scripts you create.

Entering a formula
To enter a formula, you simply type it. For example, if you type 2 + 2 and press
Enter, you get an answer of 4. Likewise, if you type 2 * pi * 6378.1 and press
Enter, you get the circumference of the earth in km (see http://nssdc.gsfc.
nasa.gov/planetary/factsheet/earthfact.html for a list of Earth sta-
tistics, including radius). The second formula uses a predefined constant, pi,
which equals 3.1416. MATLAB actually defines a number of predefined constants
that you can use when entering a formula:

 ✓ ans: Contains the most recent temporary answer. MATLAB creates this
special temporary variable for you when you don’t provide a variable of
your own.

 ✓ eps: Specifies the accuracy of the floating-point precision (epsilon),
which defaults to 2.2204e-16.

 ✓ i: Contains an imaginary number, which defaults to 0.0000 + 1.0000i.

 ✓ Inf: Defines a value of infinity, which is any number divided by 0, such
as 1 / 0.

 ✓ NaN: Specifies that the numerical result isn’t defined (Not a Number).

 ✓ pi: Contains the value of pi, which is 3.1416 when you view it onscreen.
Internally, MATLAB stores the value to 15 decimal places so that you’re
assured of accuracy.

Whenever you type a formula and press Enter, you get an output that speci-
fies the value of ans, which is a temporary value that holds the answer to
your question. For example, try typing 2 * pi * 6378.1 and pressing Enter.
You see the circumference of the Earth, as shown in Figure 3-2.

www.it-ebooks.info

http://www.it-ebooks.info/

41 Chapter 3: Interacting with MATLAB

Copying and pasting formulas
With MATLAB, you can copy and paste formulas that you create into other
documents (such as a script or function file, or to another application). To
begin, you highlight the information you want to copy. Use one of these meth-
ods to copy the text after you highlight it:

Figure 3-2:
Any formula

you enter
changes

the content
of ans.

 ✓ Click Copy on the QAT.

 ✓ Right-click the highlighted text and choose Copy from the context menu.

 ✓ Rely on a platform-specific method of copying the text, such as pressing
Ctrl+C on Windows.

When you have the text on the Clipboard, you can paste it wherever you want.
If you want to paste it somewhere in MATLAB, click wherever you want to put
the text, such as after the prompt. Use one of these methods to paste the text:

 ✓ Click Paste on the QAT.

 ✓ Right click the insertion point and choose Paste from the context menu.

 ✓ Rely on a platform-specific method of pasting text, such as pressing
Ctrl+V on Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Part I: Getting Started with MATLAB

Changing the Command window formatting
The Command window provides the means necessary to change the output
formatting. For example, if you don’t want the extra space between lines that
MATLAB provides by default, you can type format compact and press Enter
to get rid of it. In fact, try typing that command now. When you type format

Understanding integer and floating-point values
Throughout the book, you see the terms integer
and floating point. These two terms describe
kinds of numbers. When most people look at 3
and 3.0, they see the same number: the value
three. The computer, however, sees two dif-
ferent numbers. The first is an integer — a
number without a decimal portion. The second
is a floating-point value — a number that has
a decimal portion, even if it’s a whole number.

You see these two terms often in this book
because the computer works with and stores
integer values differently from floating-point
values. How the computer interacts differently
with them is not important — you just need to
know that it does. MATLAB does a great job of
hiding the differences from view unless the dif-
ference becomes important for some reason,
such as when you want to perform integer
math — in which you want to work with only
whole numbers. For example, 4 divided by 3 is
equal to 1 with a remainder of 1 when perform-
ing integer math.

Humans also don’t pay much attention to the
size of a number. Again, the computer must do
so because it has to allocate memory to hold
the number — and larger numbers require
more memory. So, not only do you need to con-
sider the kind of number but also the size of the
number when performing some tasks.

Finally, the computer must also consider
whether a number has a sign associated with
it. The sign takes up part of the memory used

to store the number. If you don’t need to store
a sign, the computer can use that memory to
store additional number information. With all
these points in mind, here are the kinds of num-
bers that MATLAB understands:

 ✓ double: 64-bit floating-point double precision

 ✓ single: 32-bit floating-point double precision

 ✓ int8: 8-bit signed integer

 ✓ int16: 16-bit signed integer

 ✓ int32: 32-bit signed integer

 ✓ int64: 64-bit signed integer

 ✓ uint8: 8-bit signed integer

 ✓ uint16: 16-bit signed integer

 ✓ uint32: 32-bit signed integer

 ✓ uint64: 64-bit signed integer

Sometimes MATLAB won’t know what you
mean when you type 3. A value of 3 could
be any kind of number. (MATLAB defaults to
assuming that all values are doubles unless
you specify otherwise.) To specify the kind of
number you mean, you enter the type name
and place the value in parentheses. For exam-
ple, double(3) is a 64-bit floating-point number,
but int32(3) is a 32-bit signed integer form of
the same number.

www.it-ebooks.info

http://www.it-ebooks.info/

43 Chapter 3: Interacting with MATLAB

compact and press Enter, you don’t see any output. However, the next for-
mula you type shows the difference. Type 2 + 2 and press Enter. You see that
the extra spaces between lines are gone, as shown in Figure 3-3.

Figure 3-3:
Modify the

appear-
ance of the

Command
window

using format
commands.

MATLAB provides a number of format commands. Each of them begins with
the keyword format, followed by an additional instruction. Here is a list of
the instructions you can type:

 ✓ short: All floating-point output has at least one whole number, a decimal
point, and four decimal values, such as 4.2000.

 ✓ long: All floating-point output has at least one whole number, a decimal
point, and 15 decimal values, such as 4.200000000000000.

 ✓ shorte: All floating-point output uses exponential format with four
decimal places, such as 4.2000e+00.

 ✓ longe: All floating-point output uses exponential format with 15 decimal
places, such as 4.200000000000000e+00.

 ✓ shortg: All output uses a short general format, such as 4.2, with five
digits of space.

 ✓ long: All output uses a long general format, such as 4.2, with 15 digits of
space.

 ✓ shorteng: All floating-point output uses exponential format with four
decimal places and powers in groups of three, such as 4.2000e+000.

 ✓ longeng: All floating-point output uses exponential format with 14 decimal
places and powers in groups of three, such as 4.20000000000000e+000.

 ✓ hex: All output is in hexadecimal format, such as 4010cccccccccccd.

 ✓ +: All output is evaluated for positive or negative values, so that the
result contains just a + or - sign, such as + when using the formula 2 * 2.1.

 ✓ bank: All output provides two decimal places, even for integer calcula-
tions, such as 4.20.

www.it-ebooks.info

http://www.it-ebooks.info/

44 Part I: Getting Started with MATLAB

 ✓ rat: All output is presented as a ratio of small integers, such as 21/5
for 4.2.

 ✓ compact: All output appears in single-spaced format.

 ✓ loose: All output appears in double-spaced format.

Suppressing Command window output
When performing most experiments, you want to see the result of your
actions. However, sometimes you really don’t want to keep seeing the results
in the Command window when you can just as easily look in the Workspace
window for the result. In these cases, you can follow a command with a semi-
colon (;) and the Command window output is suppressed. For example, try
typing 2 + 2; and pressing Enter (note the semicolon at the end of the com-
mand). You see output similar to that in Figure 3-4.

Figure 3-4:
Use a

semicolon
to hide the

results of an
action in the

Command
window.

Now look at the Workspace window. The results are shown there just as you
would expect. This technique is often used when you have a complex set of
formulas to type and you don’t want to see the intermediate results or when
working with large matrices. Of course, you also want to use this approach
when you create scripts so that the script user isn’t bombarded by the
results that will appear as the script runs. Anytime you stop using the semi-
colon at the end of the command, you start seeing the results again.

Understanding the MATLAB Math Syntax
The MATLAB syntax is a set of rules that you use to tell MATLAB what to do.
It’s akin to learning another human language, except that the MATLAB syntax
is significantly simpler than any human language. In order to communicate
with MATLAB, you must understand its language, which is essentially a form
of math. Because you already know math rules, you already know many

www.it-ebooks.info

http://www.it-ebooks.info/

45 Chapter 3: Interacting with MATLAB

MATLAB rules as well. The following sections get you started with the basics
that you use to build an understanding of the MATLAB language. You may be
surprised to find that you already know some of these rules, and other rules
are simply extensions of those rules.

Adding, subtracting, multiplying,
and dividing
MATLAB is a math-based language, so it pays to review the basic rules for
telling MATLAB how to perform basic math tasks. Of course, MATLAB per-
forms the basic math functions:

 ✓ + or plus(): Adds two numbers. For example, you can use 3 + 4 or
plus(3, 4) to obtain a result of 7.

 ✓ - or minus(): Subtracts two numbers. For example, you can use 3 - 4
or minus(3, 4) to obtain a result of –1.

 ✓ * or times(): Multiplies two numbers. For example, you can use 3 * 4
or times(3, 4) to obtain a result of 12.

 ✓ / or rdivide(): Performs right division, which is the form of division
you likely learned in school. For example, you can use 3 / 4 or
rdivide(3, 4) to obtain a result of 0.75.

 ✓ \ or ldivide(): Performs left division, which is also called “goes into”
or, as you learned in third grade, “guzintas.” You know (say this out loud),
5 “guzinta” 5 once, 5 “guzinta” 10 twice, 5 “guzinta” 15 three times, and
so on. For example, you can use 3 \ 4 or ldivide(3, 4) to obtain a
result of 1.3333.

Most MATLAB operators are binary, which means that they work on two
values. For example, 3 + 4 has two values: 3 and 4. However, some opera-
tors are unary, which means that they work on just one value. Here are the
basic unary operators:

 ✓ + or uplus(): Returns the unmodified content of a value or variable.
For example, +1 or uplus(1) is still equal to 1.

 ✓ - or uminus(): Returns the negated content of a value or variable. For
example, -1 or uminus(1) returns –1. However, -–1 or uminus(–1)
returns 1 (the negative of a negative is a positive).

In some cases, you don’t want a floating-point result from division. To per-
form integer division, you have to use special functions — you can’t just use
operators for the simple reason that no operators are associated with these
math tasks. Here are the functions associated with integer math:

www.it-ebooks.info

http://www.it-ebooks.info/

46 Part I: Getting Started with MATLAB

 ✓ idivide(): Performs integer division. You supply two values or vari-
ables as input, along with an optional modifier that tells MATLAB how to
perform rounding.

 To use the idivide() function, you must specify that the input values
are integers (see the “Understanding integer and floating-point values”
sidebar in this chapter for details). For example, idivide(int32(5),
int32(3)) provides an output of 1. Here is a list of the modifiers you
use to provide different rounding effects:

 • ceil: Rounds toward positive infinity. For example, idivide
(int32(5), int32(3), 'ceil') produces an output of 2
and idivide(int32(5), int32(–3), 'ceil') produces an
output of –1.

 • fix: Rounds toward zero. For example, idivide(int32(5),
int32(3), 'fix') produces an output of 1 and idivide
(int32(5), int32(–3), 'fix') produces an output of –1.

 • floor: Rounds toward negative infinity. For example, idivide
(int32(5), int32(3), 'floor') produces an output of 1 and
idivide(int32(5), int32(–3), 'floor') produces a result
of –2.

 • round: Rounds to the nearest integer. For example, idivide
(int32(5), int32(3), 'round') produces an output of 2
and idivide(int32(5), int32(–3), 'round') produces an
output of –2.

 ✓ mod(): Obtains the modulus after division. For example, mod(5, 3)
produces an output of 2 and mod(5, –3) produces an output of –1.

 ✓ rem(): Obtains the remainder after division. For example, rem(5, 3)
produces an output of 2 and rem(5, –3) produces an output of –2.

Rounding can be an important feature of an application because it deter-
mines the approximate values the user sees. You can round any formula that
you want to produce an integer output. Here are the rounding functions:

 ✓ ceil(): Rounds toward positive infinity. For example, ceil(5 / 3)
produces an output of 2 and ceil(5 / –3) produces an output of –1.

 ✓ fix(): Rounds toward zero. For example, fix(5 / 3) produces an
output of 1 and fix(5 / –3) produces an output of –1.

 ✓ floor(): Rounds toward negative infinity. For example, floor(5 / 3)
produces an output of 1 and floor(5 / –3) produces an output of –2.

 ✓ round(): Rounds toward nearest integer. For example, round(5 / 3)
produces an output of 2 and round(5 / –3) produces an output of –2.

www.it-ebooks.info

http://www.it-ebooks.info/

47 Chapter 3: Interacting with MATLAB

Working with exponents
You use the caret (^) to raise a number to a particular power. MATLAB can
handle negative, fractional, and complex number bases as exponents. Here
are some examples of exponents:

 ✓ 10^3 = 1000

 ✓ 2^10 = 1024

 ✓ 2.5^2.5 = 9.8821

 ✓ 2^-4 = 0.0625

 ✓ 2^I = 0.7692 + 0.6390i

 ✓ i^I = 0.2079

Why we use the letter E (or e) for scientific
notation

In the early days of computing, a display would
use seven Light Emitting Diode (LED), or Liquid
Crystal Display (LCD) segments to display num-
bers by turning particular segments on or off.
Even today, many watches and clocks use this
technique. The following figure shows how a
seven-segment display works.

When designers made calculators that dis-
played scientific notation, they thought of the
letter E, which reminds users that what follows
is an exponent. They could also implement E
using a seven- segment display, as shown here:

Then designers got lazy and instead
of letting uppercase E mean scien-
tific notation, they also let a lower-
case e mean the same thing. In our
modern age, designers can use all
the pixels that various screens now employ to
display the information without using the letter
E. However, using E or e caught on, so now we
have to use it. In addition, seven-segment dis-
plays are still commonly used in calculators,
watches, clocks, and other devices.

www.it-ebooks.info

http://www.it-ebooks.info/

48 Part I: Getting Started with MATLAB

Organizing Your Storage Locker
Computers contain memory, much as your own brain contains memory. The
computer’s memory stores information that you create using MATLAB. Looking
at memory as a kind of storage locker can be helpful. You open the door, put
something inside and then close the door until you need the item again. When
that happens, you simply open the door and take the item out. The idea of
memory doesn’t have to be complex or difficult to understand.

Whenever you tell MATLAB to store something in memory, you’re using a
variable. Developers use the term variable to indicate that the content of the
memory isn’t stable — it can change. The following sections tell you more
about the MATLAB storage lockers called variables.

Using ans — the default storage locker
MATLAB always needs a place to store the output of any calculation you
perform. For example, when you type 2 + 2 and press Enter, the output tells
you that the value is 4. However, it more specifically tells you that ans = 4.
MATLAB uses ans as a storage locker when you don’t specify a specific stor-
age locker to use.

 MATLAB uses ans as a temporary storage locker. The content lasts only as
long as you keep MATLAB open and you don’t perform another calculation
that requires ans to hold the output. If you need the result from a calculation
for additional tasks, you must store the result in another variable.

Creating your own storage lockers
Whenever you need to use the result of a calculation in future calculations,
you must create your own storage locker to hold the information; using the
ans temporary variable just won’t work. Fortunately, creating your own vari-
ables is straightforward. The following sections help you create your own
variables that you can use for storing any MATLAB information you want.

Defining a valid variable name
A MATLAB variable name has certain requirements, just as naming other
kinds of things must meet specific requirements. Here are the rules for creat-
ing a MATLAB variable:

www.it-ebooks.info

http://www.it-ebooks.info/

49 Chapter 3: Interacting with MATLAB

 ✓ Start with a letter

 ✓ Add:

 • Letters

 • Digits

 • Underscores

With this in mind, naming a variable 7Heaven doesn’t work because this par-
ticular variable name begins with a number — and variables must begin with
a letter. Likewise, Doug'sStuff doesn’t work as a variable name because the
apostrophe (') isn’t allowed as part of a variable name. However, all the fol-
lowing variable names do work:

 ✓ MyVariable

 ✓ My_Variable

 ✓ My7Joys

 In each case, the variable name begins with a letter and is followed by a letter,
digit, or underscore. If you violate any of these rules, you see this error
message:

Error: Unexpected MATLAB expression.

 Always make variable names meaningful. Even though a variable named x
is easy to type, remembering what x contains isn’t so easy. A name such as
CosOutput is much easier to remember because it has meaning. At least you
know that it contains the output from a cosine calculation. The more meaning-
ful you make the name, the easier it will be for you to later determine what a
calculation does.

To create your own variable, type the variable name, an equal sign, and the
value you want to assign to that variable. For example, to create a variable
called MyName and assign it a value of Amy, you type MyName = ‘Amy’ and
press Enter. (The single quotes show that Amy is a value [data], rather than
another variable with the name of Amy.)

Understanding that variables are case sensitive
The “Entering information at the prompt” section, earlier in this chapter, dis-
cusses the need to type command and function names precisely as described
in the MATLAB documentation because MATLAB is case sensitive. Variable
names are also case sensitive, and this is one of the ways in which many
users make mistakes when creating a script. The variable myVariable is dif-
ferent from MyVariable because the case is different.

www.it-ebooks.info

http://www.it-ebooks.info/

50 Part I: Getting Started with MATLAB

Avoiding existing variable names
Avoiding the use of existing MATLAB names such as pi, i, j, sin, cos, log,
and ans is essential. If you don’t know whether a particular name is in use,
you can type exist('variable_name') and press Enter. Try it now with
pi. Type exist(‘pi’) and press Enter. You see an output of 5, which means
that the variable is in use. Now, type exist(‘MyVariable’) and press Enter. The
output is 0, which means that the variable doesn’t exist.

 MATLAB lets you create case-sensitive variations of existing variables. For
example, type Ans = ‘Hello’ and press Enter. You see that the Workspace
window now displays two variables, ans and Ans, as shown in Figure 3-5.
Using a variable with the same name but different capitalization as an existing
MATLAB variable will cause you problems. You’re better off to simply avoid
any existing term no matter how you capitalize it.

Figure 3-5:
Use unique

names for
your vari-

ables so
that you can
more easily
avoid typing

mistakes.

Operating MATLAB as More
Than a Calculator

It’s time to take your first steps beyond using MATLAB as a simple calculator.
The following sections help you get started using some of the MATLAB func-
tions that you will eventually use to perform complex tasks.

Learning the truth
Determining whether something is true is an important part of performing
most tasks. You determine the truth value of the information you receive
almost automatically thousands of times a day. Computers can perform
 comparisons and report whether something is true (it does compare) or

www.it-ebooks.info

http://www.it-ebooks.info/

51 Chapter 3: Interacting with MATLAB

false (it doesn’t compare). A man named George Boole (see http://en.
wikipedia.org/wiki/George_Boole) created a method for quantifying
the truth value of information using Boolean logic.

The basic idea is to ask the computer to perform a comparison of two vari-
ables. Depending on the values in those variables, the computer will say that
it’s either true that they compare or false that they compare. Table 3-1 spells
out how Boolean logic works within MATLAB (where an output value of 1
means the statement is true and an output value of 0 means the statement is
false).

Table 3-1 Relational Operators
Meaning Operator Example
Less than A < B A=2;

B=3;
A==B
ans = 1

Less than or equal to A <= B A=2;
B=3;
A==B
ans = 1

Equal A == B A=2;
B=3;
A==B
ans = 0

Greater than or equal to A >= B A=2;
B=3;
A==B
ans = 0

Greater than A > B A=2;
B=3;
A==B
ans = 0

Not equal A ~= B A=2;
B=3;
A==B
ans = 1

www.it-ebooks.info

http://www.it-ebooks.info/

52 Part I: Getting Started with MATLAB

 It’s essential to remember that one equal sign (=) is an assignment operator. It
assigns the value you provide to the variable. Two equal signs (==) is an equal-
ity operator. This operator determines whether two variables contain the
same value.

Using the built-in functions
Previous sections of this chapter introduce you to a number of MATLAB func-
tions, but we have barely scratched the function surface. MATLAB has a lot
of other functions, such as sin(), cos(), tan(), asin(), acos(), atan(),
log(), and exp(). Many of these functions appear in other chapters of the book.

 For an exhaustive list of functions, go to Appendix A. Yes, there really are that
many. The appendix has brief descriptions of each function. Also, you can get
additional information by typing help('function_name') and pressing
Enter. Try it now. Type help(‘sin’) and press Enter. You see output similar to
that shown in Figure 3-6.

Figure 3-6:
MATLAB
makes it
easy for

you to learn
more about

functions
you need.

Notice that the help screen contains links. Click any link to receive additional
information about that topic.

Accessing the function browser
With all the functions that MATLAB provides, you might think it’s impossible
to discover what they are without a lot of memorization. Fortunately, help
is closer than you might think. Look carefully at the Command window and
you see an fx symbol in the border next to the prompt. Click the down arrow
under the symbol and you see the dialog box shown in Figure 3-7. The official

www.it-ebooks.info

http://www.it-ebooks.info/

53 Chapter 3: Interacting with MATLAB

name of this dialog box is the Function Browser, and you use it to browse
through categories of functions to track down the function you want.

Figure 3-7:
Use the

Function
Browser to

find what
you need

quickly.

You can also access the Function Browser using these techniques:

 ✓ Right-click the Command window and choose Function Browser from
the context menu.

 ✓ Press Shift+F1.

Now that you have a better idea of what the Function Browser is, it’s time to
look at it in more detail. The following sections provide additional informa-
tion on using the Function Browser.

Looking through the Function categories
The Function Browser is designed for you to easily drill down into a topic
until you find precisely what you need. For example, when you click the
Mathematics folder, you see a number of subcategories, such as Elementary
Math, Linear Algebra, and Interpolation. When you click Elementary Math,
you see yet more subcategories, such as Arithmetic, Trigonometry, and
Polynomials. When you finally get to a list of functions, you see the fx symbol
next to the entries, as shown in Figure 3-8.

Figure 3-8:
Open the

categories
as needed
to find pre-
cisely what

you need.

www.it-ebooks.info

http://www.it-ebooks.info/

54 Part I: Getting Started with MATLAB

Searching for a particular function
Sometimes you already have a good idea of what you want to find. In such a
case, you can type all or part of a function name in the search bar at the top
of the Function Browser window. For example, type sin to see all the func-
tions that relate to working with sine, as shown in Figure 3-9.

Figure 3-9:
Type search
terms to find

what you
need across

categories
quickly.

Recovering from Mistakes
Everyone makes mistakes. You might think that experts don’t make mistakes,
but any expert who says so definitely isn’t an expert. Making mistakes is part
of the learning process. It’s also part of the discovery process. If you want to
do anything important with MATLAB, you’re going to make mistakes. The fol-
lowing sections help you understand what to do when mistakes happen.

Understanding the MATLAB error messages
MATLAB tries to be helpful when you make mistakes. It doesn’t always suc-
ceed, and you may not always understand the message, but it does try. In
most cases, you see an error message that provides enough information for
you to at least get started in finding the mistake. For example, if you try to
use the clc command but type it in uppercase, you get

Undefined function or variable 'CLC'.

The error message is enough to get you looking for a solution to the problem,
even when the problem isn’t completely clear. In some cases, MATLAB even
provides the correct command for you. All you have to do is press Enter and
it executes.

Some errors are a little harder to figure out than others. For example,
Figure 3-10 shows what happens when you try to use idivide() without
specifying that the inputs are integers.

www.it-ebooks.info

http://www.it-ebooks.info/

55 Chapter 3: Interacting with MATLAB

Figure 3-10:
Some error
messages

are a bit
complex.

 In this case, you can ignore the links and what looks like gobbledygook.
Focus on the second line. It tells you that one of the arguments must belong
to the integer class. (Remember that the default is to assume that all num-
bers are doubles.) It’s really saying that you need integer values as input to
idivide(). When you get past the odd bits of information, you can more
easily figure out how to fix the problem.

Stopping MATLAB when it hangs
Most of the time, MATLAB is extremely forgiving. You can make absolutely
horrid mistakes, and MATLAB simply provides what it considers a helpful
message without destroying anything. However, at times MATLAB has to
chew on a bit of code for a while before it discovers the error, such as when
you’re working with a really large array. You can tell that MATLAB is working
because the status bar shows Busy rather than Ready. In this case, you can
talk to your buddy in the next cubicle, get a cup of coffee and read a good
book, or press Ctrl+C to stop MATLAB from going any further.

 Pressing Ctrl+C always stops MATLAB from performing any additional pro-
cessing. The status bar indicates Ready as soon as the processing is com-
pletely stopped. It’s important that you do not use this option unless you
really need to do so because MATLAB truly does stop right in the middle of
what it’s doing, which means that whatever you were doing is in an uncertain
state. It’s good to know that the option exists, though.

Getting Help
Just as everyone makes mistakes, so everyone needs help from time to time.
Even the experts can’t remember everything that MATLAB does, and notes
go only so far in jogging the memory. So, when you need help, don’t feel as
though you’re the only one seeking it. Most of the MATLAB-specific help
information appears in the Resources group of the Toolstrip’s Home tab, as
shown in Figure 3-11. The following sections provide additional information
on ways to obtain help.

www.it-ebooks.info

http://www.it-ebooks.info/

56 Part I: Getting Started with MATLAB

Figure 3-11:
The

Resources
group

makes it
easy to

locate the
help you

need.

Exploring the documentation
The MATLAB documentation is complex and sometimes easy to get lost
in when you look through it. Here are some ways to make the task a bit
easier:

 ✓ Choose Help➪Documentation in the Resources group of the Toolstrip’s
Home tab when you want to explore the documentation in general —
simply as a means of learning more about MATLAB.

 If you want to find something a bit more specific, you can always type
search terms in the search bar that appears at the top of the Help window.
As you type, MATLAB displays corresponding topics in a manner that
helps you narrow the focus of your search.

 ✓ Type help(‘help_topic’) and press Enter in the Command window to
obtain help about a specific help topic.

 ✓ Highlight a keyword or function name and press F1 to obtain help on
that specific topic.

 ✓ Click links as provided in help messages, error messages, or other
MATLAB output.

Working through the examples
You can access the examples that MATLAB provides by choosing Help➪
Examples in the Resources group of the Toolstrip’s Home tab. See
Chapter 2 for information about how the examples work.

www.it-ebooks.info

http://www.it-ebooks.info/

57 Chapter 3: Interacting with MATLAB

Relying on peer support
Peer support depends on other MATLAB users to help you. Because some
other user has likely already encountered the problem you’re having, peer
support is a great option. To access peer support, click the Community icon
in the Resources group of the Toolstrip’s Home tab. You see your browser
open to the MATLAB Central site, shown in Figure 3-12.

Figure 3-12:
Using peer
support is

fast and
usually easy.

The content on MATLAB Central changes regularly, but you normally see
links for exchanging files, answers to common questions directly from
MATLAB, blogs, and a number of other useful information areas. MATLAB
Central is actually the best place to find what you need. Of course, you can
always search the remainder of the Internet when MATLAB Central fails to
provide precisely what you want.

Obtaining training
MATLAB offers courses in specific disciplines and in general usage. When
you choose Help➪Training in the Resources group of the Ribbon’s Home tab,
MATLAB takes you to a site where you can sign up for courses. The courses

www.it-ebooks.info

http://www.it-ebooks.info/

58 Part I: Getting Started with MATLAB

come in both traditional classroom form and in online format. The online
format courses are further divided into those that are led by instructors and
those that are self-paced.

Requesting support from MathWorks
When you have a really tough problem, one that defies any other solution,
you can request help directly from MathWorks. When you click Request
Support in the Resources group of the Toolstrip’s Home tab, you see a login
dialog box. Simply provide your email address and MathWorks password;
then follow the prompts to obtain help from MathWorks.

Contacting the authors
When you have a question about the book, make sure that you contact
either John (John@JohnMuellerBooks.com) or Jim (jsiz@tjc.edu). You
can also find useful MATLAB information on this book’s blog at http://
blog.johnmuellerbooks.com/category/technical/matlab-for-
dummies/. Even though we can’t troubleshoot your application for you or
take your exam, we’re happy to help with any book-specific topic you might
have. We’re here to help you have a great reading experience!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Starting, Storing, and Saving
MATLAB Files

In This Chapter
▶ Understanding the MATLAB file structure

▶ Working with MATLAB files

▶ Storing data on disk

C
omputers have two kinds of storage bins: temporary memory in RAM
and permanent memory on a storage device such as a hard drive. In

order to make anything you create using MATLAB permanent, you must
place it on the hard drive. Unfortunately, hard drives are huge, and if you
want to find the data again later, you need to know where you placed the
information. That’s why knowing something about the MATLAB file structure
is important — because you use it to find a place to store your data and to
recover that data later.

Data is stored in files, while folders are used to organize the data. To load
your data into MATLAB, you must first find the right folder, open it, and
then open the file. It works much the same as a filing cabinet. As long as the
drawer is closed and the file folder remains inside, the data is inaccessible.
Note as well that some of your data may be in the wrong format. When data
formatting is a problem, you need to import the data into MATLAB so that
MATLAB can make use of it. The same holds true of other applications. When
you want to use your MATLAB data with another application, you export it to
that application.

The final section of this chapter discusses how to save your work for later
use. The act of saving your work moves the data from temporary storage in
RAM to permanent storage on the hard drive in a file. Later, when you need to
access the data again, you open the file, which moves it from the hard drive
into RAM. There is nothing mystical about this process. You perform the
same sorts of tasks in the real world every day. Just think about how you use
files in a filing cabinet the next time you open one.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Part I: Getting Started with MATLAB

Examining MATLAB’s File Structure
To keep your data permanently, you must store it on disk. Of course, you
could just store it anywhere, but then finding it later would be intensely diffi-
cult. In fact, given the size of today’s hard drives, you might well retire before
you find the data again. So, relying on some organized method of storing your
information is important.

 Applications also rely on specific file types when storing information. The
main reason for using a specific file type is to allow the application to recog-
nize its data among all the other data on your drive. Imagine the chaos if every
application used the .txt file extension for every file. Not only would you
become confused but the computer would become confused as well. In addi-
tion, using specific file types lets you know what sort of data the file contains.

MATLAB lets you identify the particular kind of information a file holds
through the use of unique file extensions. For example, scripts and functions
are stored in files with an .m extension, variables are stored in files with a
.mat extension, and plots are stored in files with a .fig extension. In addi-
tion, you can organize your data using a file structure. You can perform all
these management tasks from within MATLAB using either the application’s
GUI or commands. The following sections tell you how all these features work.

Understanding the MATLAB
files and what they do
MATLAB provides specific file types for specific needs. The following list tells
you about the MATLAB file types and describes their uses:

 ✓ .fig: Provides access to any plots or other graphics you create. Keep in
mind that the file contains all the information required to reconstruct the
graphic, but does not contain the graphic itself. This approach means
that your image is accessible on any platform that MATLAB supports.

 A lot of people have asked whether they can access .fig files without
necessarily having to display the graphic image itself. It turns out that
.fig files are actually .mat files in disguise. The file format is the same
(even though the content between the two file types differs). The article
at http://undocumentedmatlab.com/blog/fig-files-format
describes how you can access .fig files in text format so that you can
see what they contain without seeing the associated graphic.

 ✓ .m: Holds a MATLAB script. This is a platform-independent file, so you
can use the same scripts on whatever platform you’re working on at
the time. This file also allows you to create a script on one platform and

www.it-ebooks.info

http://www.it-ebooks.info/

61 Chapter 4: Starting, Storing, and Saving MATLAB Files

share it with others, even when they use a different platform than you
do. MATLAB script files are always written using the MATLAB language.

 ✓ .mat: Provides access to any data you saved on disk. Opening this file
starts the Import Wizard to load the data into the MATLAB workspace.

 ✓ .mdl: Contains an older version of a Simulink model (see .slx below
for details on the Simulink model). MATLAB recommends updating
these files to the .slx format using the procedure at http://www.
mathworks.com/help/simulink/examples/converting-from-
mdl-to-slx-model-file-format-in-a-simulink-project.html.

 ✓ .mex*: Contains compiled executable code that extends MATLAB func-
tionality in some manner. You execute these files just as you would a
script program. The original code is written in either FORTRAN or C++
and then compiled for a specific platform. Each platform has a unique
extension associated with it, as shown in the following list:

 • .mexa64: Linux

 • .mexmaci64: Mac OS X

 • .mexw32: 32-bit Windows

 • .mexw64: 64-bit Windows

 ✓ .p: Performs the same task as an .m file, except the content is protected
from edits by anyone else. This feature lets you distribute your scripts
to other people without fear of giving away programming techniques or
trade secrets.

 ✓ .slx: Contains a Simulink model. Simulink is an add-on product for
MATLAB that provides a block diagram environment for performing
simulations. You can read more about this product at http://www.
mathworks.com/help/simulink/gs/product-description.
html. This book doesn’t discuss the Simulink add-on because it’s an
advanced product used for higher-end needs.

Exploring folders with the GUI
The GUI method of working with folders in MATLAB requires the Current
Folder window shown in Figure 4-1. (To display this window, choose
Layout➪Current Folder in the Environment group of the Toolstrip’s Home
tab.) In this case, the Current Folder toolbar appears at the top of the
Current Folder window. You can also place it below the Toolstrip by choosing
Layout➪Current Folder Toolbar➪Below Toolstrip in the Environment group
of the Home tab. (The screenshots in the rest of the book assume you have
selected the Inside Current Folder option.)

www.it-ebooks.info

http://www.it-ebooks.info/

62 Part I: Getting Started with MATLAB

Figure 4-1:
The Current

Folder
window

provides
GUI access

to the
MATLAB

folders.

The Current Folder toolbar shows the current folder that the Current Folder
window displays. To change locations, simply type the new location in the
field provided. You can also select a location by clicking the right-pointing
arrow next to each level, as shown in Figure 4-2. The arrow changes to a
down-pointing arrow with a list of destinations below it. Clicking the magnify-
ing glass icon in the field turns it into a Search field where you can choose
the kind of file you want to find.

Figure 4-2:
You can

choose new
locations

by clicking
the right-

pointing
arrow.

The Current Folder toolbar also includes four buttons. Each of these buttons
helps you move to another location on the hard drive as follows:

 ✓ Back: Moves the location back one position in the history list. The his-
tory list is a list that is maintained by MATLAB that tracks the locations
you’ve visited.

 ✓ Forward: Moves the location forward one position in the history list.

www.it-ebooks.info

http://www.it-ebooks.info/

63 Chapter 4: Starting, Storing, and Saving MATLAB Files

 ✓ Up One Level: Moves the location up to the parent folder.

 ✓ Browse for Folder: Displays a Select New Folder dialog box that you
can then use to find another location on the hard drive. (See Figure 4-3.)
After you find the folder, highlight its entry and click Select Folder to
select it.

Figure 4-3:
The Select

New Folder
dialog box
helps you
find other
locations

on the hard
drive.

The Current Folder window provides access to all the folders that you’ve
set up for organizational purposes. In this case, you see the Chapter02
subfolder (child folder) of the C:\MATLAB folder. The Chapter02 folder con-
tains two files. When you right-click the Chapter02 folder entry, you see a
number of commands on a context menu like the one shown in Figure 4-4.

Note that not all the entries on the context menu have to do with exploring
folders or managing them from a file structure perspective. The following list
focuses on those commands that do help you manage the file structure.

 ✓ Open: Opens the folder so that it becomes the current folder in the
Current Folder toolbar.

 ✓ Show in Explorer (Windows only): Opens a copy of Windows Explorer
so that you can interact with the folder using this Windows tool.

 ✓ Create Zip File: Creates a new .zip file that contains the compressed
content of the folder. This feature makes sending the folder to someone
else easier.

 ✓ Rename: Changes the name of the folder.

www.it-ebooks.info

http://www.it-ebooks.info/

64 Part I: Getting Started with MATLAB

Figure 4-4:
The con-

text menu
associated

with a folder
contains

options for
managing
the folder

content.

 ✓ Delete: Removes the folder and its content from the hard drive.
Depending on how you have your system configured, this option could
permanently destroy any data found in the folder, so use it with care.

 ✓ New Folder: Creates a new child folder within the selected folder.

 ✓ New File: Creates a new file within the folder. You can choose from these
types of files:

 • Script

 • Function

 • Example

 • Class

 • Zip File

 ✓ Compare Against: Matches the content of the selected folder against
another folder and tells you about the differences.

 ✓ Cut: Marks the folder for removal from the hard drive and places a copy
on the Clipboard. The folder is removed from its current location when
you paste the copy in its new location.

 ✓ Copy: Places a copy of the folder and its content on the Clipboard so
that you can paste copies of it in other locations.

 ✓ Paste: Places a copy of a folder and its content as found on the
Clipboard in the location you indicate.

www.it-ebooks.info

http://www.it-ebooks.info/

65 Chapter 4: Starting, Storing, and Saving MATLAB Files

 ✓ Refresh: Verifies that the presentation of folders and files in the Current
Folder window matches the actual content on the hard drive. Another
application may have made modifications to the hard drive content, and
with this command you can synchronize MATLAB with the physical device.

Exploring folders with commands
Many people prefer not to use the mouse. In this case, you can duplicate
most of the GUI methods of interacting with the current folder using keyboard
commands. The results of typing a command and pressing Enter appear in
the Command window. To see how this feature works, try the following steps.
(Your folder structure may not look precisely like the one in the book, but you
should see appropriate changes as you type the commands.)

 1. Type cd \MATLAB and press Enter.

 The Current Folder window changes to show the folder used for the
book, as shown in Figure 4-5. (You may have to change the actual folder
information to match your system if you chose not to create the direc-
tory structure described in earlier chapters.)

Figure 4-5:
Change

directories
to the one

used as the
main stor-

age location
for the book.

www.it-ebooks.info

http://www.it-ebooks.info/

66 Part I: Getting Started with MATLAB

 Even though you can’t see it in this black-and-white book, MATLAB does
provide color coding to make it easier for you to work with commands.
Notice that the command portion of a command is in black lettering,
while the argument part of the command is in purple lettering. The use
of color coding helps you better see the commands and how they’re
structured.

 2. Type mkdir Chapter04 and press Enter.

 MATLAB creates a new folder to hold the materials for this chapter, as
shown in Figure 4-6. Notice that you don’t include a backslash (or slash)
when creating a child directory for the current directory.

 3. Type cd Chapter04 and press Enter.

 The directory changes to the one used for this chapter. Notice (again)
that you don’t include a backslash (or slash) when moving to a subdirec-
tory of the current directory.

 4. Type copyfile ..\Chapter02\FirstScript.m and press Enter.

 You see the copied file appear in the folder, as shown in Figure 4-7.

 a. The copyfile command provides the functionality needed to
copy a file.

 b. The .. part of the path statement says to look in the parent folder,
which is \MATLAB.

Figure 4-6:
Create a

new folder
to store

information
using the
mkdir

command.

www.it-ebooks.info

http://www.it-ebooks.info/

67 Chapter 4: Starting, Storing, and Saving MATLAB Files

 c. The Chapter02 part of the path says to look in the Chapter02
subdirectory, which equates to \MATLAB\Chapter02.

 d. The FirstScript.m part of the path is the name of the file you
want to copy to the current folder.

 5. Type exist FirstScript.m and press Enter.

 The command used in this case has a number of parts to it:

 MATLAB provides an output value of 2, which means the file exists.
This final step helps you validate that the previous steps all worked as
intended. If one of the previous steps had gone wrong, you’d see a fail-
ure indicator, such as an error message or a different output value (as
shown in the next step), with this step.

 6. Type exist MyScript.m and press Enter.

 In this case, the output value of 0 tells you that MyScript.m doesn’t
exist, as shown in Figure 4-8. The procedure didn’t tell you to create
MyScript.m, so this output is completely expected.

Now that you can see how the commands work, it’s time to look at a com-
mand list. The following list contains an overview of the most commonly used
file and folder management commands. (You can get detailed information at
http://www.mathworks.com/help/matlab/file-operations.html.)

 ✓ cd: Changes directories to another location.

 ✓ copyfile: Copies the specified file or folder to another location.

 ✓ delete: Removes the specified file or object.

 ✓ dir: Outputs a list of the folder contents.

 ✓ exist: Determines whether a variable, function, folder, or class exists.

 ✓ fileattrib: Displays the file or directory attributes (such as whether
the user can read or write to the file) when used without attribute argu-
ments. Sets the file or directory attributes when used with arguments.

 ✓ isdir: Determines whether the input is a folder.

 ✓ ls: Outputs a list of the folder contents.

 ✓ mkdir: Creates a new directory.

 ✓ movefile: Moves the specified file or folder to another location.

 ✓ open: Opens the specified file using the default application. (Some files
can be opened using multiple applications.)

www.it-ebooks.info

http://www.it-ebooks.info/

68 Part I: Getting Started with MATLAB

Figure 4-7:
Copy files

as needed
using the

copy file
command.

 ✓ pwd: Displays the current path information, including the drive letter.

 ✓ recycle: Determines whether deleted files or folders are moved to the
recycle bin.

 ✓ rmdir: Deletes the specified directory.

 ✓ type: Outputs the content of the specified file as text.

 Some commands, such as type, can be combined with other com-
mands, such as disp, to create well-formatted output. The disp com-
mand displays text, variables, or arrays. You discover how to use it later
in the book (starting with Chapter 8). The point is that you sometimes
combine commands to obtain a desired output.

 ✓ visdiff: Performs a comparison of two files of the following types:

 • Text

 • MAT-Files

 • Binary

 • Zip

 • Folders

www.it-ebooks.info

http://www.it-ebooks.info/

69 Chapter 4: Starting, Storing, and Saving MATLAB Files

Figure 4-8:
MATLAB not

only allows
you to

manage the
file structure

but also to
validate
it using

commands.

 ✓ what: Provides a categorized listing of MATLAB-specific files in the cur-
rent directory. For example, if the current directory contains any files
with an .m extension, you see them listed in the MATLAB code files
category.

 ✓ which: Helps locate files and functions based on filename, function
name path, or other criteria.

 ✓ winopen: Used only with Windows; opens the specified file using
the default application. (Some files can be opened using multiple
applications.)

Working with files in MATLAB
Folders provide organization, but files are what hold your data. Working
with files is an essential part of learning to work with MATLAB. After all, if
you can’t find your data, you can’t do anything with it. Managing the data to
ensure that it remains safe, secure, and reliably accessible is important. The
following sections describe how to perform common tasks with files.

www.it-ebooks.info

http://www.it-ebooks.info/

70 Part I: Getting Started with MATLAB

Using the right-click to your advantage
Every file and folder shown in the Current Folder window has a context menu
associated with it. A context menu always displays just the actions that you
can perform with that file or folder. By right-clicking various files and folders,
you see the context menu and might discover new tasks that you can per-
form with the file or folder you highlighted.

 Right-clicking a file or folder can never damage it. The only time you might
damage the file or folder is if you select an item from the context menu. To
close the context menu after you view it, click in an empty area outside the
context menu.

 Depending on your platform, you may also see shortcut keys when viewing
the context menu. For example, when working with Windows, you can high-
light a file and press Ctrl+C to copy it to the Clipboard — all without using the
context menu at all. Pasting is just as easy: Select the folder you want to use to
store the file and press Ctrl+V. As mentioned, these shortcut keys are platform
specific, which is why they aren’t used in the book.

Copying and pasting
Copying and pasting creates a copy of an existing data file and places that
copy in another location. You use this process in a number of ways. For exam-
ple, you might want to make a backup of your data before you modify it, share
the data with a friend, or place the data on removable media so that you can
take it home and work on it. Even though the following steps use a specific
file and locations, you can easily use them for any file you want to copy and
paste and with any location. In this case, you copy FirstWorkspace.mat
found in the Chapter02 folder to the Chapter04 folder.

 1. Open the \MATLAB\Chapter02 folder in the Current Folder window.

 You see two files: FirstScript.m and FirstWorkspace.mat, as
shown in Figure 4-9. Note that your Current Folder window might not be
arranged precisely the same as the one shown in Figure 4-9.

Figure 4-9:
The

Chapter02
folder

contains
two files.

www.it-ebooks.info

http://www.it-ebooks.info/

71 Chapter 4: Starting, Storing, and Saving MATLAB Files

 2. Right-click FirstWorkspace.mat and choose Copy from the context
menu.

 This action copies the file onto the Clipboard. You won’t actually see
anything happen in the window.

 3. Click the Up One Level button in the Current Folder toolbar.

 You return to the \MATLAB folder. This folder should show two subdirec-
tories: Chapter02 and Chapter04, as shown in Figure 4-10. If you don’t
see both subdirectories, make sure to create the Chapter04 subdirec-
tory using the steps found in the “Exploring folders with commands”
section, earlier in this chapter.

Figure 4-10:
The

MATLAB
folder should

contain
two sub-

directories.

 Even though the screenshot in the book doesn’t show it, the Chapter02
subdirectory is darker than the Chapter04 subdirectory. The reason for
this difference is that the Chapter02 subdirectory is on your MATLAB
path, while the Chapter04 subdirectory isn’t. To add Chapter04 to the
path, right-click its entry and choose Add To Path➪Selected Folders or
Add To Path➪Selected Folders and Subfolders from the context menu.

 4. Double-click the Chapter04 folder to open it.

 This folder should contain a single existing file, FirstScript.m.

 5. Right-click anywhere within the folder area and choose Paste.

 MATLAB copies the file to the new location for you. At this point, the
Chapter04 folder should look precisely like the Chapter02 folder in
Figure 4-9.

Cutting and pasting
The process for cutting and pasting a file is almost the same as copying and
pasting it. (See the previous section for details.) The only difference is that
you select Cut rather than Copy from the context menu. However, the results
are slightly different. When you cut and paste a file, the file is actually moved

www.it-ebooks.info

http://www.it-ebooks.info/

72 Part I: Getting Started with MATLAB

from one location to another. You use Cut and Paste when you don’t want to
create multiple copies of a file and simply want to place the file in another
location.

Dragging
Dragging a file or folder moves it from one location to another. All you need
to do is click the file. While you hold the mouse button down, you drag the
file to a new location. MATLAB moves the file to the location you specify.

 If the location already has a file with that name, MATLAB displays a message
asking whether you’re sure you want to move the file. You must confirm the
move before MATLAB performs the task. The new file replaces the existing file,
so you could experience data loss.

Accessing and Sharing MATLAB Files
To make data useful, you need to be able to open the files containing it.
Otherwise, there isn’t any point in saving the data. Likewise, not all your
colleagues will have a copy of MATLAB, or they may want to use a different
application to interact with the MATLAB data. For you to use their data, you
must be able to import data files created by other applications. When you
want to share your data with others, you must export your data to files that
are understood by other applications. MATLAB provides great support for
both imported and exported data.

Opening
The fastest way to open any MATLAB file is to double-click its entry in the
folder found in the Current Folder window. You can also right-click the entry
and choose Open from the context menu. MATLAB automatically opens the
file using a default application or method.

 It’s important to realize that MATLAB always uses a default application or
method. Data files are sometimes associated with other applications. In addi-
tion, some data files can be opened in more than one way.

When you want to use an alternative method of opening a file, you must rely
on the underlying platform. For example, when working with Windows, right-
click the file and choose Show in Explorer from the context menu. A copy
of Windows Explorer opens, and you can work with alternative applications
in that copy. Right-click the file in Windows Explorer and choose one of the
alternative applications shown in the Open With menu of the context menu.
Figure 4-11 shows an example for FirstScript.m where you can open the
file using multiple applications (with the default shown at the top of the list).

www.it-ebooks.info

http://www.it-ebooks.info/

73 Chapter 4: Starting, Storing, and Saving MATLAB Files

Figure 4-11:
Use a

platform-
specific

means of
opening

files using
alternative

applications.

MATLAB also uses different techniques for interacting with files when you
work with commands. The default action for a .mat file is to load it into
MATLAB, not open it. However, you can either load it or open it as needed.
Here are the two commands you use (assuming that you want to work with
FirstWorkspace.mat):

 ✓ open('FirstWorkspace.mat')

 ✓ load('FirstWorkspace.mat')

The first command actually opens the workspace so that you can see a
result in the Command window. However, the results aren’t loaded into the
Workspace window as they normally would be if you double-clicked the file.
To achieve this same effect, you must use the second command, which loads
the workspace into MATLAB.

Importing
MATLAB makes importing whatever data you need from an external source
easy. The following steps show you how:

 1. Click Import Data in the Variable group of the Home tab.

 You see the Import Data dialog box, as shown in Figure 4-12. Notice that
MATLAB defaults to showing every file it can import.

 If you find that the list of files is too long, you can click the Recognized
Data Files drop-down list and choose just one of the common file types.
The list displays just those files, making a selection easier.

www.it-ebooks.info

http://www.it-ebooks.info/

74 Part I: Getting Started with MATLAB

Figure 4-12:
The Import
Data dialog

box lets
you choose

which file to
import.

 2. Highlight the file you want to import and click Open.

 MATLAB displays an Import dialog box that contains import information
about the file, as shown in Figure 4-13. This dialog box contains settings
that you use to import the data and ensure that it’s useful in MATLAB.
Figure 4-13 shows the settings for a comma-separated value (CSV) file,
and the rest of the procedure assumes that you’re working with such a
file. However, the process is similar for other file types.

Figure 4-13:
The Import
dialog box

lets you
tweak the

import
settings.

www.it-ebooks.info

http://www.it-ebooks.info/

75 Chapter 4: Starting, Storing, and Saving MATLAB Files

 3. (Optional) Modify the settings as needed so that the data appears as it
should appear in the Workspace window.

 You can choose to limit the amount of data imported by changing the
range. It’s also possible to select a different delimiter (which changes
how the data appears onscreen).

 4. Verify that the Unimportable Cells group has no entries.

 Cells that MATLAB can’t import might reflect an error or simply mean
that you have some settings wrong.

 5. Click Import Selection.

 MATLAB imports the data. As alternatives, you can also choose to gener-
ate a script or function based on the data, rather than actually import
the data into the workspace.

 6. Close the Import window.

 You can read about the data formats that MATLAB can import at http://
www.mathworks.com/help/matlab/import_export/supported-
file-formats.html. This site also contains commands that you can use to
import the files rather than relying on the GUI to do the work. However, the
GUI is always faster and easier to use, so it’s the recommended course.

Exporting
You rely on commands in order to export data from MATLAB. The list of
data formats at http://www.mathworks.com/help/matlab/import_
export/supported-file-formats.html includes commands in the
Export column for each format that MATLAB supports.

 Most of the commands work with a single variable. For example, if you want to
export the information found in the ans variable to a CSV file, you type some-
thing like csvwrite('FirstWorkspace.csv',ans), where csvwrite()
is the function, FirstWorkspace.csv is the name of the file, and ans is the
name of the variable you want to export.

Along with csvwrite(), the most commonly used export commands are
xlswrite(), which creates an Excel file, and dlmwrite(), which creates a
delimited file. Both of these commands work much the same as csvwrite().

Some file formats require quite a bit of extra work. For example, to create
an eXtensible Markup Language (XML) file, you must first build a document
model for MATLAB to use. You can see the procedure for performing this task
at http://www.mathworks.com/help/matlab/ref/xmlwrite.html.

www.it-ebooks.info

http://www.it-ebooks.info/

76 Part I: Getting Started with MATLAB

Saving Your Work
An essential part of ending any session with MATLAB is saving your work.
Otherwise, you could lose everything you’ve worked so hard to achieve. In
fact, smart users save relatively often to avoid the power-failure penalty. How
often you save depends on your personal work habits, the value of the work,
and the potential need to use time and system resources efficiently. No matter
how you save or when, the following sections help you get the job done.

Saving variables with the GUI
Although Chapter 2 does show you how to save the entire workspace, some-
times you need to save just one variable. You can perform this task using the
GUI and the following steps:

 1. Right-click the variable that you want to save in the Workspace
window and choose Save As from the context menu.

 You see the Save to MAT-File dialog box, shown in Figure 4-14.

Figure 4-14:
Use the
Save to

MAT-File
dialog box

to save
individual
variables.

 2. Type a name for the file in the File Name field.

 Choose something that will help you remember the purpose of the
variable.

www.it-ebooks.info

http://www.it-ebooks.info/

77 Chapter 4: Starting, Storing, and Saving MATLAB Files

 You can use the tree structure in the left pane to choose a different
folder if you don’t want to use the current folder to store the file contain-
ing the variable information.

 3. Click Save.

 MATLAB saves the variable to the file you choose.

Saving variables using commands
You can use commands to save your variables to disk. In fact, the command
form is a little more flexible than the GUI. The basic command you use is
save('filename'), where filename is the name of the file you want to use.

When you want to save specific variables, you must add a list of them after
the filename. For example, save('MyData.mat', 'ans') would save a
variable named ans to a file named MyData.mat in the current folder. You
can include path information as part of the filename if you want to save the
data in a different folder. For example, save('C:\Temp\MyData.mat',
'ans') would save the data in the C:\Temp folder. If you want to save
multiple variables, simply create a comma-delimited list of them. To save
Var1 and Var2 to MyData.mat, you type save('MyData.mat', 'Var1',
'Var2').

 These initial commands save the output in MATLAB format. However, you can
also specify a format. The formats are listed at http://www.mathworks.
com/help/matlab/ref/save.html#inputarg_fmt. For example, to
save the previous variables in ASCII format, you type save('MyData.txt',
'Var1', 'Var2', '-ASCII').

Saving commands with the GUI
You can’t save commands that you type directly into the Command window
using the GUI. What you do instead is save them using the Command History
window. The “Saving a formula or command as a script” section of Chapter 2
describes how to save both formulas and commands.

Saving commands using commands
MATLAB does let you save commands to disk using a command: diary.
A diary is simply an on-disk record of the commands that you type in the
Command window. Later, you can review the file and edit it just as you would
a script. The diary command actually has a number of forms, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

78 Part I: Getting Started with MATLAB

 ✓ diary: Creates a diary file with the filename diary. Because this file
has no extension, it isn’t associated with anything. The output is ASCII,
and you can open it with any text editor.

 ✓ diary('filename'): Creates a diary file that has the name filename.
You can give the output file an .m extension, which means that you can
open it as a script using the MATLAB editor. This approach is actually
better than using diary by itself because the resulting file is easier to
work with.

 ✓ diary off: Turns off recording of your commands so that they aren’t
recorded to the file. Setting the diary to off lets you experiment before
committing commands that you don’t want to the file on disk.

 ✓ diary on: Resumes recording of your commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II
Manipulating and Plotting

Data in MATLAB

 See an example of how you can plot formulas the easy way at http://www.
dummies.com/extras/matlab.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ See how to interact with vectors, matrices, and higher

dimensions.

 ✓ Perform specific math tasks with vectors and matrices.

 ✓ Discover how to perform basic plotting tasks.

 ✓ Create more advanced plots that help better document your
work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Embracing Vectors, Matrices,
and Higher Dimensions

In This Chapter
▶ Interacting with vectors and matrices

▶ Performing addition and subtraction

▶ Performing multiplication and division

▶ Working with more than two dimensions

▶ Getting help with matrixes

T
he previous chapters of this book introduce you to MATLAB and its inter-
face. Starting in this chapter, you become immersed in math a little more

serious than 2 + 2. Of course, in this “more serious” math, many problems
revolve around vectors and matrices, so these are good topics to start with.
This chapter helps you understand how MATLAB views both vectors and
matrices and how to perform basic tasks with these structures. The chapter
then takes you from two-dimensional matrices to matrices with three or more
dimensions. All this material gives you a good idea of just how MATLAB can
help you solve your vector and matrix problems.

Of course, you might still have questions. In fact, a single chapter of a book
can’t answer every question on this topic. That’s why you also need to know
how to obtain additional help. The last section of the chapter provides
insights into how you can get additional help from MATLAB and force it to do
more of your matrix work for you. (After all, MATLAB is there to serve your
needs, not the other way around.)

Working with Vectors and Matrices
Vectors are simply a row of numbers. The length of this row has no limit and
the numbers have no specific interval. Matrices are a two-dimensional table
of numbers. Again, the size of this table has no limit (either in rows or col-
umns) and the numbers have no specific interval. Both structures are well

www.it-ebooks.info

http://www.it-ebooks.info/

82 Part II: Manipulating and Plotting Data in MATLAB

understood by mathematicians and engineers. They are used extensively by
MATLAB to perform tasks that might otherwise require the use of complex
structures not understood by these groups, which would unnecessarily com-
plicate MATLAB usage.

The following sections describe how MATLAB uses vectors and matrices to
make creating programs easier and demonstrates some of the ways in which
MATLAB uses them. (Note that this chapter’s discussion assumes that you’re
coming to the table with a basic understanding of linear algebra. If you find
that you need to brush up on this particular area, check out the “Locating
linear algebra resources online” sidebar.)

Understanding MATLAB’s perspective
of linear algebra
Linear algebra deals with vector spaces and linear mappings between those
spaces. You use linear algebra when working with lines, planes, and sub-
spaces and their intersections. When working with linear algebra, vectors are
viewed as coordinates of points in space, and the algebra defines operations
to perform on those points.

MATLAB divides linear algebra into these major areas:

 ✓ Matrix analysis

 • Matrix operations

 • Matrix decomposition

 ✓ Linear equations

 ✓ Eigenvalues

 ✓ Singular values

 ✓ Matrix functions

 • Logarithms

 • Exponentials

 • Factorization

This chapter doesn’t cover absolutely every area, but you are exposed to
enough linear algebra to perform most tasks effectively using MATLAB. As
the book progresses, you see additional examples of how to make MATLAB
perform tasks using linear algebra. Think of this chapter as a really good start
toward the goal of making MATLAB perform linear algebra tasks for you at a
level of speed and accuracy you couldn’t achieve otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

83 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Entering data
Chapter 3 shows you how to import data from a spreadsheet or another data
source. Of course, that’s fine if you have a predefined data source. However,
you’ll often need to create your own data, so knowing how to type it yourself
is important.

Think about how you use data when working with math: The data appears as
a list of numbers or text. MATLAB uses a similar viewpoint. It also works with
lists of numbers and text that you create through various methods. The follow-
ing sections describe how to enter data as lists by using assorted techniques.

Locating linear algebra resources online
This chapter doesn’t provide a tutorial on linear
algebra. (We’re assuming most of you would
be bored by it anyhow because you’re already
math geniuses.) Of course, not everyone
remembers that college course in linear alge-
bra, and some things that you don’t use every
day are likely to be a little hard to remember.
With this in mind, you might want to locate a
linear algebra tutorial to jog your memory. Many
good sources of information about linear alge-
bra are available online.

One of the more interesting places to get
some information about linear algebra is
the Khan Academy at https://www.
khanacademy.org/math/linear-
algebra. Most of the information is relayed
through videos, so you get the benefit of a
classroom-like presentation. The presentations
are short, for the most part — usually less than
ten minutes — so you can watch segments as
time presents. In addition, you can pick and
choose among the videos to watch.

If all you really want is a quick brush up on
linear algebra, you might not need something
as time-consuming as what the Khan Academy
provides. In that case, you might want to check
out the linear algebra tutorial in four pages at

http://minireference.com/blog/
linear-algebra-tutorial/. A number
of people using this resource complained that
it went really fast. After reviewing it, we can
report that the four pages are well done, but
they really do assume that you need a light
refresher and already know how to use linear
algebra quite well.

A middle ground tutorial is found on Kardi
Teknomo’s Page at http://people.
revoledu.com/kardi/tutorial/
LinearAlgebra/. The interesting thing
about this tutorial is that it’s interactive. You get
somewhat detailed text instruction and then get
to try your new skills right there on the site. The
act of reading the information and then practic-
ing what you learn makes the information stick
better.

The point is that you’re likely to find a tutorial
that meets your specific needs. You just need
to invest a few minutes in trying out the various
tutorials until you find one that fits your par-
ticular learning style. It simply isn’t possible to
provide such diversity in a single chapter of a
book, so that’s why the online resources are so
important.

www.it-ebooks.info

http://www.it-ebooks.info/

84 Part II: Manipulating and Plotting Data in MATLAB

Entering values inside square brackets
The left square bracket, [, starts a list of numbers or text. The right square
bracket,], ends a list. Each entry in a list is separated by a comma (,). To
try this technique yourself, open MATLAB, type b=[5, 6] in the Command
window, and press Enter. You see

b =
 5 6

The information is stored as a list of two numbers. Each number is treated as
a separate value. Double-click b in the Workspace window and you see two
separate entries, as shown in Figure 5-1. Notice that the Workspace window
shows b as a 1 x 2 list in which the entries flow horizontally.

Figure 5-1:
Typing

comma-
separated

numbers
in square
brackets

produces
a list of

numbers.

 You can type format compact and press Enter to save display space. If you
want to clear space in the Command window for typing additional commands,
type clc and press Enter. Chapter 3 provides additional details on configuring
MATLAB output.

Starting a new line or row with the semicolon
The comma creates separate entries in the same row. You use the semicolon (;)
to produce new rows. To try this technique yourself, type e=[5; 6] in the Command
window and press Enter. You see

e =
 5
 6

As in the previous section, the information is stored as a list of two num-
bers. However, the arrangement of the numbers differs. Double-click e in the
Workspace window and you see two separate entries, as shown in Figure 5-2.

www.it-ebooks.info

http://www.it-ebooks.info/

85 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Notice that the Workspace window shows e as a 2 x 1 list in which the entries
flow vertically.

Figure 5-2:
Typing

semicolon-
separated

numbers
produces

rows of
values.

Separating values with a comma or a semicolon
It’s possible to create a matrix by combining commas and semicolons. The
commas separate entries in the same row and the semicolons create new
rows. To see this for yourself, type a=[1, 2; 3, 4] in the Command window and
press Enter. You see

a =
 1 2
 3 4

 Notice how the output looks like the linear algebra you’re used to. MATLAB
makes every effort to use a familiar interface when presenting information
so that you don’t have to think about how to interpret the data. If the output
doesn’t appear as you expect, it could be a sign that you didn’t create the
information you expected, either.

Finding dimensions of matrices with the Size column
Figures 5-1 and 5-2 show one way to obtain the size of a numeric list (it
appears in the upper-left corner of the window). However, you can use an
easier method. Right-click (Control+click on a Mac) the Workspace window
column list and select Size from the context menu. (You can also right-click
the title bar and select Choose Columns➪Size from the context menu.)

 You may also find it helpful to display the minimum and maximum values
for each entry. This information comes in handy when working with large
vectors or matrices where the minimum and maximum values aren’t obvi-
ous. To obtain this information, choose Columns➪Min, and then choose
Columns➪max.

www.it-ebooks.info

http://www.it-ebooks.info/

86 Part II: Manipulating and Plotting Data in MATLAB

Depending on your computer screen, you may need to click and drag the
Size, Min, and Max columns more to the left so that you can see them. You
can also resize the window. Figure 5-3 shows the results of the entries you
created in the previous sections.

Figure 5-3:
The Size
column

tells you
the dimen-

sions of your
matrix or

vector.

Creating a range of values using a colon
Typing each value in a list manually would be time-consuming and error-
prone because you’d eventually get bored doing it. Fortunately, you can use
the colon (:) to enter ranges of numbers in MATLAB. The number on the left
side of the colon specifies the start of the range, and the number on the right
side of the colon specifies the end of the range. To see this for yourself, type
g=[5:10] and press Enter. You see

g =
 5 6 7 8 9 10

Creating a range of values using linspace()
Using the colon to create ranges has a problem. MATLAB assumes that the
step (the interval between numbers) is 1. However, you may want the num-
bers separated by some other value. For example, you might want to see 11
values between the range of 5 and 10, instead of just 6.

The linspace() function solves this problem. You supply the starting value,
the ending value, and the number of values you want to see between the start-
ing and ending value. To see how linspace() works, type g=linspace(5,10,11)
and press Enter. You see

g =
 Columns 1 through 5
 5.0000 5.5000 6.0000 6.5000 7.0000
 Columns 6 through 10
 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 11
 10.0000

www.it-ebooks.info

http://www.it-ebooks.info/

87 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

 In this case, the step value is 0.5. Each number is 0.5 higher than the last, and
there are 11 values in the output. The range is from 5 to 10, just as in the colon
example in the previous section. In short, using linspace() is a little more
flexible than using the colon, but using the colon requires less typing and is
easier to remember.

Adding a step to the colon method
It turns out that you can also specify the step when using the colon method.
However, in this case, you add the step between the beginning and ending of
the range when defining the range. So, you type the beginning number, the
step, and the ending number, all separated by colons. To try this method for
yourself, type g=[5:0.5:10] and press Enter. You see

g =
 Columns 1 through 5
 5.0000 5.5000 6.0000 6.5000 7.0000
 Columns 6 through 10
 7.5000 8.0000 8.5000 9.0000 9.5000
 Column 11
 10.0000

 This is precisely the same output as that of the linspace() example. However,
when using this method, you specify the step directly, so you don’t control
the number of values you receive as output. When using the linspace()
approach, you specify the number of values you receive as output, but MATLAB
computes the step value for you. Each technique has advantages, so you need
to use the one that makes sense for your particular need.

Transposing matrices with an apostrophe
Using the colon creates row vectors. However, sometimes you need a column
vector instead. To create a column vector, you end the input with an apostro-
phe. To see how this works for yourself, type h=[5:0.5:10]’ and press Enter.
You see

h =
 5.0000
 5.5000
 6.0000
 6.5000
 7.0000
 7.5000
 8.0000
 8.5000
 9.0000
 9.5000
 10.0000

www.it-ebooks.info

http://www.it-ebooks.info/

88 Part II: Manipulating and Plotting Data in MATLAB

When you look at the Workspace window, you see that g is a 1 x 11 vector,
while h is an 11 x 1 vector. The first entry is a row vector and the second is a
column vector.

You can transpose matrices as well. The rows and columns change position.
For example, earlier you typed a=[1,2;3,4], which produced

a =
 1 2
 3 4

To see how this matrix looks transposed, type i=[1,2;3,4]’ and press Enter.
You see

i =
 1 3
 2 4

Adding and Subtracting
Now that you know how to enter vectors and matrices in MATLAB, it’s time to
see how to perform math using them. Adding and subtracting is a good place
to start.

 The essential rule when adding and subtracting vectors and matrices is that
they must be the same size. You can’t add or subtract vectors or matrices
of different sizes because MATLAB will display an error message. Use the
following steps to see how to perform this task:

 1. Type a=[1,2;3,4] and press Enter.

 You see

a =
 1 2
 3 4

 2. Type b=[5,6;7,8] and press Enter.

 You see

b =
 5 6
 7 8

www.it-ebooks.info

http://www.it-ebooks.info/

89 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

 3. Type c = a + b and press Enter.

 This step adds matrix a to matrix b. You see

c =
 6 8
 10 12

 4. Type d = b - a and press Enter.

 This step subtracts matrix b from matrix a. You see

d =
 4 4
 4 4

 5. Type e=[1,2,3;4,5,6] and press Enter.

 You see

e =
 1 2 3
 4 5 6

 If you attempt to add or subtract matrix e from either matrix a or matrix b,
you see an error message. However, the following step tries to perform the
task anyway.

 6. Type f = e + a and press Enter.

 As expected, you see the following error message:

Error using +
Matrix dimensions must agree.

 The error messages differ a little between addition and subtraction, but
the idea is the same. The matrices must be the same size in order to add
or subtract them.

Understanding the Many Ways
to Multiply and Divide

After adding and subtracting comes multiplication and division. MATLAB is
just as adept in meeting this need as it is in every other area. The following
sections describe the many ways in which you can use multiplication and
division in MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Part II: Manipulating and Plotting Data in MATLAB

Performing scalar multiplication
and division
A scalar is just technobabble for ordinary numbers. When you multiply ordi-
nary numbers by vectors and matrices, you get a result where every element
is multiplied by the number. To try this for yourself, type a = [1,2;3,4] * 3 and
press Enter. You see the following output:

a =
 3 6
 9 12

The example begins with the matrix, [1,2;3,4]. It then multiplies each ele-
ment by 3 and places the result in a.

Division works in the same manner. To see how division works, type
b = [6, 9; 12, 15] / 3 and press Enter. You see the following output:

b =
 2 3
 4 5

Again, the example begins with a matrix, [6, 9; 12, 15], and right divides
it by 3. The result is stored in b.

 MATLAB supports both right division, where the left side is divided by the right
side (what most people would consider the standard way of doing things),
and left division, in which the left side is divided by the right side (also known
as guzinta — goes into — division). When working with scalars, whether you
use right division or left division doesn’t matter. To see this fact for yourself,
type c = 3 \ [6, 9; 12, 15] and press Enter. (Notice the use of the backslash, \,
for left division.) You get the same result as before:

c =
 2 3
 4 5

Employing matrix multiplication
Multiplication occurs at several different levels in MATLAB. The following
sections break down the act of matrix multiplication so that you can see each
level in progression.

www.it-ebooks.info

http://www.it-ebooks.info/

91 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Multiplying two vectors
Vectors are just matrices of only one row or column. Remember that you
create a row vector by separating values using a comma, such as [1, 2].
To create column vectors, you use a semicolon, such as [3; 4]. You can
also use prime to create a row or column vector. For example, [3, 4]’ is
equivalent to [3; 4]. (Pay particular attention to the use of commas and
semicolons.)

 When you want to multiply one vector by another, you must have one row and
one column vector. Try it for yourself by typing d = [1, 2] * [3; 4] and pressing
Enter. You get the value 11 for output. Of course, the method used to perform
the multiplication is to multiply the first element in the row vector by the
first element of the column vector, and add the result to the multiplication of
the second element of the row vector and the second element of the column
vector. What you end up with is d = 1 * 3 + 2 * 4. This form of multipli-
cation is also called an inner product.

It’s also possible to create an outer product using MATLAB. In this case, each
element in the first vector is multiplied by every element of the second
vector (technically matrix multiplication), and the results of each multiplica-
tion are placed in a separate element. To put this in perspective, you’d end
up with a 2 x 2 matrix consisting of [1 * 3, 2 * 3; 1 * 4, 2 * 4]. The easiest way
to see how this works is by trying it yourself. Type e = bsxfun(@times, [1, 2],
[3; 4]) and press Enter. You see

e =
 3 6
 4 8

The bsxfun() function performs element-by-element operations. You supply
a function name (or handle) to perform an element-by-element math opera-
tion on two objects (vectors in this case). We’re using the @times function
name, which performs multiplication. The two inputs are a row vector and a
column vector. The output is a 2 x 2 matrix where the row 1 column 1 element
is 1 * 3 (or the result of multiplying the first row element by the first column
element). Likewise, the row 1 column 2 element is 2 * 3 (or the result of multi-
plying the second row element by the first column element). The second row
multiplication works the same way as the first.

 Another way to obtain the outer product is to ensure that the column vector
appears first. For example, type e = [3; 4] * [1, 2] and you receive an output of

e =
 3 6
 4 8

www.it-ebooks.info

http://www.it-ebooks.info/

92 Part II: Manipulating and Plotting Data in MATLAB

Multiplying a matrix by a vector
When performing multiplication of a matrix by a vector, the order in which
the vector appears is important. Row vectors appear before the matrix, but
column vectors appear after the matrix. To see how the row vector approach
works, type f = [1, 2] * [3, 4; 5, 6] and press Enter. You see an output of

f =
 13 16

The first element is produced by 1 * 3 + 2 * 5. The second element is pro-
duced by 1 * 4 + 2 * 6. However, the number of elements in the matrix must
agree with the number of elements in the vector. For example, if the vector
has three elements in a row, the matrix must have three elements in a column
to match. To see how this works, type g = [1, 2, 3] * [4, 5; 6, 7; 8, 9] and
press Enter. The result is

g =
 40 46

The number of elements in the output is controlled by the matrix in this
case. For example, if the matrix were to have three elements in each row, the
output would also have three elements. To see this principle in action, type
h = [1, 2, 3] * [4, 5, 6; 7, 8, 9; 10, 11, 12] and press Enter. The result is

h =
 48 54 60

Working with a column vector is similar to working with a row vector, except
that the position of the vector and matrix are exchanged. For example, if you
type i = [4, 5, 6; 7, 8, 9; 10, 11, 12] * [1; 2; 3] and press Enter, you see this
result:

i =
 32
 50
 68

Notice that the output is a column vector instead of a row vector. The result
is produced by these three equations:

1 * 4 + 2 * 5 + 3 * 6
1 * 7 + 2 * 8 + 3 * 9
1 * 10 + 2 * 11 + 3 * 12

The order of the multiplication differs because you’re using a column vector
instead of a row vector. MATLAB produces the same result as you would get
when performing the task using other means, but you need to understand
how the data entry process affects the output.

www.it-ebooks.info

http://www.it-ebooks.info/

93 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Multiplying two matrices
When working with matrices, the number of rows in the first matrix must agree
with the number of columns in the second matrix. For example, if the first
matrix contains two rows containing three entries each, the second matrix
must contain three rows and two entries each. To see this for yourself, type
j = [1, 2, 3; 4, 5, 6] * [7, 8; 9, 10; 11, 12] and press Enter. You see the output as

j =
 58 64
 139 154

The output of the first column, first row is defined by 1 * 7 + 2 * 9, + 3 * 11.
Likewise, the output of the second column, first row is defined by 1 * 8 + 2 *
10 + 3 * 12. The matrix math works just as you would expect.

 Order is important when multiplying two matrices (just as it is when work-
ing with vectors). You can create the same two matrices, but obtain different
results depending on order. If you reverse the order of the two matrices in
the previous example by typing k = [7, 8; 9, 10; 11, 12] * [1, 2, 3; 4, 5, 6] and
pressing Enter, you obtain an entirely different result:

k =
 39 54 69
 49 68 87
 59 82 105

Again, it pays to know how the output is produced. In this case, the output of
the first column, first row is defined by 7 * 1 + 8 * 4. Likewise, the output of
the second column of the first row is defined by 7 * 2 + 8 * 5.

Dividing two vectors
MATLAB will produce an output if you try to
divide two vectors. For example, if you type
l = [2, 3, 4] / [5, 6, 7] and press Enter, you receive
a result of

l =
 0.5091

Likewise, you could try typing l = [2, 3, 4] \ [5, 6, 7]
and press Enter. The results would be different:

l =
 0 0 0
 0 0 0
 1.2500 1.5000 1.7500

You get the same reproducible results every
time, but you can see that they’re interest-
ing, at best. The output isn’t useful because
dividing two vectors isn’t useful in gen-
eral. You can read the details at http://
van.physics.illinois.edu/qa/
listing.php?id=24304 and many other
places online. The point is that MATLAB tries
to accommodate your needs, even if the result
isn’t particularly helpful.

www.it-ebooks.info

http://www.it-ebooks.info/

94 Part II: Manipulating and Plotting Data in MATLAB

Effecting matrix division
As with matrix multiplication, matrix division takes place at several different
levels. The following sections explore division at each level.

Dividing a vector by a scalar
Dividing a vector by a scalar and producing a usable result is possible. For
example, type m = [2, 4, 6] / 2 and press Enter. You see the following result:

m =
 1 2 3

Each of the entries is divided by the scalar value. Notice that this is right divi-
sion. Using left division (m = [2, 4, 6] \ 2) would produce an unusable
result; however, using m = 2 \ [2, 4, 6] would produce the same result
as before. MATLAB would do its best to accommodate you with a result, just
not one you could really use. (See the “Dividing two vectors” sidebar for an
explanation.)

Dividing a matrix by a vector
When dividing a matrix by a vector, defining the sort of result you want to
see is important. Most people want to perform an element-by-element divi-
sion. In this case, you use the bsxfun() function with the @rdivide function
name — @rdivide for right division. To see how this works, type n = bsxfun(@
rdivide, [2, 4; 6, 8], [2, 4]) and press Enter. You see the following output:

n =
 1 1
 3 2

In this case, the element in column 1, row 1 is defined by 2 / 2. Likewise, the
element in column 1, row 2 is defined by 6 / 2.

Dividing two matrices
When dividing two matrices, the dimensions of the two matrices must agree.
For example, you can’t divide a 3 x 2 matrix by a 2 x 3 matrix — both matri-
ces must be the same dimensions, such as 3 x 2. To see how this works, type
o = [2, 4; 6, 8] / [1, 2; 3, 4] and press Enter. You see the following result:

o =
 2 0
 0 2

Performing left division of two matrices is also possible. To see the result of
performing left division using the same matrices, type p = [2, 4; 6, 8] \ [1, 2;
3, 4] and press Enter. Here’s the result you see:

www.it-ebooks.info

http://www.it-ebooks.info/

95 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

p =
 0.5000 0
 0 0.5000

 It’s essential to remember that matrix division isn’t actually division as most
people think of it. What you really do is multiply one matrix by the inverse
of the other. For example, using the two matrices in this section, you can
accomplish the same result of left division by typing q = [2, 4; 6, 8] * inv([1,
2; 3, 4]) and pressing Enter. To perform right division, you simply change the
inverted matrix by typing r = inv([2, 4; 6, 8]) * [1, 2; 3, 4] and pressing Enter.
The inv() function always returns the inverse of the matrix that you provide
as input, so you can use it to help you understand precisely how MATLAB is
performing the task. However, using the inv() function is computationally
inefficient. To make your scripts run faster, dividing is always better.

You can use the inv() function in many ways. For example, multiplying
any matrix by its inverse, such as by typing s = [1, 2; 3, 4] * inv([1, 2; 3, 4]),
yields the identity matrix.

 What some people are actually looking for is element-by-element division. To
accomplish this task, you must use the bsxfun() function. For example, to
perform left division on the two preceding matrices, you type t = bsxfun(@ldi-
vide, [2, 4; 6, 8], [1, 2; 3, 4]) and press Enter. The result in this case is

t =
 0.5000 0.5000
 0.5000 0.5000

Likewise, you can perform right division. To see how this works, type
u = bsxfun(@rdivide, [2, 4; 6, 8], [1, 2; 3, 4]) and press Enter. You see the
following output:

u =
 2 2
 2 2

Creating powers of matrices
Sometimes you need to obtain the power or root of a matrix. MATLAB provides
several different methods for accomplishing this task. The most common
method is to use the circumflex (^) to separate the matrix from the power to
which you want to raise it. To see how this works, type v = [1, 2; 3, 4]^2 and
press Enter. The output is the original matrix squared, as shown here:

v =
 7 10
 15 22

www.it-ebooks.info

http://www.it-ebooks.info/

96 Part II: Manipulating and Plotting Data in MATLAB

You can obtain the same result using the mpower() function. Try it by typing
w = mpower([1, 2; 3, 4], 2) and pressing Enter. You see the same output as
when using the circumflex.

To obtain the root of a matrix, you use a fractional value as input. For exam-
ple, to obtain the square root of the previous example, you use a value of 0.5.
To see this feature in action, type x = [1, 2; 3, 4]^0.5 and press Enter. You see
the following output:

x =
 0.5537 + 0.4644i 0.8070 - 0.2124i
 1.2104 - 0.3186i 1.7641 + 0.1458i

It’s even possible to obtain the inverse of a matrix by using a negative power.
For example, try typing z = [1, 2; 3, 4]^(–1) and pressing Enter (notice that
the –1 is enclosed in parenthesis to avoid confusion). You see the following
output:

z =
 -2.0000 1.0000
 1.5000 -0.5000

 MATLAB also provides the means for performing an element-by-element power
or root of a matrix using the bsxfun() function and the @power handle. To
see how this works, type aa = bsxfun(@power, [1, 2; 3, 4], 2) and press Enter.
You see the following output, in which each element is multiplied by itself:

aa =
 1 4
 9 16

Working element by element
A number of previous sections describe how to use the bsxfun() function
to perform tasks element by element. For example, to find the square of the
matrix [1, 2; 3, 4], you type aa = bsxfun(@power, [1, 2; 3, 4], 2) and press
Enter. Of course, the bsxfun() function provides all sorts of function handles,
and you can see them all by typing help(‘bsxfun’) and pressing Enter.

The problem is that the bsxfun() function requires quite a bit of typing, so
you might not want to use it all the time. An alternative to using this function
involves using the dot (.) operator. For example, to obtain the square of the
previous matrix using the dot operator, you type ab = [1, 2; 3, 4].^2 and press
Enter. The output is as you expect:

ab =
 1 4
 9 16

www.it-ebooks.info

http://www.it-ebooks.info/

97 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Notice that the dot goes between the matrix and the circumflex. You can
use the dot operator in every other circumstance you can think of to modify
MATLAB behavior to work element by element. For example, to perform
element-by-element multiplication, you place the dot operator in front of
the multiplication operator. To try the multiplication, type ac = [1, 2; 3, 4] .*
[5, 6; 7, 8] and press Enter. You see the following output:

ac =
 5 12
 21 32

 The dot operator always precedes the task operator that you want to use.
Even if there is a space between the matrix and the task operator, the dot
operator must appear with the task operator without a space, such as .* for
multiplication.

Using complex numbers
Complex numbers consist of a real part and an imaginary part (see http://
www.mathsisfun.com/numbers/imaginary-numbers.html for a quick
overview of imaginary numbers). MATLAB uses the i and j constants to
specify the imaginary part of the number. For example, when you compute

Checking matrix relations
This chapter discusses a number of techniques
to perform any given task. For example, you can
create the inverse of a matrix using the inv()
function, or you can simply set it to a power
of –1. The problem is that you don’t really know
that they are equal outputs. The bsxfun()
comes in handy for all sorts of tasks, and check-
ing for equality is yet another way you can use
it. To see for yourself that inv() and a power
of –1 produce the same result, simply type
bsxfun(@eq, inv([1, 2; 3, 4]), [1, 2; 3, 4]^(-1)) and
press Enter. The output you see is

ans =
 1 1
 1 1

The @eq function handle tells bsxfun() to
check for equality. Each element is compared.
When the elements compare, the output is 1.
So, a matrix output of 1s tells you that all of the
elements compared in this case. You can per-
form other relational checks using bsxfun()
with the following function handles:

 ✓ @eq: Equal

 ✓ @ne: Not equal

 ✓ @lt: Less than

 ✓ @le: Less than or equal

 ✓ @gt: Greater than

 ✓ @ge: Greater than or equal

www.it-ebooks.info

http://www.it-ebooks.info/

98 Part II: Manipulating and Plotting Data in MATLAB

the square root of the matrix [1, 2; 3, 4], you obtain an output that con-
tains imaginary numbers. To see this for yourself, type ad = [1, 2; 3, 4]^0.5
and press Enter. You see the following result:

ad =
 0.5537 + 0.4644i 0.8070 - 0.2124i
 1.2104 - 0.3186i 1.7641 + 0.1458i

 The first column of the first row contains a real value of 0.5537 and an imagi-
nary value of 0.4644i. The i that appears after the value 0.4644 tells you that
this is an imaginary number. The j constant means the same thing as the i con-
stant, except that the j constant is used in electronics work (i is already used
to represent current).

You can perform tasks with imaginary numbers just as you would any other
number. For example, you can square the ad matrix by typing ae = ad^2 and
pressing Enter. The result might not be what you actually wanted, though:

ae =
 1.0000 + 0.0000i 2.0000 + 0.0000i
 3.0000 - 0.0000i 4.0000 + 0.0000i

After a matrix includes imaginary numbers, you need to convert them to
obtain a desired format. For example, if you type af = int32(ad^2) and press
Enter, you obtain the desired result, shown here:

af =
 1 2
 3 4

The int32() function performs the required conversion process for you. Of
course, using int32(), or any other function of the same type, at the wrong
time can result in data loss. For example, if you type ag = int32([1, 2; 3,
4]^0.5) and press Enter, you lose not only the imaginary part of the number
but the fractional part as well. The output looks like this:

ag =
 1 1
 1 2

MATLAB assumes that you know what you’re doing, so it doesn’t stop you
from making critical errors. The output conversion functions are

 ✓ double()

 ✓ single()

 ✓ int8()

www.it-ebooks.info

http://www.it-ebooks.info/

99 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

 ✓ int16()

 ✓ int32()

 ✓ int64()

 ✓ uint8()

 ✓ uint16()

 ✓ uint32()

 ✓ uint64()

Working with exponents
You use matrix exponential to perform tasks such as solving differential equa-
tions (read about them at http://www.sosmath.com/matrix/expo/
expo.html). MATLAB provides two functions for working with exponents.
The first is the expm() function, which performs a standard matrix exponen-
tial. For example, when you type ah = expm([1, 2; 3, 4]) and press Enter, you
see this result:

ah =
 51.9690 74.7366
 112.1048 164.0738

MATLAB also makes it easy to perform element-by-element exponential using
the exp() function. To see how this works, type ai = exp([1, 2; 3, 4]) and
press Enter. You see the following output:

ai =
 2.7183 7.3891
 20.0855 54.5982

Working with Higher Dimensions
A vector is one dimensional — just one row or one column. A matrix is a two-
dimensional table, much like the kind you’re used to with Excel spreadsheets,
with rows being one dimension and columns being the second. You can go
as high as you want. If a matrix is like a page in a book (a table — two dimen-
sions), three dimensions is like the book itself, and four like a shelf of books.
In fact, there is no limit to the number of dimensions you can use to express
an idea or data element.

www.it-ebooks.info

http://www.it-ebooks.info/

100 Part II: Manipulating and Plotting Data in MATLAB

Images are an example of computational objects that rely on more than one
dimension:

 ✓ The first dimension is the x coordinate of a pixel.

 ✓ The second dimension is the y coordinate of a pixel.

 ✓ The third dimension is the pixel color.

Now that you have a better idea of how you might use more than just two
dimensions, it’s time to see how you can implement them. The following sec-
tions describe how to work with multiple dimensions when using MATLAB.

Creating a multidimensional matrix
MATLAB provides a number of ways in which to create multidimensional
arrays. The first method is to simply tell MATLAB to create it for you and fill
each of the elements with zeros. The zeros() function helps you perform
this task. To create a 2 x 3 x 3 matrix, you type aj = zeros(2, 3, 3) and press
Enter. You see the following output:

aj(:,:,1) =
 0 0 0
 0 0 0
aj(:,:,2) =
 0 0 0
 0 0 0
aj(:,:,3) =
 0 0 0
 0 0 0

This output tells you that there are three stacked 2 x 3 matrices and each one
is filled with zeros. Of course, you might not want to start out with a matrix
that’s filled with zeros, so you can use another approach. The following steps
help you create a 2 x 3 x 3 matrix that is already filled with data:

 1. Type ak(:,:,1) = [1, 2, 3; 4, 5, 6] and press Enter.

 You see the following result:

ak =
 1 2 3
 4 5 6

 This step creates the first page of the three dimensional matrix. You
want three pages, so you actually need to perform this step three times.

 2. Type ak(:,:,2) = [7, 8, 9; 10, 11, 12] and press Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

101 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

 MATLAB adds another page, as shown:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 9
 10 11 12

 If you look at the Workspace window at this point, you see that the size
column for ak is now 2 x 3 x 2. It’s at this point that you see the third
dimension added. Before you added this second page, MATLAB simply
treated ak as a 2 x 3 matrix, but now it has the third dimension set.

 3. Type ak(:,:,3) = [13, 14, 15; 16, 17, 18] and press Enter.

 The output now looks much like the aj output, except that the elements
have values, as shown here:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 9
 10 11 12
ak(:,:,3) =
 13 14 15
 16 17 18

You don’t have to define assigned values using multiple steps. The cat()
function lets you create the entire three-dimensional matrix in one step. The
first entry that you make for the cat() function is the number of dimensions.
You then add the data for each dimension, separated by commas. To see how
this works, type al = cat(3, [1, 2, 3; 4, 5, 6], [7, 8, 9; 10, 11, 12], [13, 14, 15;
16, 17, 18]) and press Enter. You see this output (which looks amazingly like
the ak matrix):

al(:,:,1) =
 1 2 3
 4 5 6
al(:,:,2) =
 7 8 9
 10 11 12
al(:,:,3) =
 13 14 15
 16 17 18

 You may also decide that you don’t want to type that much but still don’t want
zeros in the matrix. In this case, use the randn() function for random nor-
mally distributed data or the rand() function for uniformly distributed data.
This function works just like the zeros() function, but it fills the elements
with random data.

www.it-ebooks.info

http://www.it-ebooks.info/

102 Part II: Manipulating and Plotting Data in MATLAB

To see how this function works, type am = randn(2, 3, 3) and press Enter. You
see a three-dimensional array filled with random data. It’s not likely that your
output will look precisely like the following output, but the following output
does provide an idea of what you should expect:

am(:,:,1) =
 1.4090 0.6715 0.7172
 1.4172 -1.2075 1.6302
am(:,:,2) =
 0.4889 0.7269 0.2939
 1.0347 -0.3034 -0.7873
am(:,:,3) =
 0.8884 -1.0689 -2.9443
 -1.1471 -0.8095 1.4384

Accessing a multidimensional matrix
No matter how you create the matrix, eventually you need to access it. To
access the entire matrix, you simply use the matrix name, as usual. However,
you might not need to access the entire matrix. For example, you might need
to access just one page. The examples in this section assume that you created
matrix ak in the previous section. To see just the second page of matrix ak,
you type ak(:, :, 2) and press Enter. Not surprisingly, you see the second page,
as shown here:

ans =
 7 8 9
 10 11 12

The colon (:) provides a means for you to tell MATLAB that you want the
entire range of a matrix element. The values are rows, columns, and pages
in this case. So the request you made was for the entire range of page 2. You
could ask for just a row or column. To get the second row of page 2, you type
ak(2, :, 2) and press Enter. The output looks like this:

ans =
 10 11 12

The second column of page 2 is just as easy. In this case, you type ak(:, 2, 2)
and press Enter. The output appears in column format, like this:

ans =
 8
 11

Accessing an individual value means providing all three values. When you
type ak(2, 2, 2) and press Enter, you get 11 as the output because that’s the
value in row 2, column 2, of page 2 for matrix ak.

www.it-ebooks.info

http://www.it-ebooks.info/

103 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

You also have access to range selections for multidimensional matrices. In
this case, you must provide a range for one of the entries. For example, if
you want to obtain access to row 2, columns 1 and 2, of page 2 for matrix ak,
you type ak(2, [1:2], 2) and press Enter. Notice that the range appears within
square brackets, and the start and end of the range are separated by a colon.
Here is the output you see in this case:

ans =
 10 11

 The use of ranges works wherever you need them. For example, say that you
want rows 1 and 2, columns 1 and 2, of page 2. You type ak([1:2], [1:2], 2) and
press Enter. The result looks like this:

ans =
 7 8
 10 11

Replacing individual elements
As you work through problems and solve difficulties, you might find chang-
ing some of the data in a matrix necessary. The problem is that you don’t
want to have to re-create the matrix from scratch just to replace one value.
Fortunately, you can replace individual values in MATLAB. The examples in
this section assume that you created matrix ak in the “Creating a multidimen-
sional matrix” section, earlier in this chapter.

The previous section tells you how to access matrix elements. You use this
ability to change values. For example, the value in row 2, column 2, of page
2 in matrix ak is currently set to 11. You may decide that you really don’t
like the number 11 there and want to change it to 44 instead. To perform this
task, type ak(2, 2, 2) = 44 and press Enter. You see the following result:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 9
 10 44 12
ak(:,:,3) =
 13 14 15
 16 17 18

 Notice that MATLAB displays the entire matrix. Of course, you may not want
to see the entire matrix every time you replace a single value. In this case, end
the command with a semicolon. When you type ak(2, 2, 2) = 44; and press
Enter, the change still takes place, but you don’t see the result onscreen. For
now, continuing to display the information is a good idea so that you can tell

www.it-ebooks.info

http://www.it-ebooks.info/

104 Part II: Manipulating and Plotting Data in MATLAB

whether you have entered the commands correctly and have obtained the
desired result.

Replacing a range of elements
If you have a number of values to replace in a matrix, replacing them one at
a time would become boring. More important, you start to make mistakes
after a while and your results don’t come out as you thought they would.
Replacing a range of values with a single command is the best idea in this
case. The examples in this section assume that you created matrix ak in the
“Creating a multidimensional matrix” section, earlier in this chapter.

You have many different ways to make replacements to a range of elements in
your existing matrix. Of course, before you can replace a range of elements, you
need to know how to access them. The “Accessing a multidimensional matrix”
section, earlier in this chapter, tells you how to access matrix elements.

You can make a single value replacement for a range. Say that you want to
replace row 2, columns 1 and 2, of page 2 with the number 5. To perform this
task, type ak(2, [1:2], 2) = 5 and press Enter. The single value appears in both
places, as shown in this output:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 9
 5 5 12
ak(:,:,3) =
 13 14 15
 16 17 18

Of course, a single value replacement might not work. You can also create
range replacements in which you replace each element with a different value.
For example, you might want to replace row 2, column 1, of page 2 with the
number 22, and row 2, column 2, of page 2 with the number 33. To perform
this task, you type ak(2, [1:2], 2) = [22, 33] and press Enter. Here is the
output you see:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 9
 22 33 12
ak(:,:,3) =
 13 14 15
 16 17 18

www.it-ebooks.info

http://www.it-ebooks.info/

105 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Column changes work the same way. In this case, you might want to replace row
1, column 3, of page 2 with the number 44, and row 2, column 3, of page 2 with
the number 55. To perform this task, you type ak([1:2], 3, 2) = [44, 55] and press
Enter. Notice that you didn’t have to define the input vector using a column
format. Here’s the result you see:

ak(:,:,1) =
 1 2 3
 4 5 6
ak(:,:,2) =
 7 8 44
 22 33 55
ak(:,:,3) =
 13 14 15
 16 17 18

When replacing a rectangular range, you need to use a proper matrix for
input. For example, you might want to replace a rectangular range between
columns 1 and 2, rows 1 and 2, of page 1 with the values 11, 22, 33, and 44.
To perform this task, you type ak([1:2], [1:2], 1) = [11, 22; 33, 44] and press
Enter. Here’s the result you see:

ak(:,:,1) =
 11 22 3
 33 44 6
ak(:,:,2) =
 7 8 44
 22 33 55
ak(:,:,3) =
 13 14 15
 16 17 18

Modifying the matrix size
You might not think that resizing a matrix is possible, but MATLAB can do that,
too. It can make the matrix larger or smaller. The technique for making the
matrix smaller is a bit of a trick, but it works well, and you likely will have a
need for it at some point. The examples in this section assume that you created
matrix ak in the “Creating a multidimensional matrix” section, earlier in this
chapter.

As with range replacement, you need to know how to access ranges before
you start this section. The “Accessing a multidimensional matrix” section,
earlier in this chapter, tells you how to access matrix elements.

The current ak matrix is 2 x 3 x 3. You might want to add another row, even if
that row consists only of zeros, to make the matrix square for some advanced
task you need to perform. Some tasks work properly only with square

www.it-ebooks.info

http://www.it-ebooks.info/

106 Part II: Manipulating and Plotting Data in MATLAB

matrices, so this is a real concern. To add another row to the existing matrix,
type ak(3, :, :) = 0 and press Enter. You see the following result:

ak(:,:,1) =
 11 22 3
 33 44 6
 0 0 0
ak(:,:,2) =
 7 8 44
 22 33 55
 0 0 0
ak(:,:,3) =
 13 14 15
 16 17 18
 0 0 0

 All three pages now have another row. However, you might decide that you
really don’t want that extra row after all. To delete the row, you need to per-
form a bit of a trick — you set the row to a null (empty) value using an empty
matrix ([]). To see how this works, type ak(3, :, :) = [] and press Enter. You
see the following result:

ak(:,:,1) =
 11 22 3
 33 44 6
ak(:,:,2) =
 7 8 44
 22 33 55
ak(:,:,3) =
 13 14 15
 16 17 18

At this point, you probably wonder what would happen if you added a column
or row to just a single page. Try typing ak(:, 4, 1) = [88, 99] and pressing Enter.
This command adds a fourth column to just page 1 and fills it with the values 88
and 99. MATLAB provides the following output:

ak(:,:,1) =
 11 22 3 88
 33 44 6 99
ak(:,:,2) =
 7 8 44 0
 22 33 55 0
ak(:,:,3) =
 13 14 15 0
 16 17 18 0

Notice that the other pages also have a fourth column now. The column is
filled with zeros, but MATLAB automatically adds it for you to keep things tidy.

www.it-ebooks.info

http://www.it-ebooks.info/

107 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Using cell arrays and structures
The matrices you have created so far all contain the same data type, such
as double or uint8. Every matrix you create will contain data of the same
type — you can’t mix types in a matrix. You do have, however, two other
means to store data:

 ✓ A cell array works much like a spreadsheet

 ✓ A structure works much like a database record

These two containers let you store other kinds of data, and mix and match
types as needed. Theoretically, you could use them to create a small data-
base or some sort of alternative storage on your machine without resorting
to another application. However, if you’re a typical user, you probably won’t
use these structures, but at least knowing what they are is a good idea. The
following sections provide an introduction and point you to more help in case
you need to know more.

Understanding cell arrays
Cell arrays are naturals for spreadsheets because an individual cell in a cell
array is like a cell in a spreadsheet. In fact, when you import a spreadsheet
into MATLAB, each cell in the spreadsheet becomes a cell in a MATLAB cell
array. Because spreadsheets are so popular, you’re more likely to encounter a
cell array than a structure.

You use the cell() function to create a new cell array. For example, to create a
2 x 2 x 2 cell array, you type an = cell(2, 2, 2) and press Enter. You see this result:

an(:,:,1) =
 [] []
 [] []
an(:,:,2) =
 [] []
 [] []

The cells are empty at this point. Cell arrays rely on a different kind of
bracket to provide access to individual elements, the curly braces ({}). In
order to make the an cell array useful, begin by typing the following lines of
code, pressing Enter after each line:

an{1,1,1}='George';
an{1,2,1}='Smith';
an{2,1,1}=rand();
an{2,2,1}=uint16(1953);
an{1,1,2}=true;
an{1,2,2}=false;
an{2,1,2}=14.551+2.113i;
an{2,2,2}='The End!'

www.it-ebooks.info

http://www.it-ebooks.info/

108 Part II: Manipulating and Plotting Data in MATLAB

Because all the lines except for the last one ended with a semicolon, you
didn’t see any output. However, after you type the last line, you see the fol-
lowing output from MATLAB:

an(:,:,1) =
 'George' 'Smith'
 [0.6948] [1953]
an(:,:,2) =
 [1] [0]
 [14.5510 + 2.1130i] 'The End!'

The output looks just like any other multidimensional matrix. You can access
it the same way, except that you use curly braces. For example, type an{1, :, 2}
and press Enter to see the first row of page 2. The result looks like this:

ans =
 1
ans =
 0

MATLAB uses the values 1 and 0 to represent true and false. To test this fact
for yourself, type true and press Enter. You see an output value of 1. Likewise,
type false and press Enter. You see an output value of 0.

 Each of the entries is treated as a separate item, but you can select ranges
and work with individual values, just as you do when working with a multi-
dimensional matrix. However, you must use the curly braces when working
with cell arrays.

 You can distinguish between cell arrays and matrices in the Workspace window
by the icons they use. The cell array icon contains a pair of curly braces, so
it contrasts well with the matrix icon, which looks like a little mini table. The
Value column also specifically tells you that the entry is a cell rather than a spe-
cific data type, such as a double.

Understanding structures
Structures are more closely related to SQL database tables than spreadsheets.
Each entry consists of a field name and value pair. The field names are gener-
ally descriptive strings, but the values can be anything that relates to that
field name. To get a better idea of how a structure works, type MyStruct =
struct(’FirstName’, ’Amy’, ’LastName’, ’Jones’, ’Age’, 32, ’Married’, false)
and press Enter. You see the following output:

MyStruct =
 FirstName: 'Amy'
 LastName: 'Jones'
 Age: 32
 Married: 0

www.it-ebooks.info

http://www.it-ebooks.info/

109 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Notice how the field names are paired with their respective values. A struc-
ture is designed to reside in memory like a database. Currently, MyStruct
has just one record in it. You can access this record by typing MyStruct(1)
and pressing Enter. The results are as follows:

ans =
 FirstName: 'Amy'
 LastName: 'Jones'
 Age: 32
 Married: 0

Dealing with an entire record probably isn’t what you had in mind, though.
To access a particular field, you type a period, followed by the field name.
For example, type MyStruct(1).LastName and press Enter to access the
LastName field. You get the following answer:

ans =
Jones

A single record structure isn’t very useful. You might have quite a few records
in a real structure. To add another record to MyStruct, type MyStruct(2) =
struct(’FirstName’, ’Harry’, ’LastName’, ’Smith’, ’Age’, 35, ’Married’, true)
and press Enter. The output might surprise you this time. You see

MyStruct =
1x2 struct array with fields:
 FirstName
 LastName
 Age
 Married

The output tells you how many records are in place. You can test for the
second record by typing MyStruct(2) and pressing Enter. The output is pre-
cisely as you expect:

ans =
 FirstName: 'Harry'
 LastName: 'Smith'
 Age: 35
 Married: 1

 Don’t limit your input of structures to the common data types. Structure data
may contain a matrix, even multidimensional matrices, and you can mix sizes.
In addition, structures and cell arrays can contain each other. An element in a
structure can be a cell array, and a cell in a cell array can be a structure. The
point is that these are extremely flexible ways to store information when you

www.it-ebooks.info

http://www.it-ebooks.info/

110 Part II: Manipulating and Plotting Data in MATLAB

need them; however, you shouldn’t make things overly complex by using them
when you don’t need them. If you can create storage that uses one common
data type, matrices are the way to go.

This is only a brief overview of structures. Go to MATLAB’s help system and
click Matlab➪Language Fundamentals➪Data Types➪Structures to find addi-
tional information on this topic.

 Using the Matrix Helps
As you work with matrices, you may need to test your code, and MATLAB has
provided some help in the form of ways to create a matrix (Table 5-1), test
matrices (Table 5-2), and diagnose matrix problems (Table 5-3). The tables
in this section help you work more productively with matrices and get them
working considerably faster.

The tables contain only the more useful commands. MATLAB has a lot more
to offer. The following locations in MATLAB’s help system can provide you
with substantially more information:

 ✓ Help Home➪MATLAB➪Language Fundamentals➪Matrices and Arrays

 ✓ Help Home➪MATLAB➪Mathematics➪Elementary Math➪Constants and
Text Matrices

Table 5-1 Matrix Creation
Function What It Does Generic Call Example
zeros() Creates a

matrix of
all zeros

zeros(<mat_
size>), where
<mat_size> is a
positive integer number,
two number arguments,
or a vector of numbers.

>> zeros(3)
ans =
 0 0 0
 0 0 0
 0 0 0

ones() Creates a
matrix of
ones

ones(<mat_
size>), where
<mat_size> is a posi-
tive integer number, two
number arguments, or a
vector of numbers.

>> ones(3)
ans =
 1 1 1
 1 1 1
 1 1 1

www.it-ebooks.info

http://www.it-ebooks.info/

111 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Function What It Does Generic Call Example

eye() Creates an
identity matrix
with one
on the main
 diagonal and
zero elsewhere

eye(<mat_size>),
where <mat_size>
is a positive integer
number, two number
arguments, or a vector
of numbers. This call
doesn’t allow you to
create N-dimensional
arrays.

>>eye(3)
ans=
 1 0 0
 0 1 0
 0 0 1

rand() Creates a
matrix of
 uniformly
distributed
random
numbers

rand(<mat_
size>), where
<mat_size> works
like the argument(s)
of eye.

>>rand(3) ans=
 0.8147 0.9134 0.2785
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575

randn() Creates a
matrix of
 normally
 distributed
random
 numbers
(mean=0,
SD=1)

randn(<mat_
size>), where
<mat_size> works
like the argument(s)
of eye.

>> randn(3) ans =
 0.5377 0.8622 -0.4336
 1.8339 0.3188 0.3426
 -2.2588 -1.3077 3.5784

blkdiag() Makes a block
diagonal matrix

blkdiag(a,b,
c,...) , where
a, b, c, ... are
matrices.

>> blkdiag(ones(2),
ones(2)) ans =
 1 1 0 0
 1 1 0 0
 0 0 1 1
 0 0 1 1

Table 5-2 Test Matrices
Function What It Does Generic Call Example
magic() Creates a

magic square
matrix — the
sum of rows
and columns
are equal

magic(n) , where n
is the number of rows
and columns.

>> magic(3)
ans =
 8 1 6
 3 5 7
 4 9 2

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

112 Part II: Manipulating and Plotting Data in MATLAB

Function What It Does Generic Call Example

gallery() Produces a
wide variety of
test matrices
for diagnosis of
your code

Gallery(...
’<option>’,...
<mat_size>, j),
where ’option’ is a
string that defines what
task to perform, such
as binomial, which
creates a binomial
matrix.<mat_size>
is a positive integer
number, two number
arguments, or a vector
of numbers. Each differ-
ent positive integer j
produces a different
matrix.

>> gallery(’normal
data’,3,3)
ans =
 0.9280 -0.7230 0.2673
 0.1733 -0.5744 1.3345
-0.6916 -0.3077 -1.3311

Table 5-3 Helpful Commands
Function What It does Generic Call Example
rng() Controls

the random
number
generator

rng(<my_seed>,
'<my_option>'),
where <my_seed>
is a numeric value
used to define the
starting point for
random values and
'<my_option>'is
the option used to set
the random number
generator.

rng('default') resets the
random number generator to
a known value. This command
is useful to reproduce random
matrices.

size() Returns the
size of a matrix

size(<your_
matrix>)

>> size(zeros([2,3,4]))
ans =
 2 3 4

Table 5-2 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

113 Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

Function What It does Generic Call Example

length() Returns the
length of a
vector

length(<your_
matrix>)

>> length(0:50)
ans =
 51

spy() Produces a
figure identi-
fying where
zeros are in a
matrix

spy(<your_
matrix>)

>> spy(blkdiag
(ones(100),...
ones(200),ones(100)))

www.it-ebooks.info

http://www.it-ebooks.info/

114 Part II: Manipulating and Plotting Data in MATLAB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Understanding Plotting Basics
In This Chapter
▶ Defining and understanding plots

▶ Working with the plot function

▶ Changing plot specifics

▶ Creating 2D plots

M
ATLAB includes fabulous routines for plotting (or graphing) the data
and expressions that you supply to the software. Using MATLAB’s

familiar interface, you can produce visual representations of various func-
tions and data sets, including 2D x-y graphs, log scales, bar, and polar plots,
as well as many other options. The visuals that MATLAB produces resemble
anything from the graph of an algebraic equation to pie charts often used in
business and to specialized graphs.

In this chapter, you find out how to use 2D plotting functions to create expres-
sion and data plots and how the same process works with other plotting
routines in MATLAB. You also discover the commonly used visual styles for
representing various types of data, how to combine plots, and how to modify
the plots to match specific data sets.

 With MATLAB, you can create plots based purely on the formula you provide.
Although this chapter focuses on the more commonly used vector and matrix
inputs, Appendix B provides a listing of all the plot types that MATLAB supports.
Be sure to also check out the online materials for this book (as described in this
book’s Introduction) and the blog posts at http://blog.johnmuellerbooks.
com to see how to work with other plot types.

Considering Plots
A plot is simply a visualization of data. Most people see a series of numbers
in a table and can’t really understand their meaning. Interpreting what the
data means is hard to do without thinking about the relationship between

www.it-ebooks.info

http://www.it-ebooks.info/

116 Part II: Manipulating and Plotting Data in MATLAB

data points. A plot makes the relationships between data points more obvi-
ous to the viewer and helps the viewer see patterns in the data. The following
sections help you discover how MATLAB plots are special and can make the
visualization of your data interesting and useful.

Understanding what you can do with plots
People are visually oriented. You could create a standard table showing the
data points for a sine wave and have no one really understand that it was
a sine wave at all or that the data points move in a certain way. However, if
you plot that information, it becomes apparent to everyone that a sine wave
has a particular presentation and appearance. The pattern of the sine wave
becomes visible and understandable.

A sine wave consists of a particularly well-known set of data points, so some
people might recognize the data for what it is. As your data becomes more
complex, however, recognizing the patterns becomes more difficult — to the
point at which most people won’t understand what they’re seeing. So the first
goal of a plot is to make the pattern of data readily apparent.

Presentation is another aspect of plotting. You can take the same data and
provide multiple views of it to make specific points — the company hasn’t
lost much money on bad widgets, for example, or the company has gained
quite a few new customers due to some interesting research. Creating the
right plot for your data defines a specific view of the data: It helps you make
your point about whatever the data is supposed to represent.

Creative interaction with the data is another reason to use plots. People see
not only the patterns that are present in plots but also see the ones that
could be present given the right change in conditions. It’s the creative inter-
action that makes plotting data essential for scientists and engineers. The
ability to see beyond the data is an important part of the plotting process.

Comparing MATLAB plots
to spreadsheet graphs
Although it might seem obvious at first, spreadsheet graphs are generally
designed for use in business. As a result, the tools you find are better suited
to making a point about some business need, such as this quarter’s sales
or the project production rate in the factory. A spreadsheet graph includes

www.it-ebooks.info

http://www.it-ebooks.info/

117 Chapter 6: Understanding Plotting Basics

the tools of business, such as the need to add trend lines of various sorts to
show how the numbers are changing over time.

MATLAB plots are more suited to scientific and engineering needs. A MATLAB
plot does include some of the same features as a spreadsheet graph. For exam-
ple, you can create a pie chart in either environment and assign data points
to the chart in about the same manner. However, MATLAB includes plots
that you can’t find in the business environment, such as a semilogx (used to
plot logarithmic data). A business user probably wouldn’t have much need
for a stem plot — the plot that shows the frequency at which certain values
appear.

The way in which the two environments present information differs as well.
A spreadsheet graph is designed to present an overview in an aesthetically
pleasing manner. The idea is to convince a viewer of the validity of the data
by showing general trends. Business users tend not to have time to dig into
the details; they need to make decisions quickly based on trends. MATLAB
graphs are all about the details. With this in mind, you can zoom in on a graph,
examine individual data points, and work the plot in ways that a business user
doesn’t require.

 No best approach to presenting information in graphic form exists. The only
thing that matters is displaying the information in a manner that most helps
the viewer. The essential difference in the two environments is that one allows
the viewer to make decisions quickly and the other allows the viewer to make
decisions accurately. Each environment serves its particular user’s needs.

Creating a plot using commands
MATLAB makes creating a plot easy. Of course, before you can create any
plot, you need a source of data to plot. The following steps help you create
a data source and then use that data source to generate a plot. Even though
MATLAB’s plotting procedure looks like a really simplistic approach, it’s actu-
ally quite useful for any data you want to plot quickly. In addition, it demon-
strates that you don’t even have to open any of the plotting tools to generate
a plot in MATLAB.

 1. Type x = -pi:0.01:pi; and press Enter in the Command window.

 MATLAB generates a vector, x, and fills it with a range of data points for
you. The data points begin at –pi and end at pi, using 0.01 steps. The use
of the semicolon prevents the output of the data points to the Command
window, but if you look in the Workspace window, you see that the vector
has 629 data points.

www.it-ebooks.info

http://www.it-ebooks.info/

118 Part II: Manipulating and Plotting Data in MATLAB

 2. Type plot(x, sin(x)), grid on and press Enter.

 You see the plot shown in Figure 6-1 appear. It’s a sine wave created by
MATLAB using the input you provided.

Figure 6-1:
The plot

uses all the
defaults that

MATLAB
provides,

except for
turning the

grid on.

 The plot() function accepts the data point entries that you provide.
The vector x contains a series of values between –pi and pi. Taking the
sine of each of these values using the sin() function creates the values
needed to generate the plot shown. This version of the plot() func-
tion shows the minimum information that you can provide. The x value
that appears first contains the information for the x-axis of the plot.
The sin(x) entry that appears second contains the information for the
y-axis of the plot.

 It’s possible to create any sort of plot using commands just as it is to use the
graphic aids (such as the GUI shown in Figure 6-1) that MATLAB provides. For
example, type area(x,sin(x)), grid and press Enter. You see the plot shown
in Figure 6-2. However, this time the sine wave is shown as an area plot.
MATLAB also has methods for modifying the appearance of the plot using
commands.

www.it-ebooks.info

http://www.it-ebooks.info/

119 Chapter 6: Understanding Plotting Basics

Figure 6-2:
You can do

anything
with com-

mands that
you can
do with

the GUI.

Creating a plot using the
Workspace window
The Workspace window displays all the variables that you create, no matter
what type they might be. What you may not realize is that you can right-click
any of these variables and create a plot from them. (If you don’t see your
plot listed, select the Plot Catalog option to see a full listing of the available
plots.) The following steps help you create a variable and then plot it using
the Workspace window functionality.

 1. Type y = [5, 10, 22, 6, 17]; and press Enter in the Command window.

 You see the variable y appear in the Workspace window.

 2. Right-click y in the Workspace window and choose bar(y) from the
context menu that appears.

 MATLAB creates a bar graph using the default settings, as shown in
Figure 6-3.

www.it-ebooks.info

http://www.it-ebooks.info/

120 Part II: Manipulating and Plotting Data in MATLAB

 Even though this method might seem really limited, it’s a great way
to create a quick visualization of data so that you can see patterns or
understand how the various data points interact. The advantage of this
method is that it’s quite fast.

Figure 6-3:
Bar graphs

are best
used for a

few discrete
values that

you want to
compare.

 MATLAB overwrites the previous plot you create when you create a new
plot unless you use the hold command that is described later in the
chapter. If you created the examples in the previous section, you should
note that all the plots have appeared in the Figure 6-1 window and that
no new plot windows have been created. Your old plot is immediately
overwritten when you create a new one unless you save the old plot to
disk or use the hold command.

Creating a plot using the Plots tab options
When you view the Plots tab in MATLAB, you see a gallery of the kinds
of plots you can create. You initially see just a few of the available plots.
However, if you click the downward-pointing arrow button at the right
side of the gallery, you see a selection of plot types like the one shown in
Figure 6-4.

www.it-ebooks.info

http://www.it-ebooks.info/

121 Chapter 6: Understanding Plotting Basics

Figure 6-4:
MATLAB

comes with
a large

number of
plot types

that you
can use.

To use this feature, select a variable in the Workspace window and then
choose one of the plots from the gallery list. This is the technique to use
if you can’t quite remember what sort of plot you want to create (making
the command option less convenient) and the option doesn’t appear in the
Workspace window context menu. For example, you might want to create a
horizontal bar plot using variable y. To perform this task, simply click vari-
able y in the Workspace window and then choose barh in the MATLAB Bar
Plots section of the gallery. The output MATLAB comes up with looks like
Figure 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

122 Part II: Manipulating and Plotting Data in MATLAB

Figure 6-5:
The Plots

tab contains
options that

don’t appear
on the

Workspace
context

menu.

Using the Plot Function
The plot() function provides you with considerable flexibility in using com-
mands to create and modify a plot. As a minimum, you supply two vectors:
one for the x axis and one for the y axis. However, you can provide more infor-
mation to adjust the appearance of the resulting plot. The following sections
provide additional details on how to work with the plot() function and make
it provide the output you want.

Working with line color,
markers, and line style
The plot() function can actually accommodate values in groups of three: the
x axis, the y axis, and a character string that specifies the line color, marker
style, and line style. Table 6-1 shows the values for the character string; you’d
use values from each of the three entries (x axis, y axis, character string) to
change the appearance of the plot.

www.it-ebooks.info

http://www.it-ebooks.info/

123 Chapter 6: Understanding Plotting Basics

Table 6-1 Line Color, Data Point Style, and Line Style
Color Marker Style
Code Line Color Code Marker Style Code Line Style
b blue . point - Solid
g green o circle : Dotted
r red x x-mark -. dash dot
c cyan + plus -- Dashed
m magenta * star (none) no line
y yellow s square
k black d diamond
w white v down triangle

^ up triangle
< left triangle
> right triangle
p 5 point star
h 6 point star

You can combine the entries in various ways. For example, type plot(1:5, y,
‘r+--’) and press Enter to obtain the plot shown in Figure 6-6. Even though
you can’t see it in the book, the line is red. The markers show up as plus
signs, and the line is dashed, as you might expect.

Figure 6-6:
Spruce up

your plot
using styles.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Part II: Manipulating and Plotting Data in MATLAB

Creating multiple plots
in a single command
In many cases, you need to plot more than one set of data points when work-
ing with a plot. The plot() function can accommodate as many series as
needed to display all your data. For example, you might want to plot both
sine and cosine of x to compare them. To perform this task, you type plot(x,
sin(x), ‘g-’, x, cos(x), ‘b-’) and press Enter (remember that x was defined ear-
lier as x = -pi:0.01:pi;). Figure 6-7 shows the result.

In this case, sine appears as a green solid line. The value of cosine is in blue with
a dashed line. Notice that each series appears as three values: x axis, y axis, and
format string. You can add as many series as needed to complete your plot.

Figure 6-7:
Plot multiple
series when

necessary.

Modifying Any Plot
At some point, you’ll want to change the content of your plot. Perhaps you
want to add a legend or change how the data is presented. After you get the
data looking just right, you might need to label certain items or perform other
tasks to make the output look nicer. You can modify any plot you create using
either commands or the MATLAB GUI.

www.it-ebooks.info

http://www.it-ebooks.info/

125 Chapter 6: Understanding Plotting Basics

 The modification method that you use is entirely up to you. Some people work
better at the keyboard, others using the mouse, and still others using a combi-
nation of the two. Working at the keyboard is a lot faster but requires that you
memorize the commands to type. The GUI provides you with great memory
aids, but working with the mouse is slower and you might not be able to find
a particular property you want to change when it becomes buried in a menu
somewhere. The following sections describe techniques to use for modifying
any plot.

Making simple changes
There are a number of simple changes you can make to your plot that don’t
require any special handling other than to type the command. For example,
to add a grid to an existing plot, you simply type grid on and press Enter.
(MATLAB has a number of grid commands. For example, grid MINOR tog-
gles the minor grid lines.)

Adding a legend means typing a name for each of the plots. For example, if
you want to add a legend to the plot in Figure 6-7, you type legend(‘Sine’,
‘Cosine’) and press Enter. You can also change items such as the legend ori-
entation. The default orientation is vertical, but you can change it to hori-
zontal by typing legend(‘orientation’, ‘horizontal’) and pressing Enter.
Notice that the property name comes first, followed by the property value.

MATLAB also lets you add titles to various parts of the plot. For example, to
give the plot a title, type title(‘Sine and Cosine’) and press Enter. You can
also provide labels for the x-axis using xlabel() and for the y-axis using
ylable(). The point is that you have full control over the appearance of the
plot. Figure 6-8 shows the effects of the commands that you have tried so far.
(Compare it to Figure 6-7.)

 If you make a mistake, you can always clear the current plot by using the clf
command. The clf command does for the plot what the clc command does
for the Command window. Make sure that you actually want to clear the plot
before using the clf command because there isn’t any sort of undo feature to
restore the plot.

Adding to a plot
You may decide that you want to add another plot to an existing plot. For
example, you might want to plot the square of x for each of the values used
in the previous examples. To make this technique work, you need to perform
the three-step process described here:

www.it-ebooks.info

http://www.it-ebooks.info/

126 Part II: Manipulating and Plotting Data in MATLAB

Figure 6-8:
Change

your plot
setup using
commands.

 1. Type hold on and press Enter.

 If you try to add another plot without placing a hold on the current
plot, MATLAB simply creates a new plot and gets rid of the old one. The
hold command lets you retain the current plot while you add some-
thing to it.

 2. Type newplot = plot(x, power(x, 2), ‘m:’) and press Enter.

 This command creates a new plot and places a handle to that plot in
newplot. A handle is just what it sounds like — a means of obtaining
access to the plot you just created. If you don’t store the plot handle, you
can’t access it later. The output now looks like Figure 6-9.

 Notice that the legend hasn’t updated itself to show the new plot. To
update the legend, you must issue another legend() function call. The
sine and cosine still have the same values, but the new plot has much
larger values, so it appears that the previous plot lines have shrunk.
However, compare the values in Figures 6-8 and 6-9 and you see that the
values of sine and cosine are the same.

 3. Type hold off and press Enter.

 The hold off command releases the plot. To create new plots, you
must release your hold on the existing plot.

www.it-ebooks.info

http://www.it-ebooks.info/

127 Chapter 6: Understanding Plotting Basics

Figure 6-9:
Add a new
plot to the

existing
setup.

Using the figure() function
This chapter concentrates on various sorts of
plots because plots provide you with output.
However, the figure() function can be an
important part of your toolbox when you start
creating scripts. You use the figure() func-
tion alone to create a new figure that doesn’t
have any sort of information in it. The advan-
tage is that you can then fill the new figure with
anything you want. In addition, the figure()
function creates a new figure without over-
writing the old one. The figure() function
returns a handle to the figure rather than to the
plot inside the figure. If you have multiple plots
inside a figure, you can use the figure handle to
select all the plots rather than just one of them.

You use the figure() function with a handle
to make the figure associated with a particular

handle the current figure. For example, the
figure(MyFigure) command would make
the figure pointed to by MyFigure the current
figure. When working with multiple figures, you
need some method of selecting between them,
and the figure() function provides the best
method of doing that.

Of course, you might have created the figure
as a plot rather than as a figure. The plot
handle doesn’t work with the figure()
function. Use the gcf() (Get Current Figure)
function to obtain the figure handle for
any figure you create using a plot. You can
then save the figure handle in a variable for
later use.

www.it-ebooks.info

http://www.it-ebooks.info/

128 Part II: Manipulating and Plotting Data in MATLAB

Deleting a plot
You might decide that you really don’t want to keep a plot you’ve added. In this
case, you need a handle to the plot you want to remove, such as the handle
stored as part of the steps in the previous section. To remove the plot, type
delete(newplot) and press Enter. MATLAB removes the plot from the display.

Working with subplots
Figure 6-9 shows three plots — one on top of the other. You don’t have to
display the plots in this manner. Instead, you can display them side by side
(or even in a grid). To make this happen, you use the subplots feature of
MATLAB. A subplot is simply a plot that takes up only a portion of the display.

Creating a subplot
The best way to understand subplots is to see them in action. The following
steps help you create the three previous plots as subplots:

 1. Type clf and press Enter.

 MATLAB clears any previous plot you created.

 2. Type subplot(1, 3, 1) and press Enter.

 This function creates a grid consisting of one row and three columns. It
tells MATLAB to place the first plot in the first space in the grid. You see
the blank space for the plot, as shown in Figure 6-10.

 3. Type p1 = plot(x, sin(x), ‘g-’) and press Enter.

 You see the first plot added to the display, as shown in Figure 6-11.

 Notice that the example is creating the plots one at a time. You can’t
combine plots in a single call when using subplots. In addition, you need
to maintain a handle to each of the plots in order to configure them

 4. Type subplot(1, 3, 2) and press Enter.

 MATLAB selects the second area for the next plot.

 5. Type p2 = plot(x, cos(x), ‘b-’) and press Enter.

 You see the second plot added to the display.

 6. Type subplot(1, 3, 3) and press Enter.

 MATLAB selects the third area for the next plot.

 7. Type p3 = plot(x, power(x, 2), ‘m:’) and press Enter.

 You see the third plot added to the display, as shown in Figure 6-12.

www.it-ebooks.info

http://www.it-ebooks.info/

129 Chapter 6: Understanding Plotting Basics

 Each plot takes up the entire area. You can’t compare plots easily
because each plot is in its own space and uses its own units of measure.
However, this approach does have the advantage of letting you see each
plot clearly.

Figure 6-10:
Use the

su b plot()
function to

par tition the
display area
for multiple

plots.

Figure 6-11:
MATLAB
uses only

the first par-
tition when

creating
the plot.

www.it-ebooks.info

http://www.it-ebooks.info/

130 Part II: Manipulating and Plotting Data in MATLAB

Figure 6-12:
Each plot
appears

in its own
area.

Changing subplot information
The subplot() function doesn’t change anything — it merely selects some-
thing. For example, the plots in Figure 6-12 lack titles. To add a title to the
first plot, follow these steps:

 1. Type subplot(1, 3, 1) and press Enter.

 MATLAB selects the first subplot.

 2. Type title(‘Sine’) and press Enter.

 You see a title added to the first subplot, as shown in Figure 6-13.

Configuring individual plots
To work with a subplot in any meaningful way, you need to have a handle to
the subplot. The following steps describe how to change the color and line
type of the second plot:

 1. Type subplot(1, 3, 2) and press Enter.

 MATLAB selects the second subplot. Even though the handle used with
the set() command in the following step will select the subplot for
you, this step is added so that you can actually see MATLAB select the

www.it-ebooks.info

http://www.it-ebooks.info/

131 Chapter 6: Understanding Plotting Basics

subplot. In some cases, performing this task as a separate step is help-
ful to ensure that any function calls that follow use the correct subplot,
even when these function calls don’t include a handle. Later, when you
start creating scripts, you find that errors creep into scripts when you’re
making assumptions about which plot is selected, rather than knowing
for sure which plot is selected.

Figure 6-13:
Each sub-

plot is con-
figurable as
a separate

entity.

 2. Type set(p2, ‘color’, ‘r’) and press Enter.

 The line color is now red. The set() function accepts a handle to a plot
or another MATLAB object as the first value, the name of a property as
the second, and the new value for that property as the third. This func-
tion call tells MATLAB to change the color property of the line pointed
at by p2 to red.

 3. Type set(p2, ‘LineStyle’, ‘-.’) and press Enter.

 The LineStyle property for the Cosine plot is now set to dash dot, as
shown in Figure 6-14.

www.it-ebooks.info

http://www.it-ebooks.info/

132 Part II: Manipulating and Plotting Data in MATLAB

Figure 6-14:
Changing

line-specific
features

requires a
handle to
that line.

Plotting with 2D Information
MATLAB has built-in plotting routines that are suitable for many types of
data and applications. Table 6-2 gives you an overview of various 2D plotting
functions, including what they plot and how they’re commonly used. You use
these functions in place of the plot() function used throughout the chapter
to create plots. The output will contain the kind of plot you have requested,
such as a pie chart when using the pie() function. (MATLAB also supports
3D plotting; for more on that aspect of plotting, check out Chapter 7.)

Table 6-2 MATLAB Plotting Routines
Routine What It Plots Used By

plotyy() Data with two y axes Business users rely on this plot to
show two sets of units, for example,
quantity sold and money.

loglog() Data with both x and
y axes as log scales

Science, Technology, Engineering,
and Mathematics (STEM) users
rely on this plot to show power or
root dependence of y versus x.

www.it-ebooks.info

http://www.it-ebooks.info/

133 Chapter 6: Understanding Plotting Basics

Routine What It Plots Used By

semilogx() Data with x axis log
scale

STEM users rely on this plot to
show logarithmic dependence of
y versus x.

semilogy() Data with y axis log
scale

STEM and social science users
rely on this plot to show exponen-
tial dependence of y versus x and
 population growth (as an example).

scatter() Data in x-y pairs Experimentalists and statisticians
rely on this plot to show patterns
created by the individual data
points.

hist() Frequency of occur-
rence of particular
values of data

Experimentalists and statisticians
rely on this plot to understand
imprecision and inaccuracy.

area() x-y data with areas
filled in

Business and STEM users rely on
this plot to see (and understand) the
contributions of parts to a whole.

pie() Set of labeled
numbers

Business users rely on this plot to
see (and understand) the fractional
contributions of each part to a
whole.

ezpolar() Data in terms of
radius and angle

STEM users rely on this plot to
show the angular dependence of
information.

www.it-ebooks.info

http://www.it-ebooks.info/

134 Part II: Manipulating and Plotting Data in MATLAB

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using Advanced Plotting Features
In This Chapter
▶ Working with 3D plots

▶ Creating enhanced plots

C
hapter 6 helps you create plots that convey 2D data in visual form.
Using plots in this manner helps you present the data in a way that

most humans understand better than abstract numbers. Visual presenta-
tions are concrete and help the viewer see patterns that might be invisible
otherwise. The 3D plots described in this chapter do the same thing as
those 2D plots, only with a 3D data set. The viewer sees depth as well as
height and width when looking at that data. Using a 3D data set can greatly
improve the amount of information the user obtains from a plot. For exam-
ple, a 3D plot could present the variation of a data set over time so that the
user gains insights into how the data set changes.

If you worked through Chapter 6, you focused mostly on small changes to
improve the aesthetics of your plots. This chapter looks at some of the fan-
cier things you can do to make plots even more appealing. In many cases,
nontechnical viewers require these sorts of additions in order to appreciate
the data you present. Making data as interesting as possible can only help
to improve your presentation and convince others to accept your interpre-
tation of the data. Of course, making plots that look nice is also just plain
fun, and everyone could use a little more fun in their creation and presenta-
tion of data.

 This chapter focuses on the kinds of 3D plots that you perform most often.
Appendix B provides a more comprehensive listing of the plot types that
MATLAB supports. Be sure to also check out the online materials for this
book (as described in the Introduction) and the blog posts at http://blog.
johnmuellerbooks.com to see how to work with other plot types. MATLAB
provides so much in the way of plot functionality that you could possibly
create a book on just that one topic.

www.it-ebooks.info

http://www.it-ebooks.info/

136 Part II: Manipulating and Plotting Data in MATLAB

Plotting with 3D Information
A 3D plot has an x, y, and z axis (height, width, and depth, if you prefer).
The addition of depth lets you present more information to the viewer. For
example, you could present historical information about a plot so that each
element along the z axis is a different date. Of course, the z axis, like the
x and y axes, can represent anything you want. The thing to remember is
that you now have another method of presenting information to the viewer.

 It’s also important to consider that you’re presenting 3D information on a 2D
surface — the computer screen or a piece of paper. Some users forget this
fact and find that some of their data hides behind another plot object that is
greater in magnitude. When working with 3D plots, you need to arrange the
information in such a manner that you can see it all onscreen.

The following sections describe various kinds of plots and how to create
them. Each plot type has specific uses and lends itself to particular kinds
of data display. Of course, the kind of plot you choose depends on how you
want to present the data as well.

Using the bar() function
to obtain a flat 3D plot
The bar chart is a standard form of presentation that is mostly used in a busi-
ness environment. You can use a bar chart to display either 2D or 3D data.
When you feed a bar chart a vector, it produces a 2D bar chart. Providing a
bar chart with a matrix produces a 3D chart. The following steps help you
create a 3D bar chart.

 1. Type SurveyData = [8, 7, 6; 13, 21, 15; 32, 27, 32] and press Enter.

 MATLAB creates a new matrix named SurveyData that is used for many
of the examples in this chapter. You see the following output:

SurveyData =
 8 7 6
 13 21 15
 32 27 32

 2. Type bar(SurveyData) and press Enter.

 You see a flat presentation of SurveyData, as shown in Figure 7-1. The
x axis shows each of the columns in turn. (If you could see colors in the
book, you would see that the first column is blue, the second is green, and

www.it-ebooks.info

http://www.it-ebooks.info/

137 Chapter 7: Using Advanced Plotting Features

the third is red.) The y axis presents the value of each cell (such as 8, 7,
and 6 for the first SurveyData row). The z axis presents each row in a
group, and each group corresponds to a number between 1 and 3.

Figure 7-1:
A flat pre-

sentation of
the x, y, and

z axes of
SurveyData.

 3. Type Bar1 = bar(SurveyData, ‘stacked’) and press Enter.

 You see the same SurveyData matrix presented as a stacked bar chart,
as shown in Figure 7-2. In this case, the x axis elements are shown
stacked one on top of the other.

 The example also outputs information about the bar chart handles
(a means of obtaining access to the plot). The values may differ, but
you should see three handles output like the following (each handle is
named Bar — previous versions of MATLAB used a number to represent
the handle in the output):

Bar1 =
 1x3 Bar array:

 Bar Bar Bar

 Each of the z axis elements has its own handle that you use to manipu-
late it. This is an important part of working with the bar chart later when
you want to modify something.

www.it-ebooks.info

http://www.it-ebooks.info/

138 Part II: Manipulating and Plotting Data in MATLAB

 Figures 7-1 and 7-2 present two forms of the same data. The bar() func-
tion provides you with several alternative presentations:

Figure 7-2:
A stacked
presenta-
tion of the

SurveyData
matrix.

 • grouped: This is the default setting shown in Figure 7-1.

 • hist: The data appears much like in Figure 7-1, except that no
spaces appear between the bars for a particular group. The groups
do still have spaces between them.

 • hisc: The groups are positioned so that each group starts at a
number on the x axis, rather than being centered on it.

 • stacked: This is the stacked appearance shown in Figure 7-2.

 4. Type get(Bar1(1)) and press Enter.

 The get() function obtains the properties you can work with for a par-
ticular object. In this case, you request Bar1(1), which is the first group
in Figure 7-2. In other words, this would be the first member of the z axis.
You see the following output:

 Annotation: [1x1 matlab.graphics.
eventdata.Annotation]

 BarLayout: 'stacked'
 BarWidth: 0.8000
 BaseLine: [1x1 Baseline]

www.it-ebooks.info

http://www.it-ebooks.info/

139 Chapter 7: Using Advanced Plotting Features

 BaseValue: 0
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: []
 Clipping: 'on'
 CreateFcn: ''
 DeleteFcn: ''
 DisplayName: ''
 EdgeColor: [0 0 0]
 FaceColor: 'flat'
 HandleVisibility: 'on'
 HitTest: 'on'
 Horizontal: 'off'
 Interruptible: 'on'
 LineStyle: '-'
 LineWidth: 0.5000
 Parent: [1x1 Axes]
 Selected: 'off'
 SelectionHighlight: 'on'
 ShowBaseLine: 'on'
 Tag: ''
 Type: 'bar'
 UIContextMenu: []
 UserData: []
 Visible: 'on'
 XData: [1 2 3]
 XDataMode: 'auto'
 XDataSource: ''
 YData: [8 13 32]
 YDataSource: ''

 After you know the properties that you can modify for any MATLAB
object, you can use those properties to start building scripts. (You cre-
ated your first script in Chapter 2.) Just creating and then playing with
objects is a good way to discover just what MATLAB has to offer. Many
of these properties will appear foreign to you and you don’t have to
worry about them, but notice that the YData property contains a vector
with the three data points for this particular bar.

 It’s also possible to obtain individual property values. For example, if
you use the get(Bar1(1), 'YData') command, you see the current
YData values for just the first bar.

 5. Type set(Bar1(1), ‘YData’, [40, 40, 40]) and press Enter.

 The set() function lets you modify the property values that you see
when using the get() function. In this case, you modify the YData
property for the first bar — the blue objects when you see the plot on
screen. Figure 7-3 shows the result of the modification.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Part II: Manipulating and Plotting Data in MATLAB

Figure 7-3:
Rather than

re-create
a plot, you
can simply

modify
values to

obtain the
result you

want.

Using bar3() to obtain
a dimensional 3D plot
The flat form of the 3D plot is nice, but it lacks pizzazz. When you present
your information to other engineers and scientists, the accuracy of the flat
version is welcome. Everyone can see the 3D data clearly and work with it
productively. A business viewer might want something a bit different. In this
case, presenting a pseudo-3D look is better because the business user gets a
better overall view of the data. Precise measurements aren’t quite as useful
in this case — but seeing how the data relate to each other is. To create a
dimensional plot of the data that appears in the previous section, type Bar2 =
bar3(SurveyData) and press Enter. You see a result similar to the one shown
in Figure 7-4.

The two problems with the presentation in Figure 7-4 are that you can’t see
some of the data and none of it is presented to best effect. In order to rotate the
image, you use the view() function. The view() function can accept either x,
y, and z rotation in degrees, or a combination of azimuth and elevation. Using
x, y, and z rotation is easier for most people than trying to figure out azimuth
and elevation. To change Figure 7-4 so that you can more easily see the bars,
type view([-45, 45, 30]) and press Enter. Figure 7-5 shows the result.

www.it-ebooks.info

http://www.it-ebooks.info/

141 Chapter 7: Using Advanced Plotting Features

Figure 7-4:
Dimensional
plots display

the rela-
tionships
between

data well.

Figure 7-5:
Changing
the view

makes
seeing the

data easier.

 The view() function uses absolute rotation rather than relative rotation, in
which one change would affect the next. As a result, if you type view([-45, 45,
30]) and press Enter a second time, you obtain the same result as before. To
obtain a new view, you must provide different values.

www.it-ebooks.info

http://www.it-ebooks.info/

142 Part II: Manipulating and Plotting Data in MATLAB

 As an alternative to using the view() function, you can also click the Rotate
3D button, shown in Figure 7-5. It’s the button with the circular arrow that
appears to the right of the hand icon. Although the view() function is more
precise and lets you make changes to the view without moving your hands
from the keyboard, the Rotate 3D button can be faster and easier.

Using barh() and more
MATLAB provides you with a number of 3D plotting functions that you use to
obtain various effects. The barh(), bar3(), and bar3h() functions work just
like the bar() function except that they display slightly differently. Closely
related are the hist(), histc(), rose(), polar(), and pareto() functions.
Table 7-1 lists the various plotting functions that you have at your disposal and
a brief description of how they work.

Table 7-1 Bar Procedures and Other Related Plotting Procedures
Function What It Does Examples
bar() Plots a flat bar chart that

relies on color and grouping
to show the z axis.

bar(SurveyData)

bar(SurveyData',
'stacked')

bar3() Plots a dimensional bar chart
that uses color and perspec-
tive to show the z axis.

bar3(SurveyData)

bar3(SurveyData',
'stacked')

bar3h() Plots a horizontal dimensional
bar chart that uses color and
perspective to show the z axis.

bar3h(SurveyData)

bar3h(SurveyData',
'stacked')

barh() Plots a horizontal flat bar
chart that relies on color and
grouping to show the z axis.

barh(SurveyData)

barh(SurveyData',
'stacked')

hist() Plots frequency of occur-
rence for bins given raw data
and, optionally, bin centers.

hist(randn(1,100), 5)
% creates 100 normally distributed
random numbers and places them
in five equally spaced bins.

hist(randn(1,100),
[-3.5,-2.5,-1.5,-.5,
.5,1.5,2.5,3.5]) % cre-
ates 100 normally distributed
numbers and places them in
 specific bin centers.

www.it-ebooks.info

http://www.it-ebooks.info/

143 Chapter 7: Using Advanced Plotting Features

Function What It Does Examples

histc() Obtains frequency data for
each bin and displays it as
text (rather than as a plot).
The advantage is that you
can specify bin edges.

histc(randn(1,100),
[-4:1:4])% specifies bins that
are 1 unit wide, with edges on inte-
gers starting at -4. You could use
this information in a plot as

bar([-4:1:4],ans,
'histc').

pareto() Plots a bar chart ordered by
highest bars first — used in
business to identify factors
causing the greatest effect.

histc(ra
ndn(1,100),[-4:1:4])

pareto(ans)

polar() Plots a polar display of data
in which the rings of the
circle represent individual
data values.

histc(randn(1,100),
[-4:1:4])

polar(ans)

rose() Plots data bars versus angles
in a polar-like display. As with
the hist() function, you
may also specify bin centers.

rose(randn(1,100), 5)
% creates 100 normally distributed
numbers and places them in five
equally spaced bins.

Enhancing Your Plots
For visual information to be meaningful and more informative, you need to add
titles, labels, legends, and other enhancements to plots of any type (both 3D
and 2D). (The greater visual appeal of 3D plots only makes the plot prettier,
not more informative.) The following sections of the chapter won’t make you
into a graphic designer, but they will let you create more interesting plots that
you can use to help others understand your data. The goal of these sections
is to help you promote better communication. The examples in the following
sections rely on the 3D plot you created in the “Using bar3() to obtain a dimen-
sional 3D plot” section, earlier in this chapter.

Getting an axes handle
Before you can do anything, you need a handle to the current axes. The best
way to obtain such a handle is to type Bar2Axes = gca() (Get Current Axes)
and press Enter. The gca() function returns the handle for the current plot.
When you type get(Bar2Axes) and press Enter, you see the properties associ-
ated with the current plot.

www.it-ebooks.info

http://www.it-ebooks.info/

144 Part II: Manipulating and Plotting Data in MATLAB

Modifying axes labels
MATLAB automatically creates labels for some of the axes for you. However,
the labels are generic and don’t really say anything. To modify anything on
the axes, you need an axes handle (as described in the previous section).

After you have the handle, you use the appropriate properties to modify the
appearance of the axes. For example, to modify the x axis label, you type
xlabel(Bar2Axes, ‘X Axis’) and press Enter. Similarly, for the y axis, you type
ylabel(Bar2Axes, ‘Y Axis’) and press Enter. You can also use the zlabel()
function for the z axis.

Each of the ticks on an axis can have a different label as well. The default is to
simply assign them numbers. However, if you want to assign meaningful names
to the x axis ticks, you can type set(Bar2Axes, ‘XTickLabel’, {‘Yesterday’,
‘Today’, ‘Tomorrow’}) and press Enter. Notice that the labels appear within
a cell array using curly brackets ({}). Likewise, to set the y axis ticks, you can
type set(Bar2Axes, ‘YTickLabel’, {‘Area 1’, ‘Area 2’, ‘Area3’}) and press Enter.
You can also use a ZTickLabel property, which you can modify.

To control the tick values, you type set(Bar2Axes, ‘ZTick’, [0, 5, 10, 15, 20,
25, 30, 35, 40]) and press Enter. Those two axes also have XTick and YTick
properties. Of course, in order to see the z axis ticks, you also need to change
the limit (the size of the plot in that direction). To perform this task you type
set(Bar2Axes, ‘ZLim’, [0 45]) and press Enter.

Tricks of the trade for working with figures
Knowing a few tricks is helpful when working
with plots. The tricks help you perform work
faster and more efficiently. In addition, they
make working with plots more fun.

 ✓ Start over by using the clf command,
which stands for Clear Figure (which is
precisely what it does).

 ✓ Stay organized by obtaining a handle (a
method to gain access to the figure) using
the gcf() (Get Current F igure) function.
Don’t confuse the figure handle with the
plot handle mentioned earlier — a figure
contains a plot, so the figure handle is
different.

 ✓ Make a particular figure the current figure,
use the figure() function with the vari-
able containing the figure handle.

 ✓ Reset figures to default values using the
reset() function with the variable con-
taining the figure handle. This feature
comes in handy when the changes you
make produce undesirable results.

 ✓ See the properties associated with the cur-
rent figure by using the get() function with
the variable containing the figure handle.
MATLAB displays a list of the properties and
their current values. If a property doesn’t
have a value, the value is left blank.

www.it-ebooks.info

http://www.it-ebooks.info/

145 Chapter 7: Using Advanced Plotting Features

 Many of the set() function commands have alternatives. For example, you
can change the ZLim property by using the zlim() function. The alternative
command in this case is zlim(Bar2Axes, [0 45]). Using a set() func-
tion does have the advantage of making it easier to enter the changes because
you have to remember only one function name. However, the result is the
same no matter which approach you use, so it’s entirely a matter of personal
preference.

Use the get() function whenever necessary to discover additional interest-
ing properties to work with. Properties are available to control every aspect
of the axes’ display. For example, if you want to change the color of the axes’
labels, you use the XColor, YColor, and ZColor properties. Figure 7-6
shows the results of the changes in this section.

 Many properties have an automatic setting. For example, to modify the ZLim
property so that it uses the automatic setting, you type zlim(Bar2Axes,
‘auto’) and press Enter. The alternative when using a set() function is to
type set(Bar2Axes, ‘ZLimMode’, ‘auto’) and press Enter. Notice that when
you use the zlim() function, you can set either the values or the mode
using the same command. When using the set() function, you use different
properties (ZLim and ZLimMode) to perform the task. However, the impor-
tant thing to remember is that the auto mode tells MATLAB to configure
these items automatically for you.

 Using commands to change plot properties is fast and precise because your
hands never leave the keyboard and you don’t spend a lot of time searching
for a property to change in the GUI. However, you can always change proper-
ties using the GUI as well. Click the Edit Plot button (the one that looks like a
hollow arrow on the left side of the magnifying glasses in Figure 7-5) to put the
figure into edit mode. Click the element you wish to modify to select it. Right-
click the selected element and choose Show Property Editor to modify the
properties associated with that particular element.

Adding a title
Every plot should have a title to describe what the plot is about. You use the
title() function to add a title. However, the title() function accepts all
sorts of properties so that you can make the title look precisely the way you
want. To see how this function works, type title(Bar2Axes, ‘Sample Plot’,
‘FontName’, ‘Times’, ‘FontSize’, 22, ‘Color’, [.5, 0, .5], ‘BackgroundColor’,
[1, 1, 1], ‘EdgeColor’, [0, 0, 0], ‘LineWidth’, 2, ‘Margin’, 4) and press Enter.
MATLAB changes the title, as shown in Figure 7-7.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Part II: Manipulating and Plotting Data in MATLAB

Figure 7-6:
Properties
control the

appearance
of the axes

in your plot.

Figure 7-7:
A title can
use prop-

erties to
create a
pleasing

appearance.

 Interestingly enough, most of the plot objects support these properties, but
the title uses them most often. Here’s a list of the properties you just changed:

www.it-ebooks.info

http://www.it-ebooks.info/

147 Chapter 7: Using Advanced Plotting Features

 ✓ FontName: Provides the text name of a font you want to use. It can be
the name of any font that is stored on the host system.

 ✓ FontSize: Specifies the actual size of the font (in points by default).
A larger number creates a larger font.

 ✓ Color: Determines the color of the text in the title. This property
requires three input values for red, green, and blue. The values must be
between 0 and 1. You can use fractional values and mix colors as needed
to produce specific results. An entry of all zeros produces black — all
ones produces white.

 ✓ BackgroundColor: Determines the color of the background behind the
text in the title. It uses the same color scheme as the Color property.

 ✓ EdgeColor: Determines the color of any line surrounding the title. It
uses the same color scheme as the Color property.

 ✓ LineWidth: Creates a line around the title of a particular width (in
points by default).

 ✓ Margin: Adds space between the line surrounding the title (the edge)
and the text (in points by default).

Rotating label text
In some cases, the text added to a plot just doesn’t look right because it
doesn’t quite reflect the orientation of the plot itself. The title in Figure 7-7
looks just fine, but the x axis and y axis labels look slightly askew. You can
modify them so that they look better.

When you review some properties using the get() function, you see a handle
value instead of an actual value. For example, when you look at the XLabel
value, you see a handle that lets you work more intimately with the underly-
ing label. To see this value, you use the get(Bar2Axes, 'XLabel') com-
mand. If you don’t want to use a variable to hold the handle, you can see the
XLabel properties by typing get(get(Bar2Axes, ‘XLabel’)) and pressing Enter.
What you’re telling MATLAB to do is to get the properties that are pointed
to by the XLabel value obtained with the Bar2Axes handle — essentially,
a handle within a handle.

One of the properties within XLabel is Rotation, which controls the
angle at which the text is displayed. To change how the plot looks, type
set(get(Bar2Axes, ‘XLabel’), ‘Rotation’, -30) and press Enter. The x axis
label is now aligned with the plot. You can do the same thing with the
y axis label by typing set(get(Bar2Axes, ‘YLabel’), ‘Rotation’, 30) and
pressing Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

148 Part II: Manipulating and Plotting Data in MATLAB

You can also reposition the labels, although using the GUI to perform this
task is probably easier. However, the Position property provides you with
access to this feature. To see the starting position of the x axis label, type
get(get(Bar2Axes, ‘XLabel’), ‘Position’) and press Enter. The example setup
shows the following output:

ans =
 1.4680 -1.3631 0

Small tweaks work best. Type set(get(Bar2Axes, ‘XLabel’), ‘Position’,
[1.50 -1.3 1]) and press Enter to better position the x axis label. (You may
need to fiddle with the numbers a bit to get your plot to match the one
in the book, and your final result may not look precisely like the screen-
shot.) After a little fiddling, your X Axis label should look like the one in
Figure 7-8.

Figure 7-8:
Any object

can be
rotated

and repo-
sitioned as
necessary.

Employing annotations
Annotations let you add additional information to a plot. For example, you might
want to put a circle around a particular data point or use an arrow to point to a
particular bar as part of your presentation. Of course, you may simply want to
add some sort of emphasis to the plot using artistic elements. No matter how
you want to work with annotations, you have access to these drawing elements:

www.it-ebooks.info

http://www.it-ebooks.info/

149 Chapter 7: Using Advanced Plotting Features

 ✓ Line

 ✓ Arrow

 ✓ Text Arrow

 ✓ Double Arrow

 ✓ Textbox

 ✓ Rectangle

 ✓ Ellipse

To add annotations to your figure, you use the annotation() function. Say
you want to point out that Area 3 in Figure 7-8 is the best area of the group.
To add the text area, you type TArrow = annotation(‘textarrow’, [.7, .55],
[.9, .77], ‘String’, ‘Area 3 is the best!’) and press Enter. You see the result
shown in Figure 7-9. This version of the annotation() function accepts the
annotation type, the x location, y location, property name (String), and
property value (Area 3 is the best!).

Figure 7-9:
Add anno-

tations to
document

your plot for
others.

The annotations don’t all use precisely the same command format. For exam-
ple, when you want to add a textbox, you provide the starting location, height,
and width, all within the same vector. To see this version of the annotation()
function in action, type TBox = annotation(‘textbox’, [.1, .8, .11, .16], ‘String’,
‘Areas Report’, ‘HorizontalAlignment’, ‘center’, ‘VerticalAlignment’, ’middle’)
and press Enter. In this case, you center the text within the box and place it in
the upper-left corner. A textbox doesn’t point to anything — it simply displays
information, as shown in Figure 7-10.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Part II: Manipulating and Plotting Data in MATLAB

Figure 7-10:
Annotations

don’t use a
consistent
argument

setup.

Printing your plot
At some point, you probably need to print your plot. You have a number of
choices in creating output. The following list provides you with a quick over-
view of the options at your disposal:

 ✓ At the Figure window, select File➪Print to display the Print dialog box —
select the options you want to use for printing.

 ✓ At the Figure window, type Ctrl+P to display the Print dialog box —
select the options you want to use for printing.

 ✓ At the Command window, type print() and press Enter.

 • Using print() alone prints the entire figure, including any subplots.

 • Adding a handle to print(), such as print(Bar2), prints only
the object associated with the handle.

 In some cases, you may want to output your plot in a form that lets you print it
in another location. When working in the Figure window, you select the Print to
File option in the Print dialog box. MATLAB will ask you to provide a filename
for printing. When working in the Command window, you supply a filename
as a second argument to the print() function. For example, you might use
print(Bar2, 'MyFile.prn') as the command.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III
Streamlining MATLAB

 See an example of how to use an anonymous function to provide input for a contour
plot at http://www.dummies.com/extras/matlab.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ Create scripts to automate tasks.

 ✓ Work with functions when performing complex tasks.

 ✓ Discover the uses of inline and anonymous functions.

 ✓ Use comments to document scripts and functions.

 ✓ See how scripts and functions can make decisions.

 ✓ Develop scripts and functions that perform tasks more than one
time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Automating Your Work
In This Chapter
▶ Defining the purpose of scripting

▶ Performing script-writing tasks

▶ Modifying your script

▶ Using scripts in MATLAB

▶ Making your script run faster

▶ Locating script errors

G
etting the computer to do the work for you is probably one of the best
reasons to use a computer in the first place. Anytime you can automate

repetitive or mundane tasks, you free yourself to do something more interest-
ing. MATLAB is an amazing tool for performing all sorts of creative work, but
you also have a lot of mundane and repetitive tasks to perform. For example,
you may need to generate the same plot every week for a report. Automating
that task would free you to do something more interesting, such as discover
a cure for cancer or send a rocket to Mars. The point is that you have better
things to do with your time, and MATLAB is only too willing to free your time
so that you can do them. That’s what scripting is all about — it isn’t about
being some mad genius geek, it’s all about automating tasks so that you can
do something more interesting.

 Scripting is simply a matter of writing a procedure — writing down exactly
what you want the computer to do for you, in other words. (It’s also possible
to compare it to a making a movie, where a writer creates the words the actors
say and specifies the actions they perform.) You likely write procedures all the
time for various people in your life. In fact, you may write procedures for your-
self so that you remember how to perform the task later. Scripting for MATLAB
is no different from any other procedure you have written in the past, except
that you need to write the procedure in a manner that MATLAB understands.

This chapter helps you create basic MATLAB scripts, save them to disk so
that you can access them whenever you want, and then run the scripts as
needed. You also discover how to make your scripts run fast so that you

www.it-ebooks.info

http://www.it-ebooks.info/

154 Part III: Streamlining MATLAB

don’t have to wait too long for MATLAB to complete its work. Finally, this
chapter helps you understand the nature of errors in scripts, and how to
locate and fix them.

Understanding What Scripts Do
A script is nothing more than a means to write a procedure that MATLAB can
follow to perform useful work. It’s called a script and not a procedure because
a script follows a specific format. MATLAB actually speaks its own English-like
language that you must use to tell it what to do. The interesting thing is that
you’ve used that language in every chapter so far. A script doesn’t do much
more than link together the various commands that you have used to perform
a task from one end to the other. The following sections describe what a script
does in more detail.

Creating less work for yourself
The object of a script is to reduce your workload. This concept might seem
straightforward now, but some people get so wrapped up in the process of
creating scripts that they forget that the purpose of the script is to create
less work, not more. In fact, a script should meet some (or with luck, all) of
the following goals:

 ✓ Reduce the time required to perform tasks

 ✓ Reduce the effort required to perform tasks

 ✓ Allow you to pass the task along to less skilled helpers

 ✓ Make it possible to perform the tasks with fewer errors (the computer
will never get bored or distracted)

 ✓ Create standardized and consistent output

 ✓ Develop a secure environment in which to perform the task (because the
details are hidden from view)

 Notice that none of the goals in this list entail making the computer do weird
things that it doesn’t normally do or wasting your time writing scripts to per-
form tasks that you never did in the past. The best scripts perform tasks that
you already know how to do well because you have performed them so many
times in the past. Yes, it’s entirely possible that you could eventually create a
script to perform a new task, but even in that case, the new task is likely built
on tasks that you have performed many times in the past. Most people get into
trouble with scripting when they try to use it for something they don’t under-
stand or haven’t clearly defined.

www.it-ebooks.info

http://www.it-ebooks.info/

155 Chapter 8: Automating Your Work

Defining when to use a script
Scripts work well only for mundane and repetitive tasks. Sometimes writing a
script is the worst possible thing you can do. In fact, many times you can find
yourself in a situation in which writing a script causes real (and potentially
irreparable) damage. The following list provides you with guidelines as to
when to use a script:

 ✓ The task is repeated often enough that you actually save time by writing a
script (the time saved more than offsets the time spent writing the script).

 ✓ The task is well defined, so you know precisely how to perform it
correctly.

 ✓ There are few variables in the way in which the task is performed so that
the computer doesn’t have to make many decisions (and the decisions it
makes are from a relatively small set of potential absolute answers).

 ✓ No creativity or unique problem-solving abilities are required to perform
the task.

 ✓ All the resources required to perform the task are accessible by the host
computer system.

 ✓ The computer can generally perform the task without constantly need-
ing to obtain permissions.

 ✓ Any input required by the script is well defined so that the script and
MATLAB can understand (and anticipate) the response.

Believe it or not, you likely perform regularly a huge number of tasks that
fulfill all these requirements. The important thing is to weed out those tasks
that you really must perform by yourself. Automation works only when used
correctly to solve specific problems.

Creating a Script
Creating a script can involve nothing more than writing commands. In fact, the
sections that follow show a number of ways in which you can create simple
scripts without knowing anything about scripting. It may even strike you as
quite odd that scripting feels much like writing commands in the Command
window. The only difference is that the commands don’t execute immediately.
That’s the point of these following sections: Scripting doesn’t have to be hard
or complicated; it only needs to solve the problems you normally solve anyway.

www.it-ebooks.info

http://www.it-ebooks.info/

156 Part III: Streamlining MATLAB

Writing your first script
MATLAB provides many different ways to write scripts. Some of them don’t
actually require that you write anything at all! However, the traditional way to
create a script in any application is to write it, so that’s what this first section
does — shows you how to write a tiny script. The most common first script
in the entire world is the “Hello World” example. The following steps demon-
strate how to create such a script using MATLAB.

 1. Click New Script on the Home tab of the menu.

 You see the Editor window appear, as shown in Figure 8-1. This window
provides the means to interact with scripts in various ways. The Editor
tab shown in the figure is the one you use most often when creating new
scripts.

Figure 8-1:
Use the

Editor
window
to write
a script

manually.

 2. Type ‘Hello World’.

 The text is highlighted in a light orange, and a squiggly red line appears
under it. When you hover your mouse over the squiggly line, you see the
message shown in Figure 8-2.

 In this case, you ignore the error because you want to see the output.
However, if you wanted to correct the problem (the way MATLAB thinks
you should), you could either type a semicolon or click Fix to resolve
the issue. MATLAB will always tell you if it thinks that you’re making a
mistake, but sometimes MATLAB is overzealous (as in this situation).

 3. Click Run on the Editor tab of the Editor window.

 You see a Select File for Save As dialog box, as shown in Figure 8-3.
MATLAB always requests that you save your script before you run it to
ensure that your script doesn’t get lost or corrupted in some way should
something happen when it runs.

www.it-ebooks.info

http://www.it-ebooks.info/

157 Chapter 8: Automating Your Work

Figure 8-2:
The Editor

tells you
when it

thinks that
you’re

making a
mistake.

Figure 8-3:
MATLAB

always asks
you to save

your work
before you

run a script.

 4. Create or select the MATLAB\Chapter08 directory, type FirstScript.m
in the File Name field, and click Save.

 MATLAB saves your script to disk. All your script files will have an .m
extension.

 At this point, you may see a MATLAB Editor dialog box appear like the
one shown in Figure 8-4. If that happens, simply click the box’s Add to
Path button to make the dialog box disappear. If you don’t see this box,
continue to Step 5.

www.it-ebooks.info

http://www.it-ebooks.info/

158 Part III: Streamlining MATLAB

Figure 8-4:
The direc-

tory you use
to store the
script must
be the cur-
rent direc-

tory or in the
MATLAB

path.

 5. Select the MATLAB window.

 You see the following script output:

>> FirstScript
ans =
Hello World

 The output is telling you that MATLAB has run FirstScript, which is
the name of the file containing the script, and that the output is Hello
World. This output has been assigned to ans, the default variable.

Using commands for user input
Some scripts work just fine without any user input, but most don’t. In order to
perform most tasks, the script must ask the user questions and then react to
the user’s input. Otherwise, the script must either perform the task precisely
the same way every time or obtain information from some other source. User
input makes it possible to vary the way in which the script works.

Listing 8-1 shows an example of a script that asks for user input. You can
also find this script in the AskUser.m file supplied with the downloadable
source code.

Listing 8-1: Asking for User Input

Name = input('What is your name? ', 's');
disp(['Hello ', Name]);

The input() function asks for user input. You provide a prompt that tells
the user what to provide. When you want string input, as is the case in this
example, you add the 's' argument to tell MATLAB that you want a string
and not a number. When the user types a name and presses Enter, the value
is placed in Name.

www.it-ebooks.info

http://www.it-ebooks.info/

159 Chapter 8: Automating Your Work

 The disp() function outputs text without assigning it to a variable. However,
the disp() function accepts only a single input and the example needs to
output two separate strings (the “Hello” part and the “Name” part) as a com-
bined whole. To fix this problem, you use the concatenation operator ([]).
The term concatenation simply means to combine two strings. You separate
each of the strings with a comma, as shown in the example.

When you run this example, the script asks you to type your name. Type
your name and press Enter. In this case, the example uses John as the name,
but you can use any name you choose. After you press Enter, the script out-
puts the result. Here is typical output from this example:

>> AskUser
What is your name? John
Hello John

Copying and pasting into a script
Experimentation is an essential part of working with MATLAB. After you get
a particular command just right, you may want to add it to a script. This act
involves cutting and pasting the information. When working in the Command
window, simply highlight the text you want to move into a script, right-click
it, and choose Copy or Cut from the context menu. As an alternative, most
platforms support speed keys for cutting and pasting, such as Ctrl+C for copy
and Ctrl+X for Cut.

Copying and cutting places a copy of the material on the Clipboard. Select
the Editor window, right-click the location where you want to insert the
material, and choose Paste from the context menu. (The pasted material is
always put wherever the mouse pointer is pointing, so make sure you have
the mouse cursor in the right place before you right click.) As an alternative,
most platforms provide a speed key for pasting, such as Ctrl+V. In this case,
you place the insertion pointer (the text pointer) where you want the new
material to appear.

The Command History window succinctly stores all the commands that you
type, making it easy for you to pick and choose the commands you want to
place in a script. The following list provides techniques that you can use in
the Command History window:

 ✓ Click a single line to use just that command.

 ✓ Ctrl+Click to add additional lines to a single line selection.

 ✓ Shift+Click to add all the lines between the current line and the line you
clicked to a single line selection.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Part III: Streamlining MATLAB

The result is that you end up with one or more selected lines. You can cut
or copy these lines to the Clipboard and then paste them into the Editor
window.

 Using other sources for script material is possible, and you should use them
whenever you can. For example, when you ask for help from MATLAB, the help
information sometimes includes example code that you can copy and paste
into your script. You can also find online sources of scripts that you can copy
and paste. Checking the results of the pasting process is important in this case
to ensure that you didn’t inadvertently copy nonscript material. Simply delete
the unwanted material before you save the script.

Converting the Command
History into a script
After experimenting for a while, you might come up with a series of com-
mands that does precisely what you’d like that series to do. Trying to cut
and paste the commands from the Command window is inconvenient. Of
course, you could select the commands in the Command History window,
copy them to the clipboard, and paste them from there, but that seems like
a waste of time too.

 In reality, you can simply make a script out of the commands that you
select in the Command History window. After you select the commands
you want to use, just right-click the selected commands and choose Create
Script from the context menu that appears. MATLAB opens a new Editor
window with the selected commands in place (in the order they appear in
the Command History window). Save the result to disk and run the script
to see how it works.

Continuing long strings
Sometimes you can’t get by with a short prompt — you need a longer prompt
in order to obtain the information you need. When you need to create a longer
string, use the continuation operator (...), which many people will recognize
as an ellipsis. Listing 8-2 shows an example of how you can use long strings
in a prompt to modify the UserInput example shown in Listing 8-1. You can
also find this script in the LongString.m file supplied with the downloadable
source code.

www.it-ebooks.info

http://www.it-ebooks.info/

161 Chapter 8: Automating Your Work

Listing 8-2: Asking for User Input in a Specific Way

Prompt = ['Type your own name, but only if it isn''t ',...
 'Wednesday.\nType the name of the neighbor ',...
 'on your right on Wednesday.\nHowever, on ',...
 'a Wednesday with a full moon, type the ',...
 'name of\nthe neighbor on your left! '];
Name = input(Prompt, 's');
disp(['Hello ', Name]);

This example introduces several new features. The Prompt variable contains
a long string with some formatting that you haven’t seen before. It uses the
concatenation operator to create a single string from each of the lines in the
text. Each substring is self-contained and separated from the other substrings
with a comma. The continuation operator lets you place the substrings on
separate lines.

Notice the use of the double single quote (isn’’t) in the text. You need to use
two single quotes when you want a single quote to appear in the output as an
apostrophe (isn’t), rather than terminate a string. The \n character is new,
too. This is a special character that controls how the output appears, so it is
called a control character. In this case, the \n character adds a new line. When
you run this example, you see output similar to that shown here:

LongString
Type your own name, but only if it isn't Wednesday.
Type the name of the neighbor on your right on Wednesday.
However, on a Wednesday with a full moon, type the name of
the neighbor on your left! John
Hello John

Everywhere a \n character appears in the original string, you see a new line.
In addition, the word isn't contains a single quote, as expected. Table 8-1
shows the control characters that MATLAB supports, and defines how they
are used.

Table 8-1 MATLAB Control Characters
Character Use Character Sequence
Single quotation mark/apostrophe ’’

Percent character %%

Backslash \\

Alarm (sounds a beep or tone on the computer) \a
(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

162 Part III: Streamlining MATLAB

Character Use Character Sequence

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Hexadecimal number, N (where N is the
number of the character you want to display)

\xN

Octal number, N (where N is the number of the
character you want to display)

\N

Adding comments to your script
People tend to forget things. You might know how a script works on the day
you create it and possibly even for a week after that. However, six months
down the road, you may find that you don’t remember much about the script
at all. That’s where comments come into play. Using comments helps you to
remember what a script does, why it does it in a certain way, and even why
you created the script in the first place. The following sections describe com-
ments in more detail.

Using the % comment
Anytime MATLAB encounters a percent sign (%), it treats the rest of the line
as a comment. Comments are simply text that is used either to describe what
is happening in a script or to comment out lines of code that you don’t want
to execute. You can comment out lines of code during the troubleshooting
process to determine whether a particular line is the cause of errors in your
script. The “Analyzing Scripts for Errors” section, later in this chapter, pro-
vides additional details on troubleshooting techniques. Listing 8-3 shows
how comments might appear in a script. You can also find this script in the
Comments.m file supplied with the downloadable source code.

Listing 8-3: Using Comments to Make Code Easier to Read

% Tell MATLAB what to display on screen.
Prompt = ['Type your own name, but only if it isn''t ',...
 'Wednesday.\nType the name of the neighbor ',...
 'on your right on Wednesday.\nHowever, on ',...

Table 8-1 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

163 Chapter 8: Automating Your Work

 'a Wednesday with a full moon, type the ',...
 'name of\nthe neighbor on your left! '];

% Obtain the user's name so it can
% be displayed on screen.
Name = input(Prompt, 's');

% Output a message to make the user feel welcome.
disp(['Hello ', Name]);

Compare Listing 8-3 with Listing 8-2. You should see that the code is the same,
but the comments make the code easier to understand. When you run this code,
you see that the comments haven’t changed how the script works. MATLAB also
makes comments easy to see by displaying them in green letters.

Using the %% comment
MATLAB supports a double percent sign comment (%%) that supports spe-
cial functionality in some cases. Here’s how this comment works:

 ✓ Acts as a standard command in the Command window.

 ✓ Allows you to execute a portion (a section) of the code when using the
Run and Advance feature.

 ✓ Creates special output when using the Publish feature.

The following sections describe the special %% functionality. You won’t use
this functionality all the time, but it’s nice to know that it’s there when you do
need it.

Using Run and Advance
When you add a %% comment in the Editor window, MATLAB adds a sec-
tion line above the comment (unless the comment appears at the top of
the window), effectively dividing your code into discrete sections. To add
a section comment, you type %%, a space, and the comment, as shown in
Figure 8-5.

 As with standard comments, the %% comment appears in green type. The line
above the comment is your cue that this is a special comment. In addition, the
position of the text cursor (the insertion point) selects a particular section.
The selected section is highlighted in a pale yellow. Only the selected section
executes when you click Run and Advance. Here’s how sections work:

 1. Place the cursor at the end of the Prompt = line of code and then click
Run and Advance.

 Only the first section of code executes. Notice also that the text cursor
comes to rest at the beginning of the second section.

www.it-ebooks.info

http://www.it-ebooks.info/

164 Part III: Streamlining MATLAB

Figure 8-5:
The %%

comment
adds section

lines to the
code.

 2. Click Run and Advance.

 The script displays a prompt asking for a name.

 3. Type a name and press Enter.

 Only the second section of code executes. You don’t see the script output.

 4. Place the cursor at the beginning of the second section and then click
Run and Advance.

 Steps 2 and 3 repeat themselves. You still don’t see any script output.

 5. Click Run and Advance with the text cursor at the beginning of the
third %% comment.

 You see the script output (the correct output, in fact) without being
asked for a name.

 6. Perform Step 5 as often as desired.

 The application displays the script output every time without asking for
any further information. Using this technique lets you execute just the
part of a script that you need to test rather than run the entire script
every time.

www.it-ebooks.info

http://www.it-ebooks.info/

165 Chapter 8: Automating Your Work

 You can make small changes to the code and still run a particular section. For
example, change Hello to Goodbye in the code shown previously in Figure 8-5.
With the third section selected, click Run and Advance. The output displays a
goodbye message, rather than a hello message, without any additional input.

Publishing information
The section comments let you easily document your script. This section pro-
vides just a brief overview of the publishing functionality, but it demonstrates
just how amazing this feature really is. To start with, you really do need to
create useful section comments — the kind that will make sense as part of a
documentation package.

When creating the setup for the script you want to publish, you need to define
the output format and a few essentials. The default format is HTML, which is
just fine for this example. However, if you don’t make one small change, the
output isn’t going to appear quite as you might like it to look. On the Publish
tab of the Editor window, click the down arrow under Publish and choose
Edit Publishing Options. You see the Edit Configurations dialog box, shown in
Figure 8-6.

Figure 8-6:
Modify the
configura-

tion options
as needed
to ensure
that your

script will
publish

correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

166 Part III: Streamlining MATLAB

The Evaluate Code option evaluates your script and outputs the result as part
of the documentation. Unfortunately, MATLAB can’t evaluate input() func-
tions as part of publishing the documentation for a script. As a consequence,
you must set Evaluate Code to false. Click Publish. MATLAB produces an HTML
page like the one shown in Figure 8-7.

Figure 8-7:
The pub-

lished docu-
mentation

looks quite
nice.

Considering the little work you put into creating the documentation, it
really does look quite nice. In fact, it looks professional. When working with
complex scripts, documentation like this really does serve a serious need.
After you’re done admiring your work, close the HMTL page and the Edit
Configurations dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

167 Chapter 8: Automating Your Work

Revising Scripts
Scripts usually aren’t perfect the first time you write them. In fact, editing
them quite a few times is common. Even if the script does happen to attain
perfection, eventually you want to add features, which means revising the
script. The point is, you commonly see your scripts in the Editor window
more than once. Here are some techniques you can use to open a script file
for editing:

 ✓ Double-click the script’s filename in the Current Folder window.

 ✓ Click the down arrow on the Open option of the Home tab of the MATLAB
window and select the file from the list. (The list will contain every kind
of file you have recently opened, not just script files.)

 ✓ Click the down arrow on the Open option of the Editor tab of the Editor
window and select the file from the list. (The list will include only the
most recently used script files.)

 ✓ Click Find Files in the Editor tab of the Editor window to display the Find
Files dialog box. Enter a search criteria, such as *.m (where the asterisk
is a wild-card character for all files) and click Find. Double-click the file
you want to open in the resulting list.

 ✓ Locate the file using your platform’s hard drive application (such as
Windows Explorer in Windows or Finder on the Mac) and double-click
the file entry.

 It’s a really bad idea to make changes to a script and then try to use it with-
out testing it first. Always test your changes to ensure that they work as you
intend them to. Otherwise, a change that you thought would work, could
cause data damage or other problems.

Calling Scripts
Creating scripts without having some way to run them would be pointless.
Fortunately, MATLAB lets you use scripts in all sorts of ways. The act of using
a script — causing it to run — is known as calling the script. You can call
scripts in these ways:

 ✓ Right-click the script file and select Run from the context menu that
appears.

 ✓ Select the script file and press F9.

www.it-ebooks.info

http://www.it-ebooks.info/

168 Part III: Streamlining MATLAB

 ✓ Type the filename on the command line and press Enter. (Adding the
extension isn’t necessary.)

 ✓ Type the script filename in another script.

 The last method of calling a script is the most important. It enables you to
create small pieces of code (scripts) and call those scripts to create larger,
more powerful, and more useful pieces of code. The next step is creating func-
tions that can send information in and out of those smaller pieces of code.
(You see the topic of functions explored in Chapter 9.)

Improving Script Performance
Scripts can run only so fast. The resources offered by your system (such as
memory and processor cycles), the location of data, and even the dexterity
of the user all come into play. Of course, with the emphasis on “instant” in
today’s society, faster is always better. With this in mind, the following list
provides you with some ideas on how to improve your script performance.
Don’t worry if you don’t completely understand all these bullets; you see
most of these techniques demonstrated somewhere in the book. This list
serves as a reference for when you’re working on creating the fastest script
possible:

 ✓ Create variables once instead of multiple times.

 • Later in the book, you find a discussion on how to repeat tasks;
creating variables inside these loops (bits of repeating code) is a
bad idea.

 • An application made up of smaller files might inadvertently re-
create variables, so look for this problem as you analyze your
application.

 ✓ Use variables to hold just one type of data. Changing the data type of a
variable takes longer than simply creating a new one.

 ✓ Make code blocks as small as possible.

 • Create several small script files rather than one large one.

 • Define small functions rather than large ones.

 • Simplify expressions and functions whenever possible.

 ✓ Use vectors whenever possible.

 • Replace multiple scalar variables with one vector.

 • Rely on vectors whenever possible to replace sparse matrices.

 ✓ Avoid running large processes in the background when using MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

169 Chapter 8: Automating Your Work

Analyzing Scripts for Errors
Ridding an application of errors is nearly impossible. As complexity grows,
the chances of finding absolutely every error diminishes. Everyone makes
mistakes, even professional developers. So, it shouldn’t surprise you that
you might make mistakes from time to time as well. Of course, the important
thing is to find the errors and fix them. The process of finding errors and
fixing them is called debugging.

Sometimes the simplest techniques for finding errors is the best. Working
with your script in sections is an important asset in finding errors. The
“Using the %% comment” section, earlier in this chapter, describes how to
create and use sections. When you suspect that a particular section has an
error in it, you can run the code in that section multiple times as you look in
the Workspace window to see the condition of variables that the code creates
and the Command window to see the sort of output it creates.

Adding disp() statements to your code in various places lets you display
the status of various objects. The information prints right in the Command
window so that you can see how your application works over time. Removing
the disp() statements that you’ve added for debugging purposes is essen-
tial after the session is over. You can do this by adding a % in front of the
disp() statement. This technique is called commenting out, and you can use
it for lines of code that you suspect might contain errors as well.

MATLAB also supports a feature called breakpoints. A breakpoint is a kind of
stop sign in your code. It tells MATLAB to stop executing your code in a spe-
cific place so that you can see how the code is working. MATLAB supports
two kinds of breakpoints:

 ✓ Absolute: The code stops executing every time it encounters the break-
point. You use this kind of breakpoint when you initially start looking for
errors and when you don’t know what is causing the problem.

 ✓ Conditional: The code stops executing only when a condition is met. For
example, a variable might contain a certain value that causes problems.
You use this kind of breakpoint when you understand the problem but
don’t know precisely what is causing it.

To set a breakpoint, place the text cursor anywhere on the line and choose
one of the options in the Breakpoints drop-down list on the Editor tab of the
Editor window. When you set a breakpoint, a circle appears next to the line.
The circle is red for absolute breakpoints and yellow for conditional break-
points. Figure 8-8 shows both an absolute and a conditional breakpoint (you
can’t see the color in the printed version of the book, of course). Later chap-
ters in the book demonstrate the use of breakpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Part III: Streamlining MATLAB

Figure 8-8:
Breakpoints

force the
script to

stop execut-
ing so that

you can
see how it’s

working.

Creating error-handling code is also important in your application. Even though
error handling doesn’t fix an error, it makes the error less of a nuisance and can
keep your application from damaging important data. Chapter 13 provides you
with more ideas on how to locate and deal with errors in your script using error
handling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Expanding MATLAB’s Power
with Functions

In This Chapter
▶ Finding and using built-in functions

▶ Defining and using your own functions

▶ Understanding other function types

S
implification is an important part of creating any useful application. The
better you can outline what tasks the application performs in the simplest

of terms, the easier it is to define how to interact with and expand the applica-
tion. Understanding how an application works is the reason you use functions.
A function is simply a kind of box in which you put code. The function accepts
certain inputs and provides outputs that reflect the input received. It isn’t
important to understand precisely how the function performs its task unless
your task is to modify that function, but being able to visualize what task the
function performs helps you understand the application as a whole. The only
requirement is that you understand the inputs and resulting outputs. In short,
functions simplify the coding experience.

This chapter is about three sorts of functions. You have already used quite
a few built-in functions, but simply using them may not be enough. You need
to understand a little more about the inputs and outputs — the essentials of
how the box works. On the other hand, you don’t find out about the inner
mechanisms of built-in functions in this chapter because you never need to
know about those aspects.

You also get a chance to create your own functions in this chapter. The exam-
ples in previous chapters have been easy, so the need to provide simplification
just isn’t there. As the book progresses, you create more complex examples,
so the need to simplify the code used in those examples becomes more impor-
tant. Creating your own functions will make the examples easier to understand
and your own code easier to understand as well.

www.it-ebooks.info

http://www.it-ebooks.info/

172 Part III: Streamlining MATLAB

MATLAB also supports some interesting alternatives to functions. They aren’t
functions in the traditional sense, but they make working with code simpler.
These “special purpose” functions are used when the need arises to create
code that is both efficient and elegant. The final part of this chapter provides
a good overview of these special function types, and you see them used later
in the book.

Working with Built-in Functions
Built-in functions are those that come with MATLAB or are part of an add-on
product. You typically don’t have source code for built-in functions and must
treat them simply as black boxes. So far, you have relied exclusively on built-
in functions to perform tasks in MATLAB. For example, when you use the
input() and disp() functions in Chapter 8, you’re using built-in functions.
The following sections tell you more about built-in functions and how you
can work with them in MATLAB to achieve specific objectives.

Learning about built-in functions
There are many ways you can learn about built-in functions, but if you
already know the name of a function, one of the simplest makes use of
the help('function_name') command, where function_name is
the name of the function. Try it now. Type help(‘input’) and press Enter
in the Command window. You see output similar to the output shown in
Figure 9-1.

MATLAB does provide some types of category help. For example, type
help(‘elfun’) and press Enter to see a listing of elementary math functions
at your disposal. When you type help(‘specfun’) and press Enter, you see a
listing of specialized math functions.

 Sometimes the help information provided by the help() function becomes
excessively long. In this case, you can use the more() function to present
the information a page at a time. Before you use the help() function, type
more(‘on’) and press Enter to put MATLAB in paged mode. When the help
information is more than a page in length, you see a

--more--

prompt at the bottom of the screen. Press the spacebar to see the next page.
If you want to see only the next line, press Enter instead. When you finish
reviewing help, type more(‘off’) and press Enter to turn off paged mode.

www.it-ebooks.info

http://www.it-ebooks.info/

173 Chapter 9: Expanding MATLAB’s Power with Functions

Figure 9-1:
Obtain help

directly from
MATLAB

for built-in
 functions

you know.

 Although the help() function is really useful because it displays the infor-
mation you need directly in the Command window, sometimes the doc()
function is a better choice. When using the doc() function, you see a nicely
formatted output that includes links to example code and other information.
Type doc(‘input’) and press Enter, and you see the output shown in Figure 9-2.
This is the option you should use when you want to get an in-depth view of a
function rather than simply jog your memory as part of writing an application.
In addition, when you find that the help() function is less helpful than you’d
like, the doc() function generally provides more information.

Using help() may not always be possible because you don’t know the precise
name of whatever you need to find. Another useful function is docsearch().
You use this function when you have some idea, but not a precise one, of what
you need to find. For example, type docsearch(‘input’) and press Enter in the
Command window. This time you see a list of potential entries to query, as
shown in Figure 9-3. Notice that the input() function is still the first entry on
the list, but you have a number of other choices as well.

www.it-ebooks.info

http://www.it-ebooks.info/

174 Part III: Streamlining MATLAB

Figure 9-2:
Use the
doc()
function

when
you need
in-depth
informa-

tion about
a built-in
function.

One of the more interesting ways to search for built-in functions is to use the
lookfor() function. In this case, MATLAB doesn’t look in the documenta-
tion; rather, it looks in the source code files. This kind of search is important
because you can sometimes see connections between functions this way and
find alternatives that might not normally occur to you. To see how this kind
of search works, type lookfor(‘input’) and press Enter. You see the output
shown in Figure 9-4. Notice that the input() function is in the list, but it
doesn’t appear at the top because the search doesn’t sort the output by
likely candidate.

If you really want to know more about the built-in functions from a coding
perspective, start with the which() function, which tells you the location
of the built-in function. For example, type which(‘input’) and press Enter.
You see the location of this built-in function on your system. On my system,
I receive this output: built-in (C:\Program Files\MATLAB\R2013b\
toolbox\matlab\lang\input).

www.it-ebooks.info

http://www.it-ebooks.info/

175 Chapter 9: Expanding MATLAB’s Power with Functions

Figure 9-3:
Search for

what you
need within

the docu-
mentation.

At this point, you know that input() is found in the lang folder. However,
you really don’t know what related functions might be in the same folder. Use
the what() function to locate additional information about the content of
the lang folder. To see this for yourself, type what(‘lang’) and press Enter.
You see the output shown in Figure 9-5. Notice that the output includes the
disp() function that you used with the input() function in Chapter 8.
However, you also see a number of other interesting functions in the list that
could prove useful.

 Not shown in Figure 9-5 is a listing of classes and packages found in the lang
folder. Classes and packages are simply two other ways of packaging function-
ality within MATLAB. However, these two packaging methods provide more
functionality than functions do in most cases, so it pays to look them up to see
what sorts of things you can do with them. Using the doc() and help() func-
tions provides you with information about the classes and packages.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Part III: Streamlining MATLAB

Using online information sources
Although you can obtain a lot of help using just
the functionality that MATLAB provides, it also
pays to look online for help as needed. The best
place to look for help on built-in functions is the
MATLAB site at http://www.mathworks.
com/help/matlab/functionlist.
html. This site provides a complete list of built-in
functions in category order. If you want an alpha-
betical list of functions, try the site at http://
man.fsid.cvut.cz/matlab6_r13/
techdoc/ref/refbookl.html. The
Internet is packed with all sorts of useful infor-
mation about MATLAB functions.

Be sure to exercise caution when using online
sources. If possible, check for a date or ver-
sion number for the information. For exam-
ple, the site at http://www.eng.umd.
edu/~austin/ence202.d/matlab-
functions.html looks interesting at first,
but then you see that the information was
current as of 1984, so it’s a dubious source
of information at best. Information tends to
live on the Internet nearly forever, so always
verify that the information you’re using is
current.

Figure 9-4:
In some

cases, you
need to look

for asso-
ciations as

part of your
search.

www.it-ebooks.info

http://www.it-ebooks.info/

177 Chapter 9: Expanding MATLAB’s Power with Functions

Figure 9-5:
Finding

associated
functions

can give you
ideas for

your next
application.

Sending data in and getting data out
The essence of a function is that it presents you with a black box. In most
cases, you send data in, it whirls around a bit, and then data comes back out.
Managing data is an essential part of most functions.

 Of course, some functions require only input, some provide only output, and
some perform tasks other than work directly with data. For example, the
clc() clears the Command window and doesn’t require any data input or
produce any data output to perform the task. Every function does something;
creating one that does nothing would be pointless.

The problem for many people is determining the input and output require-
ments for the built-in functions. The best way to discover this information
is to use the help() or doc() functions. The doc() function is actually the
easiest to use in this case. The input and output arguments appear at the
bottom of the help screen. To see this for yourself, type doc(‘input’) and
press Enter. Scroll down to the bottom of the resulting page and you see the
inputs and outputs shown in Figure 9-6.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Part III: Streamlining MATLAB

Figure 9-6:
The doc()

function
lists inputs

and outputs
in an easily
found form.

In this case, you see that the input argument is a prompt and that you must
provide this input as a string. The documentation explains that the prompt
is there to ask the user for a specific kind of input. The output can take two
forms: an array that is calculated from the input or a string that contains the
precise text the user has typed.

 When you see a dual output for a function, it means that you need to tell the
function what sort of output to provide or that there is a default. In this case,
the input() function requires that you supply a second argument, 's', to
obtain the string output. The default is to provide the calculated array.

Creating a Function
Functions represent another method for packaging your code. They work as
an addition to scripts rather than a replacement for them. Scripts and func-
tions each have a particular place to occupy in your MATLAB toolbox. The
first section that follows explains these differences and helps you understand
when you would use a script or a function. In some cases, it doesn’t matter
too much, but in other cases the wrong choice can cause you a lot of frustra-
tion and wasted time.

The remainder of the sections that follow help you create custom functions
of various types. You start with a simple function that doesn’t require any
input or output to perform a task. After that, you start to build functions with
greater complexity that are also more flexible because they do accept input
and produce output. Functions can be as simple or complex as needed to
perform a task, but simpler is always better (an emphasis of this chapter as
a whole).

www.it-ebooks.info

http://www.it-ebooks.info/

179 Chapter 9: Expanding MATLAB’s Power with Functions

Understanding script and
function differences
A script is a method of packaging a procedure — in other words, a series of
steps that you use to perform a task. Some people have compared scripts to
keyboard macros or other forms of simple step recording. On the other hand,
a function is a method of packaging a transformation — code that is used to
manage data in some manner or to perform a task that requires better data
handling than a script can provide. Both types of packages contain code of a
sort, but each packaging method is used differently.

Scripts and functions also handle data differently. A script makes all the
variables that it contains part of the workspace. As a result, after the script
runs you can easily see all the variables that the script contains as well as
their ending values. A function hides its variables, and the variables become
unavailable after the function runs. As a result, the actual data that the func-
tion uses internally isn’t visible, and you must supply any required inputs
every time you run the function.

As you see later in this section, a function also has a special header that
identifies the function name, the inputs that it requires, and the outputs it
provides. A function is a formal sort of coding method that’s more familiar to
developers. However, functions also provide greater flexibility because you
can control the environment in which they perform tasks with greater ease.

 The use of inputs and outputs reduces the potential for contamination by data
left over from a previous run and, like Las Vegas, what happens in the function
stays in the function. This feature is a big advantage: You can use the same
name in a function as you would outside it without interference, and doing so
avoids a lot of confusion.

 Both scripts and functions reside in files that have an .m extension. The imme-
diately noticeable difference between the two is that a script lacks a header.
Functions always have the header that you see in the “Writing your first func-
tion” section, later in this chapter.

Understanding built-in function and
custom function differences
Built-in functions (those provided with MATLAB) and custom functions
(those you create yourself or that come as part of a third party product) differ
in at least one important aspect. The custom functions come with source code.
You can modify this source code as needed to meet your particular needs.

www.it-ebooks.info

http://www.it-ebooks.info/

180 Part III: Streamlining MATLAB

The built-in input() function comes with MATLAB, and you can find it in
the input.m file in the toolbox\matlab\lang directory used to contain
part of the files for your MATLAB installation. However, if you open that
file, you see documentation but no source code. The source code is truly
part of MATLAB, and you can’t edit it. You can modify the documentation as
necessary with your own notes, but this really isn’t a recommended proce-
dure because the next MATLAB update will almost certainly overwrite your
changes.

Writing your first function
Creating a function is only slightly more work than creating a script. In fact,
the two processes use the same editor, so you’re already familiar with what
the editor can provide in the way of help. The various Editor features you’d
use for creating a script all work the same way with functions, too. (You have
access to the same double percent sign (%%) for use with sections, for exam-
ple.) The following steps get you started creating your first function. You can
also find this function in the SayHello.m file supplied with the downloadable
source code.

 1. Click the arrow under the New entry on the Home tab of the MATLAB
menu and select Function from the list that appears.

 You see the Editor window shown in Figure 9-7. Notice that the editor
already has a function header in place for you, along with the inputs,
outputs, and documentation comments.

Figure 9-7:
The Editor

window
helps you

create new
functions.

www.it-ebooks.info

http://www.it-ebooks.info/

181 Chapter 9: Expanding MATLAB’s Power with Functions

 Figure 9-7 may look a little complex, but that’s because MATLAB includes
a number of optional elements that you will see in action later in the
chapter. A function has three requirements:

 • A function always begins with the word function.

 • You must include a function name.

 • A function must always end with the keyword end.

 2. Delete output_args.

 Functions aren’t required to have output arguments. In order to keep
things simple for your first function, you’re not going to require any
inputs or outputs

 An argument is simply a word for an individual data element. If you
supply a number to a function, the number is considered an argument.
Likewise, when you supply a string, the entire string is considered just
one argument. A vector, even though it contains multiple numbers,
is considered a single argument. Any single scalar or object that you
provide as input or that is output from the function is considered an
argument.

 3. Delete input_args.

 Functions aren’t required to have input arguments.

 4. Change the function name from Untitled to SayHello.

 Your function should have a unique name that reflects its purpose. Avoiding
existing function names is essential. Before you name your function, test
the name you’re considering by typing help(‘NameOf YourFunction’)
and pressing Enter. If the function already exists, you see a help screen.
Otherwise, MATLAB denies all knowledge of the function, and you can use
the function name you have chosen.

 Always provide help information with the functions you create. Otherwise,
the help() function won’t display any help information and someone
could think that your function doesn’t exist. If you want to be absolutely
certain that there is no potential conflict between a function you want
to create and an existing function (even a poorly designed one), use the
exist() function instead, such as exist('SayHello'). When the func-
tion exists, you see an output value of 2. Otherwise, you see an output
value of 0.

 5. Change the comments to read like this:

%SayHello()
% This function says Hello to everyone!

 Notice that the second line is indented. The indentation tells MATLAB
that the first line is a title and the second is text that goes with the
title. Formatting your comments becomes important when working
with functions. Otherwise, you won’t see the proper help information
when you request it.

www.it-ebooks.info

http://www.it-ebooks.info/

182 Part III: Streamlining MATLAB

 6. Add the following code after the comment:

disp('Hello There!');

 The function simply displays a message onscreen.

 7. Click Save.

 You see the Select File for Save As dialog box, shown in Figure 9-8.

Figure 9-8:
You must

save your
function to

disk in order
to use it.

 8. Select the Chapter09 directory for the source code for this book, type
SayHello.m in the File Name field and then click Save.

 MATLAB saves your function as SayHello.m.

 The filename you use to store your function must match the name of the
function. MATLAB uses the filename to access the function, not the func-
tion name that appears in the file. When there is a mismatch between
the function name and the filename, MATLAB displays an error message.

Using the new function
You have a shiny new function and you’re just itching to use it. Before you can
use the function, you must make sure that the directory containing the func-
tion file is part of the MATLAB path. You can achieve this goal in two ways:

www.it-ebooks.info

http://www.it-ebooks.info/

183 Chapter 9: Expanding MATLAB’s Power with Functions

 ✓ Double-click the directory entry in the Current Folder window.

 ✓ Right-click the directory entry in the Current Folder window and choose
Add to Path➪Selected Folders and Subfolders from the context menu.

You can try your new function in a number of ways. The following lists
 contains the most common methods:

 ✓ Click Run in the Editor window, and you see the output in the Command
window. However, there is a little twist with functions that you discover
in the upcoming “Passing data in” section of the chapter. You can’t
always click Run and get a successful outcome, even though the function
will always run.

 ✓ Click Run and Advance in the Editor window. (This option runs the
selected section when you have sections defined in your file.)

 ✓ Click Run and Time in the Editor window. (This option outputs profil-
ing information — statistics about how the function performs — for the
function.)

 ✓ Type the function name in the Command window and press Enter.

Your function also has help available with it. Type help(‘SayHello’) and press
Enter. MATLAB displays the following help information:

SayHello()
 This function says Hello to everyone!

The output is precisely the same as it appears in the function file. The doc()
function also works. Type doc(‘SayHello’) and press Enter. You see the
output shown in Figure 9-9. Notice how the title is presented in a different
color and font than the text that follows.

Figure 9-9:
The help you

provide is
available to

anyone who
needs it.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Part III: Streamlining MATLAB

Passing data in
The SayHello() function is a little limited. For one thing, it can’t greet
anyone personally. To make SayHello() a little more flexible, you need to
pass some information to it in the form of an input argument. The following
steps help you create an updated SayHello() that accepts input arguments.
You can also find this function in the SayHello2.m file supplied with the
downloadable source code.

 1. Click the down arrow under the Save option on the Editor tab of the
Editor window and choose Save As.

 You see the Select File for Save As dialog box. (Refer to Figure 9-8.)

 2. Type SayHello2.m in the File Name field and click Save.

 MATLAB saves the function that you created earlier using a new name.
Notice that the function name is now highlighted in orange. The high-
light tells you that the function name no longer matches the filename.

 3. Change the function name from SayHello to SayHello2.

 The orange highlight disappears when you place the text cursor in
another location in the Editor window.

 4. Add the input argument Name to the function header so that the
header looks like this:

function [] = SayHello2(Name)

 Notice that Name is now highlighted in orange to show that you haven’t
used it anywhere. The highlight will go away after you make the next
change. The Editor window always displays an orange highlight when
it detects a problem with your code. It’s important to realize that the
Code Analyzer feature of MATLAB detects only potential errors. (You can
read more about the Code Analyzer at http://www.mathworks.com/
help/matlab/matlab_prog/matlab-code-analyzer-report.
html.) It can’t absolutely tell you that a problem exists, so you need to
look carefully at the highlights.

 5. Change the disp() function call so that it looks like this:

disp(['Hello There ', Name, '!']);

 The disp() function now requires use of the concatenation operator
that was introduced in Chapter 8 to combine the text with the input
argument. The output will contain a more personalized message.

 6. Click Run.

 MATLAB displays a message telling you that the SayHello2() function
requires input, as shown in Figure 9-10. You see this message every time

www.it-ebooks.info

http://www.it-ebooks.info/

185 Chapter 9: Expanding MATLAB’s Power with Functions

you try to use Run to start the function because functions don’t store
argument information as scripts do.

Figure 9-10:
MATLAB
knows to

ask you for
the input

arguments
as needed.

 7. Type 'Ann' and press Enter.

 You see the expected output of:

Hello There Ann!

 8. Type SayHello2('Josh') in the Command window and press Enter.

 You see the expected output.

Passing data out
When functions manipulate data, they pass the result back to the caller. The
caller is the code that called the function. The following steps help you create
an updated SayHello2() function that passes back the string it creates. You
can also find this function in the SayHello3.m file supplied with the down-
loadable source code.

 1. Click the down arrow under the Save option on the Editor tab of the
Editor window and choose Save As.

 You see the Select File for Save As dialog box. (Refer to Figure 9-8.)

 2. Type SayHello3.m in the File Name field and click Save.

 MATLAB saves the function you created earlier using a new name.

 3. Change the function name from SayHello2 to SayHello3.

 The orange highlight disappears when you place the text cursor in
another location in the Editor window.

 4. Type HelloString in the square brackets before the function name so
that your function header looks like this:

function [HelloString] = SayHello3(Name)

www.it-ebooks.info

http://www.it-ebooks.info/

186 Part III: Streamlining MATLAB

 The function now returns a value to the caller. You see the orange
highlight again because SayHello3() doesn’t assign a value to
HelloString yet.

 5. Modify the function code to include an assignment to HelloString,
like this:

HelloString = ['Hello There ', Name, '!'];
disp(HelloString);

 The function now assigns a value to HelloString and then uses that
value as output. It also returns the output to the caller.

 6. Save the changes you’ve made.

Using optional arguments
Dealing with optional arguments requires
some MATLAB features that are covered in
later chapters, so you can feel free to skip this
sidebar for now and come back to it later. The
current version of the SayHello2() function
requires an argument. You must supply a name
or the function won’t run. A number of functions
that you have already used, such as disp(),
provide optional arguments — you can choose
to use them or not. Optional arguments are
important because there are times when a
default argument works just fine. In fact, you
can change SayHello2() so that it doesn’t
require an argument.

To make SayHello2() work without an input
argument, you must assign a value to Name, but
only if Name doesn’t already have a value. In
order to make the assignment, you first need
to determine whether Name does have a value
by checking a variable that MATLAB provides
for what you called nargin (for Number of
Arguments Input). If nargin equals 1, then the
caller — the code that called this function —
has provided an input. Otherwise, you need to
supply the input to Name. Here’s the updated
version of SayHello2().

function [] = SayHello2(
Name)

%SayHello()
% This function says Hello

to everyone!
if nargin < 1
 Name = 'Good Looking';
end

disp(['Hello There ', Name,
'!']);

end

The additional code states that if nargin
is less than 1, the function needs to assign it
a value of ’Good Looking’. Otherwise,
the function uses the name provided by the
caller. To test this code, type SayHello2 and
press Enter in the Command window. You
see Hello There Good Looking!
as output. Of course, the function could be
broken, so type SayHello2(‘Selma’) and press
Enter. You see Hello There Selma!
as output, so the function works precisely
as it should and Name is now an optional
argument.

www.it-ebooks.info

http://www.it-ebooks.info/

187 Chapter 9: Expanding MATLAB’s Power with Functions

 7. Type Output = SayHello3(‘Ambrose’) in the Command window and
press Enter.

 You see the following output:

Hello There Ambrose!
Output =
Hello There Ambrose!

 8. Type disp(Output) in the Command Window and press Enter.

 You see the expected greeting as output.

Creating and using global variables
Functions normally use local variables — that is, they aren’t visible to anyone
but the function. Using local variables avoids confusion because each func-
tion is self-contained. In addition, using local variables makes functions more
secure and reliable because only the function can access the data in the
variable.

 You may find that you need to make a variable visible, either because it
is used by a number of functions or the caller needs to know the value of
the variable. When a function makes a local variable visible to everyone,
it becomes a global variable. Global variables can be misused because
they’re common to every function that wants to access them and they can
present security issues because the data becomes public.

The following steps show how to create a global variable. You can also find
these functions in the SayHello4.m and SayHello5.m files supplied with the
downloadable source code.

 1. Click the down arrow under the Save option on the Editor tab of the
Editor window and choose Save As.

 You see the Select File for Save As dialog box. (Refer to Figure 9-8.)

 2. Type SayHello4.m in the File Name field and click Save.

 MATLAB saves the function you created earlier using a new name.

 3. Change the function name from SayHello3 to SayHello4.

 The orange highlight disappears when you place the text cursor in
another location in the Editor window.

 4. Remove HelloString from the square brackets before the function
name so that your function header looks like this:

function [] = SayHello4(Name)

www.it-ebooks.info

http://www.it-ebooks.info/

188 Part III: Streamlining MATLAB

 When a variable is global, you can’t return it as data from a function call.
The data is already available globally, so there is no point in returning it
from the function.

 5. Change the HelloString assignment so that it now contains the
global keyword, as shown here:

global HelloString;
HelloString = ['Hello There ', Name, '!'];

 6. Save the changes you’ve made.

 7. Type SayHello4(‘George’) in the Command window and press Enter.

 You see the following output:

Hello There George!

 At this point, there is a global variable named HelloString sitting in
memory. Unfortunately you can’t see it, so you don’t really know that it
exists for certain.

 8. Perform Steps 1 through 3 to create SayHello5().

 9. Modify the SayHello5() code so that it looks like this:

function [] = SayHello5()
%SayHello()
% This function says Hello to everyone!
global HelloString
disp(HelloString);

end

 Notice that SayHello5() doesn’t accept input or provide output argu-
ments. In addition, it only declares HelloString; it doesn’t actually
assign a value to it, so the function should fail when it calls the disp()
function.

 10. Type SayHello5 in the Command window and press Enter.

 You see Hello There George! as the output. The global variable really is
accessible from another function.

Using subfunctions
A single function file can contain multiple functions. However, only one func-
tion, the primary function (the one that has the same name as the original
file), is callable. Any other functions in the file, known as subfunctions, are
local to that file. The primary function or other subfunctions can call on any
subfunction, as long as that subfunction appears in the same file.

www.it-ebooks.info

http://www.it-ebooks.info/

189 Chapter 9: Expanding MATLAB’s Power with Functions

 The main reason to use subfunctions is to simplify your code by breaking it
into smaller pieces. In addition, placing common code in a subfunction means
that you don’t have to copy and paste it all over the place — you have to write
it only once. As far as anyone else is concerned, however, the file contains
only one function. The inner workings of your code are visible only to you and
anyone else who can view the source code.

Listing 9-1 shows an example of how a subfunction might work. You can also
find this function in the SayHello6.m file supplied with the downloadable
source code.

Listing 9-1: Creating a Subfunction

function [HelloString] = SayHello6(Name)
%SayHello()
% This function says Hello to everyone!
HelloString = [GetGreeting(), Name, '!'];
disp(HelloString);

end

function [Greeting] = GetGreeting ()
Greeting = 'Hello There ';
End

This code is actually another version of the SayHello3 code that you
worked with earlier. The only difference is that the greeting is now part of
the GetGreeting() subfunction, rather than a simple string. Notice that
SayHello6() can call GetGreeting(), using the same technique that it
could use for any other function.

After you create this code, type Output = SayHello6(‘Stan’) in the Command
window and press Enter. You see the following output:

Hello There Stan!
Output =
Hello There Stan!

The output is precisely as you expect. However, now type GetGreeting() and
press Enter in the Command window. Instead of a greeting, you see an error
message:

Undefined function or variable 'GetGreeting'.

The GetGreeting() subfunction isn’t accessible to the outside world. As
a result, you can use GetGreeting() with SayHello6() and not have to
worry about outsiders using the subfunction incorrectly.

www.it-ebooks.info

http://www.it-ebooks.info/

190 Part III: Streamlining MATLAB

Nesting functions
You can also nest functions one inside the other in MATLAB. The nested func-
tion physically resides within the primary function. The difference between a
primary function and a nested one is that the nested function can access all
the primary function data, but the primary function can’t access any of the
nested function data.

In all other respects, subfunctions and nested functions behave in a similar
manner (for example, you can’t call either subfunctions or nested functions
directly). Listing 9-2 shows a typical example of a nested function. You can
also find this function in the SayHello7.m file supplied with the download-
able source code.

Listing 9-2: Creating a Nested Function

function [HelloString] = SayHello7(Name)
%SayHello()
% This function says Hello to everyone!
HelloString = [GetGreeting(), Name, '!'];
disp(HelloString);

 function [Greeting] = GetGreeting ()
 Greeting = 'Hello There ';
 end
end

This is another permutation of the SayHello3() example, but notice how the
GetGreeting() nested function now resides inside SayHello7(). After you
create this code, type Output = SayHello7(‘Stan’) in the Command window
and press Enter. You see the following output:

Hello There Stan!
Output =
Hello There Stan!

Using Other Types of Functions
MATLAB supports a few interesting additions to the standard functions.
In general, these additions are used to support complex applications that
require unusual programming techniques. However, it pays to know that the
functions exist for situations in which they come in handy. The following
sections provide a brief overview of these additions.

www.it-ebooks.info

http://www.it-ebooks.info/

191 Chapter 9: Expanding MATLAB’s Power with Functions

Inline functions
An inline function is one that performs a small task and doesn’t actually reside in
a function file. You can create an inline function right in the Command window
if you want. The main purpose for an inline function is to make it easier to per-
form a calculation or manipulate data in other ways. You use an inline function
as a kind of macro. Instead of typing a lot of information every time, you define
the inline function once and then use the inline function to perform all the extra
typing.

To see an inline function in action, type SayHello8 = inline(‘[‘‘Hello There ’’,
Name, ‘‘!’’]’) in the Command window and press Enter. You see the following
output:

SayHello8 =
 Inline function:
 SayHello8(Name) = ['Hello There ', Name, '!']

This function returns a combined greeting string. All you need to do is type
the function name and supply the required input value. Test this inline func-
tion by typing disp(SayHello8(‘Robert’)) and pressing Enter. You see the
expected output:

Hello There Robert!

 Notice that the inline function doesn’t actually include the disp() function
call. An inline function must return a value, not perform output. If you try to
include the disp() function call, you see the following error message:

Error using inlineeval (line 15)
Error in inline expression ==> disp(['Hello There ',

Name, '!'])
 Too many output arguments.
Error in inline/subsref (line 24)
 INLINE_OUT_ = inlineeval(INLINE_INPUTS_,

INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr);

Anonymous functions
An anonymous function is an even shorter version of the inline function. It
can contain only a single executable statement. The single statement can
accept input arguments and provide output data.

To see how an anonymous function works, type SayHello9 = @(Name) [‘Hello
There ’, Name, ‘! ’] and press Enter. You see the following output:

SayHello9 =
 @(Name)['Hello There ',Name,'!']

www.it-ebooks.info

http://www.it-ebooks.info/

192 Part III: Streamlining MATLAB

The at (@) symbol identifies the code that follows as an anonymous function.
Any input arguments you want to accept must appear in the parentheses that
follow the @ symbol. The code follows after the input argument declaration.
In this case, you get yet another greeting as output.

To test this example, type disp(SayHello9(‘Evan’)) in the Command window
and press Enter. You see the following output:

Hello There Evan!

 You generally use anonymous functions for incredibly short pieces of code
that you need to use repetitively. Inline functions execute more slowly than
anonymous functions for a comparable piece of code. So whenever possible,
use an anonymous function in place of an inline function. However, inline func-
tions also provide the extra flexibility of allowing multiple lines of code, so you
need to base your decision partly on how small you can make the code that
you need to execute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Adding Structure to Your Scripts
In This Chapter
▶ Adding decision-making to your scripts

▶ Using recursive functions

▶ Repeating tasks

▶ Defining menus

T
he scripts and functions you have created so far have all performed a
series of tasks, in order, one at a time. However, sometimes it’s important

to skip steps or to perform the same step more than once. Humans make
decisions about what to do and how often to do it with ease, but computers
need a little help. You must provide specific instructions as to when a deci-
sion is required and when to do something more than once.

As part of discovering how decisions are made and just how repetition works,
you see two practical examples of how to employ your new skills. The first is a
technique called recursion, which is simply a method of performing a task more
than once, but in an elegant way. Using recursion makes solving some math
problems significantly easier. The second involves the use of a menu. Most
multifunction applications rely on menus to allow a user to select one option
out of a number of possibilities.

Making Decisions
When you come to an intersection, you make a decision: go through or stop.
If the light is red, you stop. However, when the light is green, you go through
the intersection. The “if this condition exists, then do this” structure is some-
thing humans use almost constantly. In fact, we sometimes don’t think about
it consciously at all. A decision is often made without conscious thought
because we have made it so many times.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Part III: Streamlining MATLAB

 A computer needs guidance in order to make a decision. It lacks a subcon-
scious and therefore needs to work through each decision. When working with
MATLAB, you might need to tell the computer that if a value is above a certain
level, the computer should perform a certain set of steps. Perhaps you need
to compensate in the computation of a result (some factor has affected the
result beyond the normal value) or you simply need to look at the formula in a
different way. The decision could be procedural — a user selects a particular
option and the computer needs to perform the associated task. The thing to
remember about a computer is that it follows whatever you tell it precisely, so
you need to provide precise decision-making instructions.

The following sections describe two different decision-making structures
that MATLAB provides: the if statement and the switch statement. Each of
these statements has a specific format as well as specific times when you’d
use it.

 Decision-making code has a number of terms associated with it. A statement
simply indicates what the code should do. It’s the line of code that appears
first in a block of tasks. A structure describes the statement and all the code
that follows until the end keyword is reached.

Using the if statement
The simplest decision to make is whether to do something — or not. However,
you might need to decide between two alternatives. When a situation is true,
you perform one task, but when it’s false, you perform another task. There
are still other times when you have multiple alternatives and must choose a
course of action based on multiple scenarios using multiple related decisions.
The following sections cover all these options.

Making a simple decision
Starting simply is always best. The if statement makes it possible to either
do something when the condition you provide is true or not do something
when the condition you provide is false. The following steps show how to
create a function that includes an if statement. You can also find this func-
tion in the SimpleIf.m file supplied with the downloadable source code.

 1. Click the arrow under the New entry on the Home tab of the MATLAB
menu and select Function from the list that appears.

 You see the Editor window, shown in Figure 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

195 Chapter 10: Adding Structure to Your Scripts

Figure 10-1:
Use the

Editor
window

to create
functions or

scripts.

 2. Delete output_args.

 The example doesn’t provide an output argument, but it does require an
input argument.

 3. Change the function name from Untitled to SimpleIf.

 The primary function name must match the name of the file.

 4. Change input_args to Value.

 The term input_args is used only to tell you that you need to provide
input arguments. In this case, the function receives a value from the
caller to use in the decision-making process.

 5. Type the following code into the function between the comment and
the end keyword.

if Value > 5
 disp('The input value is greater than 5!');
end

 This code makes a simple comparison. When the input argument,
Value, is greater than 5, the function tells you about it. Otherwise, the
function doesn’t provide any output at all.

 6. Click Save.

 You see the Select File for Save As dialog box, shown in Figure 10-2.
Notice that the File Name field has the correct filename entered for you.
This is the advantage of changing the function name before you save the
file for the first time.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Part III: Streamlining MATLAB

Figure 10-2:
Save your

work to disk.

 7. Click Save.

 The function file is saved to disk.

 8. Type SimpleIf(6) and press Enter in the Command window.

 You see the following output:

The input value is greater than 5!

 9. Type SimpleIf(4) and press Enter in the Command window.

 The function doesn’t provide any output. Of course, this is the expected
reaction.

Adding an alternative option
Many decisions that people make are choices between two options. For
example, you might go to the beach today, or choose to stay home and play
dominoes based on whether it is sunny. When the weather is sunny, you go to
the beach. MATLAB has a similar structure. The application chooses between
two options based on a condition. The second option is separated from the
first by an else clause — the application performs the first task, or else it
performs the second. The following steps demonstrate how the else clause
works. (These steps assume that you completed the SimpleIf example in
the preceding section.) You can also find this function in the IfElse.m file
supplied with the downloadable source code.

www.it-ebooks.info

http://www.it-ebooks.info/

197 Chapter 10: Adding Structure to Your Scripts

 1. In the Editor window, with the SimpleIf.m file selected, click the
down arrow under Save and choose Save As from the list that appears.

 You see the Select File for Save As dialog box. (Refer to Figure 10-2.)

 2. Type IfElse.m in the File Name field and click Save.

 MATLAB saves the example using a new name.

 3. Replace the SimpleIf function name with IfElse.

 4. Add the following code after the disp() function call:

else
 disp('The input value is less than 6!');

 The function can now respond even when the primary condition isn’t
met. When Value is greater than 5, you see one message; otherwise, you
see the other message.

 5. Click Save.

 The function file is saved to disk.

 6. Type IfElse(6) and press Enter in the Command window.

 You see the following output:

The input value is greater than 5!

 7. Type IfElse(4) and press Enter in the Command window.

 You see the following output:

The input value is less than 6!

 The example demonstrates that you can provide alternative outputs
depending on what is happening within the application. Many situations
arise in which you must choose an either/or type of condition.

Creating multiple alternative options
Many life decisions require more than two alternatives. For example, you’re
faced with a menu at a restaurant and want to choose just one of the many
delicious options. Applications can encounter the same situation. A user may
select only one of the many options from a menu, as an example. The follow-
ing steps show one method of choosing between multiple options. (The steps
assume that you completed the IfElse example in the preceding section.)
You can also find this function in the IfElseIf.m file supplied with the
downloadable source code.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Part III: Streamlining MATLAB

 1. In the Editor window, with the IfElse.m file selected, click the down
arrow under Save and choose Save As from the list that appears.

 You see the Select File for Save As dialog box. (Refer to Figure 10-2.)

 2. Type IfElseIf.m in the File Name field and click Save.

 MATLAB saves the example using a new name.

 3. Replace the IfElse function name with IfElseIf.

 4. Add the following code after the first disp() function call:

elseif Value == 5
 disp('The input value is equal to 5!');

 At this point, the code provides separate handling for inputs greater
than, equal to, and less than 5.

 5. Modify the third disp() function statement to read:

disp('The input value is less than 5!');

 Many people make the mistake of not modifying everything that needs
to be modified by an application change. Because you now have a way
of handling inputs equal to five, you must change the message so that it
makes sense to the user. Failure to modify statements often leads to odd
output messages that serve only to confuse users.

 6. Click Save.

 The function file is saved to disk.

 7. Type IfElseIf(6) and press Enter in the Command window.

 You see the following output:

The input value is greater than 5!

 8. Type IfElseIf(5) and press Enter in the Command window.

 You see the following output:

The input value is equal to 5!

 9. Type IfElseIf(4) and press Enter in the Command Window.

 You see the following output:

The input value is less than 5!

www.it-ebooks.info

http://www.it-ebooks.info/

199 Chapter 10: Adding Structure to Your Scripts

Using the switch statement
You can create any multiple alternative selection code needed using the
if...elseif statement. However, you have another good way to make
selections. A switch statement lets you choose one of a number of options
using code that is both easier to read and less time-consuming to type. The
result is essentially the same, but the method of obtaining the result is dif-
ferent. The following steps demonstrate how to use a switch statement.
You can also find this function in the SimpleSwitch.m file supplied with
the downloadable source code.

 1. Click the arrow under the New entry on the Home tab of the MATLAB
menu and select Function from the list that appears.

 You see the Editor window. (Refer to Figure 10-1.)

 2. Delete output_args.

 The example doesn’t provide an output argument, but it does require an
input argument.

 3. Change the function name from Untitled to SimpleSwitch.

 The primary function name must match the name of the file.

 4. Change input_args to Value.

 The function receives a value from the caller to use in the decision-
making process.

 5. Type the following code into the function between the comment and
the end keyword.

switch Value
 case 1
 disp('You typed 1.');
 case 2
 disp('You typed 2.');
 case 3
 disp('You typed 3.');
 otherwise
 disp('You typed something greater than 3.');
end

 This code specifically compares Value to the values provided. When
Value matches a specific value, the application outputs an appropriate
message.

www.it-ebooks.info

http://www.it-ebooks.info/

200 Part III: Streamlining MATLAB

 At times, the input value doesn’t match the values you expect. In such
cases, the otherwise clause comes into play. It provides the means
for doing something even if the input wasn’t what you expected. If noth-
ing else, you can use this clause to tell the user to input an appropriate
value.

 6. Click Save.

 You see the Select File for Save As dialog box. (Refer to Figure 10-2.)
Notice that the File Name field has the correct filename entered for you.

 7. Click Save.

 The function file is saved to disk.

 8. Type SimpleSwitch(1) and press Enter in the Command window.

 You see the following output:

You typed 1.

 9. Type SimpleSwitch(2) and press Enter in the Command window.

 You see the following output:

You typed 2.

 10. Type SimpleSwitch(3) and press Enter in the Command window.

 You see the following output:

You typed 3.

 11. Type SimpleSwitch(4) and press Enter in the Command window.

 You see the following output:

You typed something greater than 3.

Understanding the switch difference
A switch provides a short method of making specific decisions. You can’t
make a generalize decision, such as whether a value is greater than some
amount. In order to make a match, the value must equal a specific value. The
specific nature of a switch means that:

 ✓ The code you write is shorter than a comparable if...elseif structure.

 ✓ Others are better able to understand your code because it’s cleaner and
more precise.

www.it-ebooks.info

http://www.it-ebooks.info/

201 Chapter 10: Adding Structure to Your Scripts

 ✓ The switch statement tends to produce focused code that avoids the
odd mixing of checks that can occur when using the if...elseif
structure.

 ✓ MATLAB is able to optimize the application for better performance
because it doesn’t have to change a range of values.

 ✓ Using an otherwise clause ensures that people understand that you
didn’t anticipate a particular value or that the value is less important.

Deciding between if and switch
Whenever possible, use a switch statement when you have three or more
options to choose from and you can focus attention on specific options for
just one variable. Using the switch statement has some significant advan-
tages, as described in the preceding section.

The if statement provides you with flexibility. You can use it when a range
of values is acceptable or when you need to perform multiple checks before
allowing a task to complete. For example, when opening a file, you might
need to verify that the file actually does exist, that the user has the required
rights to access the file, and that the hard drive isn’t full. An if statement
would allow you to check all these conditions in a single piece of code,
making the conditions easier to see and understand.

 When writing your own applications, you need to keep in mind that there
isn’t a single solution to any particular problem. The overlap between the if
and switch statements makes it clear that you could use either statement in
many situations. Both statements would produce the same output, so there
isn’t a problem with using them. However, if statements are better when
flexibility is required, but switch statements are better when precision and
speed are important. Choose the option that works best for a particular situa-
tion, rather than simply choosing an option that works.

Creating Recursive Functions
Many elegant programming techniques exist in the world, but none are quite
so elegant as the recursive function. The concept is simple — you create a
function that keeps calling itself until a condition is satisfied, and then the
function delivers an answer based on the results of all those calls. This pro-
cess of the function calling itself multiple times is known as recursion, and a
function that implements it is a recursive function.

www.it-ebooks.info

http://www.it-ebooks.info/

202 Part III: Streamlining MATLAB

The most common recursion example is calculating factorial (n!), where n is
a positive number. (Calculating a factorial means multiplying the number by
each number below it in the hierarchy. For example, 4! is equal to 4*3*2*1
or 24.)

Most examples that show how to create a recursive function don’t really
demonstrate how the process works. The following steps help you create a
recursive function that does demonstrate how the process works. Later in
the chapter you see a less involved version of the same code that shows how
the function would normally appear. You can also find this function in the
Factorial1.m file supplied with the downloadable source code.

 1. Click the arrow under the New entry on the Home tab of the MATLAB
menu and select Function from the list that appears.

 You see the Editor window. (Refer to Figure 10-1.)

 2. Change output_args to Result.

 The function returns a result to each preceding cycle of the call.

 3. Change the function name from Untitled to Factorial1.

 The primary function name must match the name of the file.

 4. Change input_args to Value, Level.

 The Value received is always one less than the previous caller received.
The Level demonstrates how Value is changing over time.

 5. Type the following code into the function between the comment and
the end keyword.

if nargin < 2
 Level = 1;
end

if Value > 1
 fprintf('Value = %d Level = %d\n', Value, Level);
 Result = Factorial1(Value - 1, Level + 1) * Value;
 disp(['Result = ', num2str(Result)]);
else
 fprintf('Value = %d Level = %d\n', Value, Level);
 Result = 1;
 disp(['Result = ', num2str(Result)]);
end

 This example makes use of an optional argument. The first time the func-
tion is called, Level won’t have a value, so the application automati-
cally assigns it a value of 1.

www.it-ebooks.info

http://www.it-ebooks.info/

203 Chapter 10: Adding Structure to Your Scripts

 The code breaks the multiplication task into pieces. For example, when
Value is 4, the code needs to multiply it by 3 * 2 * 1. The 3 * 2 * 1 part of the
picture is defined by the call to Factorial1(Value - 1, Level + 1).
During the next pass, Value is now 3. To get the appropriate result, the
code must multiply this new value by 2 * 1. So, as long as Value is greater
than 1 (where an actual result is possible), the cycle must continue.

 A recursive function must always have an ending point — a condition
under which it won’t call itself again. In this case, the ending point is
the else clause. When Value is finally less than 1, Result is assigned
a value of 1 and simply returns, without calling Factorial1() again.
At this point, the calling cycle unwinds and each level returns, one at a
time, until a final answer is reached.

 Notice that this example uses a new function, fprintf(), to display
information onscreen. The fprintf() function accepts a formatting
specification as its first input. In this case, the specification says to print
the string Value =, followed by the information found in Value, then
Level =, followed by the information found in Level. The %d in the
format specification tells fprintf() to print an integer value. You use
fprintf() as a replacement for disp() when the output formatting
starts to become more complex. Notice that disp() requires the use of
the num2str() function to convert the numeric value of Result to a
string in order to print it.

 6. Click Save.

 You see the Select File for Save As dialog box. (Refer to Figure 10-2.)
Notice that the File Name field has the correct filename entered for you.

 7. Click Save.

 The function file is saved to disk.

 8. Type Factorial1(4) and press Enter in the Command window.

 You see the following output:

Value = 4 Level = 1
Value = 3 Level = 2
Value = 2 Level = 3
Value = 1 Level = 4
Result = 1
Result = 2
Result = 6
Result = 24
ans =
 24

 The output tells you how the recursion works. Notice that all the Value
and Level outputs come first. The function must keep calling itself until
Value reaches 1. When Value does reach 1, you see the first Result
output. Of course, Result is also 1. Notice how the recursion unwinds.
The next Result is 2 * 1, then 3 * 2 * 1, and finally 4 * 3 * 2 * 1.

www.it-ebooks.info

http://www.it-ebooks.info/

204 Part III: Streamlining MATLAB

Understanding the fprintf() format specification
A format specification tells a function how to display information onscreen. The fprintf() func-
tion accepts a regular string as input for a format specification, reading each character. When
fprintf() encounters a percent (%) character, it looks at the next character as a definition of
what kind of formatted input to provide. The following list provides an overview of the % character
combinations used to format information using fprintf().

 ✓ %bo : Floating point, double precision
(Base 8)

 ✓ %bu : Floating point, double precision
(Base 10)

 ✓ %bx: Floating point, double precision (Base
16, using lowercase letters for the numbers
a through f)

 ✓ %bX: Floating point, double precision (Base
16, using uppercase letters for the numbers
A through F)

 ✓ %c: Single character

 ✓ %d: Signed integer

 ✓ %e: Floating point, exponential notation
using a lowercase e

 ✓ %E: Floating point, exponential notation
using an uppercase E

 ✓ %f: Floating point, fixed point notation

 ✓ %g: Floating point, general notation using
the more compact of %f or %e with no trail-
ing zeros

 ✓ %G: Floating point, general notation using
the more compact of %f or %E with no trail-
ing zeros

 ✓ %i: Signed integer

 ✓ %o: Unsigned integer (Base 8)

 ✓ %s: String of characters

 ✓ %to: Floating point, single precision (Base 8)

 ✓ %tu : Floating point, single precision
(Base 10)

 ✓ %tx: Floating point, single precision (Base
16, using lowercase letters for the numbers
a through f)

 ✓ %tX: Floating point, single precision (Base
16, using uppercase letters for the numbers
A through F)

 ✓ %u: Unsigned integer (Base 10)

 ✓ %x: Unsigned integer (Base 16, using low-
ercase letters for the numbers a through f)

 ✓ %X: Unsigned integer (Base 16, using upper-
case letters for the numbers A through F)

When working with numeric input, you can also specify additional information between the % and
the subtype, such as f for floating point. For example, %-12.5f, would display a left-justified
number 12 characters in width with 5 characters after the decimal point. See the full details of
formatting strings at http://www.mathworks.com/help/matlab/matlab_prog/
formatting-strings.html.

Now that you have a better idea of how the recursion works, look at the
slimmed-down version in Listing 10-1. You can also find this function in the
Factorial2.m file supplied with the downloadable source code.

www.it-ebooks.info

http://www.it-ebooks.info/

205 Chapter 10: Adding Structure to Your Scripts

Listing 10-1: A Method for Calculating n!

function [Result] = Factorial2(Value)
%Factorial2 - Calculates the value of n!
% Outputs the factorial value of the input number.
 if Value > 1
 Result = Factorial2(Value - 1) * Value;
 else
 Result = 1;
 end

end

The final version is much smaller but doesn’t output any helpful information
to tell you how it works. Of course, this version will run a lot faster, too.

Performing Tasks Repetitively
Giving an application the capability to perform tasks repetitively is an essen-
tial part of creating an application of any complexity. Humans don’t get bored
performing a task once. It’s when the task becomes repetitive that true bore-
dom begins to take hold. A computer can perform the same task in precisely
the same manner as many times as needed because the computer doesn’t
get tired. In short, the area in which computers can help humans most is
performing tasks repetitively. As with decisions, you have two kinds of struc-
tures that you can use to perform tasks repetitively, as described in the sec-
tions that follow.

 You see a number of terms associated with repetitive code. The same terms
that you see used for decision-making code also apply to repetitive code. In
addition, the term loop is used to describe what repetitive code does. A repeti-
tive structure keeps executing the same series of tasks until such time as the
condition for the repetition is satisfied and the loop ends.

Using the for statement
The for statement performs a given task a specific number of times, unless
you interrupt it somehow. The examples in the “Making Decisions” section,
earlier in this chapter, provide steps for creating functions. Listing 10-2 shows
how to use a for loop in an example. You can also find this function in the
SimpleFor.m file supplied with the downloadable source code.

www.it-ebooks.info

http://www.it-ebooks.info/

206 Part III: Streamlining MATLAB

Listing 10-2: Creating Repetition Using the for Statement

function [] = SimpleFor(Times)
%SimpleFor: Demonstrates the for loop
% Tell the application how many times to say hello!

 if nargin < 1
 Times = 3;
 end

 for SayIt = 1:Times
 disp('Howdy!')
 end
end

In this case, SimpleFor() accepts a number as input. However, if the user
doesn’t provide a number, then SimpleFor() executes the statement three
times by default.

Notice how the variable, SayIt, is created and used. The range of 1:Times
tells for to keep displaying the message Howdy! the number of times speci-
fied by Times. Every time the loop is completed, the value of SayIt increases
by 1, until the value of SayIt is equal to Times. At this point, the loop ends.

Using the while statement
The while statement performs a given task until a condition is satisfied,
unless you stop it somehow. The examples in the “Making Decisions” sec-
tion of the chapter provide steps for creating functions. Listing 10-3 shows
how to use a while loop in an example. You can also find this function in the
SimpleWhile.m file supplied with the downloadable source code.

Listing 10-3: Creating Repetition Using the while Statement

function [] = SimpleWhile(Times)
%SimpleWhile: Demonstrates the while loop
% Tell the application how many times to say hello!

 if nargin < 1
 Times = 3;
 end

 SayIt = 1;
 while SayIt <= Times
 disp('Howdy!')
 SayIt = SayIt + 1;
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

207 Chapter 10: Adding Structure to Your Scripts

In this example, the function can either accept an input value or execute a
default number of times based on whether the user provides an input value
for Times. The default is to say “Howdy!” three times.

Notice that the loop code actually begins by initializing SayIt to 1 (so the
count begins at the right place). It then compares the current value of SayIt
to Times. When SayIt is greater than Times, the loop ends.

 You must manually update the counter variable when using a while loop.
Notice the line that adds 1 to SayIt after the call to disp(). If this line of
code is missing, the application ends up in an endless loop — meaning that it
never wants to end. If you accidentally create an endless loop, you can stop it
by pressing Ctrl+C.

Ending processing using break
It’s possible that a loop will ordinarily execute a certain number of times
and then stop without incident. However, when certain conditions are met,
the loop may have to end early. For example, some people in your organiza-
tion might be ramping up the Howdy! Application into overdrive. In order to
prevent this abuse, you want the loop to stop at five — friendly, but not too
verbose. The break clause lets you stop the loop early.

Listing 10-4 shows how to use the break clause with a while loop, but you
can use it precisely the same way with the for loop. The examples in the
“Making Decisions” section, earlier in the chapter, provide steps for creating
functions. You can also find this function in the UsingBreak.m file supplied
with the downloadable source code.

Listing 10-4: Using the break Clause

function [] = UsingBreak(Times)
%SimpleWhile: Demonstrates the while loop
% Tell the application how many times to say hello!
% Don't exceed five times or the application will cut

you off!

 if nargin < 1
 Times = 3;
 end

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

208 Part III: Streamlining MATLAB

Listing 10-4 (continued)
 SayIt = 1;
 while SayIt <= Times
 disp('Howdy!')
 SayIt = SayIt + 1;
 if SayIt > 5
 disp('Sorry, too many Howdies')
 break;
 end
 end
end

The code executes precisely the same way that the SimpleWhile example
works except that this version contains an additional if statement. When
someone wants to execute the loop more than five times, the if statement
takes effect. The application displays a message telling the user that the
number of Howdies has become excessive and then calls break to end the
loop. To see this example in action, type UsingBreak(10) and press Enter in
the Command window.

Ending processing using return
Another way to end a loop is to call return instead of break. The basic idea
is the same. See the upcoming “Differentiating between break and return”
sidebar for details on how the two clauses differ.

Listing 10-5 shows how to use the return clause with a while loop, but you
can use it precisely the same way with the for loop. The examples in the
“Making Decisions” section, earlier in the chapter, provide steps for creating
functions. You can also find this function in the UsingReturn.m file supplied
with the downloadable source code.

Listing 10-5: Using the return Clause

function [Result] = UsingBreak(Times)
%SimpleWhile: Demonstrates the while loop
% Tell the application how many times to say hello!
% Don't exceed five times or the application will cut

you off!

 if nargin < 1
 Times = 3;
 end

 Result = 'Success!';

www.it-ebooks.info

http://www.it-ebooks.info/

209 Chapter 10: Adding Structure to Your Scripts

 SayIt = 1;
 while SayIt <= Times
 disp('Howdy!')
 SayIt = SayIt + 1;
 if SayIt > 5
 disp('Sorry, too many Howdies')
 Result = 'Oops!';
 return;
 end
 end
end

Notice that this example returns a Result to the caller. The value of Result is
initially set to 'Success!'. However, when the user gets greedy and asks for
too many Howdies, the value changes to 'Oops!'. To test this example, begin
by typing disp(UsingReturn()) and pressing Enter. You see the following output:

Howdy!
Howdy!
Howdy!
Success!

In this case, the application meets with success because the user isn’t greedy.
Now type disp(UsingReturn(10)) and press Enter. This time the application
complains by providing this output:

Howdy!
Howdy!
Howdy!
Howdy!
Howdy!
Sorry, too many Howdies
Oops!

Differentiating between break and return
It may seem that break and return are
almost precisely the same, but they really
aren’t. The UsingReturn example demonstrates
one difference. You can provide a return value
when using the return clause. In some
cases, the ability to return a value is essential,
and you must use return in place of break.

However, another difference isn’t quite so
apparent. When you nest one loop inside

another, the break clause ends only the inner
loop, not the outer loop. As a result, the outer
loop continues to run as before. In some cases,
this is a desirable behavior, such as when you
need to interrupt the current task but still want
to execute the remaining tasks. Using return
ends all the loops. In fact, the function contain-
ing the loops ends and control returns to the
caller.

www.it-ebooks.info

http://www.it-ebooks.info/

210 Part III: Streamlining MATLAB

Determining which loop to use
You can understand the for and while loops better by comparing Listing 10-2
and Listing 10-3. A for loop provides the means to execute a set of tasks a
precise number of times. You use the for loop when you know the number of
times a task should execute in advance.

A while loop is based on a condition. You use it when you need to execute
a series of tasks until the job is finished. (For example, when two functions
are expected to converge on a particular value, you can use the while loop
to detect the convergence and end the processing.) However, you don’t know
when the task will end until such time as the conditions indicate that the job
is done. Because while loops require extra code and additional monitoring
by MATLAB, they tend to be slower, so you should use the for loop when-
ever possible to create a faster application.

Creating Menus
A menu is one way in which you can start to test the abilities you’ve gained
in this chapter. Listing 10-6 shows a menu that you could use as a model for
your own menu. Notice that this menu is a script. You could just as easily
create a menu as a function. However, with all the emphasis on functions in
this chapter, knowing that you can also use these techniques in scripts is
important. You can also find this script in the MyMenu.m file supplied with
the downloadable source code.

Listing 10-6: A Simple Script Menu Example

EndIt = false;

while not(EndIt)
 clc
 disp('Choose a Fruit');
 disp('1. Orange');
 disp('2. Grape');
 disp('3. Cherry');
 disp('4. I''m Bored, Let''s Quit!');

 Select = input('Choose an option: ');

 if Select == 4
 disp('Sorry to see you go.');
 EndIt = true;

www.it-ebooks.info

http://www.it-ebooks.info/

211 Chapter 10: Adding Structure to Your Scripts

 else
 switch Select
 case 1
 disp('You chose an orange!');
 case 2
 disp('You chose a grape!');
 case 3
 disp('You chose a cherry!');
 otherwise
 disp('You''re confused, quitting!');
 break;
 end
 pause(2)
 end
end

The example begins by declaring a variable, EndIt, to end the while loop.
A while loop is the perfect choice in this case because you don’t know how
long the user will want to use the menu.

The example clears the Command window and then displays the options.
After the user enters a selection, the application checks to determine when
it should end. If it should, it displays a goodbye message and sets EndIt to
true.

When the user chooses some other option, the code relies on a switch to
provide a response. In this case, the response is a simple message, but your
production application would perform some sort of task. When a user pro-
vides a useless response, the application detects it and ends. Notice the use
of the break clause.

The pause() function is new. Because the Command window is cleared after
each iteration, the pause() function provides a way to display the response
for two seconds. The user can also choose to press Enter to return to the
menu early.

www.it-ebooks.info

http://www.it-ebooks.info/

212 Part III: Streamlining MATLAB

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV
Employing Advanced
MATLAB Techniques

 Discover why good comments help you avoid errors at http://www.dummies.
com/extras/matlab.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ Import data you need to access in MATLAB.

 ✓ Export data you want to share with others.

 ✓ Use fonts and special characters to dress up your plots.

 ✓ Publish and print your MATLAB data.

 ✓ Recover from mistakes you make when using MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Importing and Exporting Data
In This Chapter
▶ Obtaining data from other sources

▶ Outputting data to other recipients

▶ Interacting with image data

A
n application isn’t of much use if it can’t interact with data — in the
case of MATLAB, the variables, formulas, scripts, functions, and plots

that you create. In fact, even applications that you might think have nothing
to do with data manage quite a lot of it. For example, you might be tempted
to think that games don’t work with data, but even the lowliest Solitaire game
saves statistics, which means that it interacts with data. So you can easily see
that most applications interact with at least their own data.

Larger, more complex applications, such as MATLAB, also need some method
of interacting with data from other applications. For example, you may need
to use Excel data from a buddy to perform a calculation. If MATLAB didn’t
provide a means to access that data, to import it into MATLAB, you couldn’t
use it to perform the calculation.

After you complete the calculation, you may need to send it back to your
buddy, but the only application available at the other site is Excel. Now you
must export the data from MATLAB into an Excel file that your buddy can use.
An Excel data file will help your buddy a lot more than printouts you could
send instead because the data is directly accessible.

Plain data — text and numbers — is one thing, but importing and exporting
images is quite another. Images are complex because they present graphics — a
visual medium — as a series of 0s and 1s. In addition, some image formats have
quirks that make them hard to work with. This chapter provides a deeper look
into working with image files of various sorts.

 Data import and export are among the few activities for which many people
find using the GUI easier than typing commands. (The choice you make
depends on the complexity of the data and just what you want to achieve by
importing or exporting it.) Yes, you can type commands to perform the tasks,

www.it-ebooks.info

http://www.it-ebooks.info/

216 Part IV: Employing Advanced MATLAB Techniques

and you can add import and export commands to your applications, but
importing or exporting complex data manually is often easier using the GUI.
This chapter focuses on working with commands. However, you can see how
to use the GUI in the “Importing” and “Exporting” sections of Chapter 4. These
sections also discuss issues such as which file formats MATLAB supports.

Importing Data
For most people, importing data from various sources is almost a daily chore
because our world is based on interconnectivity. Having as much data as pos-
sible to perform a task is critical if you want to obtain good results. That’s
why knowing just how to get the data into MATLAB is so important. It’s not
just a matter of getting the data, but getting it in such a manner that it can be
truly useful. In addition, the import process can’t damage the data in any way
or it could become useless to you in the long run.

 A lot of people get the whole business of the importing and exporting of data
confused. Importing data always involves taking outside information — something
generated externally — and bringing it into a host application, such as MATLAB
(as contrasted to exporting, which sends information from MATLAB to an external
target). So, when your buddy sends you a file with Excel data, you must import it
into MATLAB in order to use it.

The following sections describe the essentials for importing data into MATLAB
from various sources.

Performing import basics
A basic import uses all the default settings, which works fine for many kinds
of data. MATLAB can determine the correct data format relatively often.

 An essential part of importing data is to use the correct import function. Each
import function has features that make it more suitable to a particular kind of
data. Here are some of the text-specific import functions and how they differ:

 ✓ csvread(): Works with numbers only, and the numbers must be sepa-
rated by commas (hence the name Comma Separated Values, or CSV).

 ✓ dlmread(): Works with numbers only, but the numbers are normally
separated by something other than commas.

 ✓ textscan(): Can import both numbers and strings. You must provide a
format specification to read the data correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

217 Chapter 11: Importing and Exporting Data

 ✓ readtable(): Can import both numbers and strings. The output from
this function is always a table, even when the source doesn’t contain
tabular data.

The output you receive depends on the function you use. For example, when
working with readtable(), you actually get a table as output, not a matrix
or a cell array. On the other hand, using csvread() results in a matrix as
output. There are ways to obtain the kind of output you want, but you need
to understand that you start with a specific kind of output data from these
functions.

The examples found in the sections that follow each use a different method
of reading the data from the disk. However, they all use the same data so that
you can compare the results. Here’s the data found in the NumericData.csv
file supplied with the downloadable source code:

15,25,30
18,29,33
21,35,41

Using csvread()
Using csvread() is the simplest option when working with data of this kind.
All you do is type CSVOutput = csvread(‘NumericData.csv’) and press Enter.
The output is a matrix that contains the following results:

CSVOutput =
 15 25 30
 18 29 33
 21 35 41

Using dlmread()
The dlmread() function is a little more flexible than csvread() because
you can supply a delimiter — a character used to separate values — as
input. In this case, nothing is odd about the delimiters used in the data
file. Each column is separated from the other by a comma. The rows are
separated by a newline character. So, all you need to type in this case is
DLMOutput = dlmread(‘NumericData.csv’); then press Enter. The output is
a matrix containing these results:

DLMOutput =
 15 25 30
 18 29 33
 21 35 41

www.it-ebooks.info

http://www.it-ebooks.info/

218 Part IV: Employing Advanced MATLAB Techniques

Using textscan()
The textscan() function can read both strings and numbers in the same
data set. However, you must define a format specification to use this func-
tion. In addition, you can’t simply open the file and work with it. With these
requirements in mind, you can use the following steps to help you use the
textscan() function.

 1. Type FileID = fopen(‘NumericData.csv’) and press Enter.

 The textscan() function can’t open the file for you. However, it does
accept the identifier that is returned by the fopen() function. The vari-
able, FileID, contains the identifier used to access the file.

 2. Type TSOutput = textscan(FileID, ‘%d,%d,%d/n’) and press Enter.

 You get a single row of the data as output — not all three rows. So, this is
a time when you’d normally use a loop to read the data. However, there
is more to see, so the example doesn’t use a loop. In this case, the data
is read into a cell array, not a matrix.

 3. Type feof(FileID) and press Enter.

 The function outputs a 0, which means that you aren’t at the end of the
file yet. You might have wondered how you were going to tell the loop to
stop reading the file. A simple test using the feof() function takes care
of that problem.

 4. Type TSOutput = [TSOutput; textscan(FileID, ‘%f,%f,%f/n’)] and press
Enter.

 You now see the second row of data read in. However, look at the format
specification. These numbers are read as floating-point values rather
than integers. Using textscan() gives you nearly absolute control over
the appearance of the data in your application.

 5. Type isinteger(TSOutput{1,1}) and press Enter.

 The output value of 1 tells you that the element at row 1, column 1 is
indeed an integer.

 6. Type isinteger(TSOutput{2,1}) and press Enter.

 This step verifies that the element at row 2, column 1 isn’t an integer
because the output value is 0. It pays to ensure that the data you have in
MATLAB is the type you actually expected.

 7. Type TSOutput = [TSOutput; textscan(FileID, ‘%2s,%2s,%2s/n’)] and
press Enter.

 This time, the data is read in as individual strings. However, notice that
the format specification includes a field width value. If you had simply
told textscan() to read strings, it would have read the entire row as a
single string into one cell.

www.it-ebooks.info

http://www.it-ebooks.info/

219 Chapter 11: Importing and Exporting Data

 8. Type textscan(FileID, ‘%d,%d,%d/n’) and press Enter.

 This read should take you past the end of the file. The output is going to
contain blank cells because nothing is left to read.

 9. Type feof(FileID) and press Enter.

 This time, the output value is 1, which means that you are indeed at the
end of the file.

 10. Type fclose(FileID) and press Enter.

 MATLAB closes the file.

 Failure to close a file can cause memory leaks and all sorts of other
problems. Not closing the file could quite possibly cause data loss,
access problems, or a system crash. The point is that you really don’t
want to leave a file open after you’re done using it.

Now that you have a better idea of how a textscan() should work, it’s time
to see an application that uses it. Listing 11-1 shows how you might imple-
ment the preceding procedure as a function. You can also find this function in
the UseTextscan.m file supplied with the downloadable source code.

Listing 11-1: Using textscan() in an Application

function [] = UseTextscan()
%UseTextscan: A demonstration of the textscan() function
% This example shows how to use textscan() to scan
% the NumericData.csv file.

 FileID = fopen('NumericData.csv');
 TSOutput = textscan(FileID, '%d,%d,%d/n');

 while not(feof(FileID))
 TempData = textscan(FileID, '%d,%d,%d/n');

 if feof(FileID)
 break;
 end

 TSOutput = [TSOutput; TempData];
 end

 disp(TSOutput);
 fclose(FileID);

end

www.it-ebooks.info

http://www.it-ebooks.info/

220 Part IV: Employing Advanced MATLAB Techniques

You have already used most of this code as you worked through the exer-
cise, but now you see it all put together. Notice that you must verify that
you haven’t actually reached the end of the file before adding the data in
TempData to TSOutput. Otherwise, you end up with the blank row that
textscan() obtains during the last read of the file.

Using readtable()
The readtable() function works with both strings and numbers. It’s a lot
easier to use than textscan(), but it also has a few quirks, such as assum-
ing that the first row of data is actually column names. To use readtable()
with the NumericData.csv file, type RTOutput = readtable(‘NumericData.
csv’, ‘ReadVariableNames’, false) and press Enter. You see the following
output:

RTOutput =
 Var1 Var2 Var3
 ____ ____ ____
 15 25 30
 18 29 33
 21 35 41

The output actually is a table rather than a matrix or a cell array. The col-
umns have names attached to them, as shown in Figure 11-1. As a conse-
quence, you can access individual members using the variable name, such as
RTOutput{1, 'Var1'}, which outputs a value of 15 in this case.

Figure 11-1:
Tables pro-
vide names
for each of

the columns.

Notice that readtable() accepts property name and value pairs as input.
In this case, 'ReadVariableNames' is a property. Setting this property to
false means that readtable() won’t read the first row as a heading of
variable names. You use readtable() where the output file does contain
variable names because having them makes accessing the data easier in
many situations.

www.it-ebooks.info

http://www.it-ebooks.info/

221 Chapter 11: Importing and Exporting Data

Importing mixed strings and numbers
Life isn’t all about numbers. In some situations, you need to work with a
mix of strings and numbers. However, only some of the import functions
actually work with strings and numbers. The two that you most commonly
use are textscan() and readtable(). Each function has its own particu-
lar capability. For example, textscan() provides absolute control over
how the data is converted (as described in the “Using textscan()” sec-
tion, earlier in this chapter).

The readtable() function is designed more for work with database output,
for which the output file likely has header names. The database could reside
in a Database Management System (DBMS) or as part of a spreadsheet. The
source of the data doesn’t matter — only the format does. For this example, you
have an output file that contains both row and column headings as shown here
(you can also find this data in the MixedData.csv file supplied with the down-
loadable source code):

ID,Name,Age,Married
1234,Sam,42,TRUE
2345,Sally,35,TRUE
3456,Angie,22,FALSE
4567,Dan,55,FALSE

The first column isn’t named because it actually contains the row headers.
The readtable() function actually has features to handle extras like row
headers. Here’s a quick overview of the names of properties that you can
include in your readtable() function call, along with the common values:

 ✓ FileType: Defines the type of file. The two acceptable values are text
and spreadsheet.

 ✓ ReadVariableNames: Specifies whether the first row contains variable
names. The acceptable values are true (default), false, 1, or 0.

 ✓ ReadRowNames: Specifies whether the first column contains row names.
The acceptable values are true, false (default), 1, or 0.

 ✓ TreatAsEmpty: Assigns strings as empty values (such as N/A). You can
provide either a single string or a cell array of strings.

 ✓ Delimiter: Defines which characters are used as delimiters. You spec-
ify this value as a string of individual delimiter characters.

 ✓ HeaderLines: Indicates the number of lines to skip at the beginning
of the file because they are header lines. The acceptable values are: 0
(default) or any positive integer.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Part IV: Employing Advanced MATLAB Techniques

 ✓ Format: Defines the format of each column using one or more conver-
sion specifiers. The default is to use double for numeric data, unless
the column contains nonnumeric data, in which case all data appears as
a string. However, you could change the default numeric value to an
int32 by supplying the %d specifier. You can see the details about using
the format specifiers at http://www.mathworks.com/help/matlab/
ref/textscan.html#inputarg_formatSpec.

 ✓ Sheet: Indicates which worksheet to read in the file. The acceptable
values are 1 (default), any positive integer indicating the worksheet index,
or a string containing the worksheet name. The worksheets are read one at
a time, so you need multiple calls to read multiple worksheets.

 ✓ Range: Specifies the rectangular portion of the worksheet to read. This
value is supplied as a string.

 ✓ Basic: Determines whether readtable() reads the data source in
Basic mode (without making any assumptions as to content). The
acceptable values are: true, false (default), 1, or 0.

To see readtable() in action with the MixedData.csv file, type MixedData =
readtable(‘MixedData.csv’, ‘ReadRowNames’, true, ‘Format’, ‘%d%s%d%s’) and
press Enter. You see the following output:

MixedData =
 Name Age Married
 _______ ___ _______
 1234 'Sam' 42 'TRUE'
 2345 'Sally' 35 'TRUE'
 3456 'Angie' 22 'FALSE'
 4567 'Dan' 55 'FALSE'

Notice that the columns have the appropriate names and that each row has
the expected identifier. The only thing missing from the file is ID, which is the
name of the row identifiers (and is therefore unnecessary).

The function call includes two name and value pairs. The first pair,
'ReadRowNames', true tells readtable() to treat the first column in
each row as a row identifier and not as data. The second pair, 'Format',
'%d%s%d%s' provides readtable() with the format you want for
each column. The formatting options are the same as those used with
textscan().

The table has a few interesting features. For example, type MixedData(‘1234’,
‘Age’) and press Enter. You see the following output:

ans =
 Age

 1234 42

www.it-ebooks.info

http://www.it-ebooks.info/

223 Chapter 11: Importing and Exporting Data

The output is actually a table that contains just the value you want. Notice
the use of parentheses for the index. Using identifiable names rather than
numeric indexes is also quite nice.

However, you can access the information as actual data rather than as a
table. Type MixedData{‘1234’, ‘Age’} and press Enter. In this case, you obtain
a simple output of 42. The use of curly braces means that you get a data
value rather than a table as output. It is still possible to use numeric indexes
if you want. Type MixedData{1, 2} and press Enter. You obtain the same
output value of 42 as you did before. Opening the MixedData variable shows
that MATLAB uses both forms of row and column identification, as shown in
Figure 11-2.

Figure 11-2:
You can

use either
numeric or
text identi-

fiers for
tables.

Normally, readtable() treats all numeric data as doubles. The Format prop-
erty requests an integer value as output instead. Type class(MixedData{‘1234’,
‘Age’}) and you see an output of int32, so the output is of the correct type.

Defining the delimiter types
Delimiters can cause all kinds of woe. Not every application sticks with the
common delimiters, and importing the data can be really hard unless every-
one agrees to a single set of rules. The example in this section doesn’t follow
the rules. Here’s the data found in the Delimiters.csv file supplied with
the downloadable source code:

ID;Name;Age;Married
1234;"Sam";42;TRUE
2345;"Sally";35;TRUE
3456;"Angie";22;FALSE
4567;"Dan";55;FALSE

www.it-ebooks.info

http://www.it-ebooks.info/

224 Part IV: Employing Advanced MATLAB Techniques

To see just how bad things are, type MixedData = readtable(‘Delimiters.csv’,
‘ReadRowNames’, true) and press Enter. The output you see is

MixedData =
 empty 0-by-0 table

Essentially, MATLAB is telling you that it doesn’t understand the file because
the file contains a mix of data types. You, as a human, can probably look at
the information and figure it out just fine, but MATLAB needs a little more
help. So, add a delimiter specification to the command. Type MixedData =
readtable(‘Delimiters.csv’, ‘ReadRowNames’, true, ‘Delimiter’, ‘;’) and press
Enter. This time you get the following output:

MixedData =
 Name Age Married
 _______ ___ _______
 1234 'Sam' 42 'TRUE'
 2345 'Sally' 35 'TRUE'
 3456 'Angie' 22 'FALSE'
 4567 'Dan' 55 'FALSE'

 This time the output is precisely as you expected. Notice that the output
doesn’t include the double quotes around the names. MATLAB removes the
double quotes automatically in this case. However, you can also remove double
quotes by specifying %q instead of %s in a format string. The %q specifier tells
MATLAB to remove the double quotes from the output. If the example file had
used single quotes instead of double quotes around the names , you’d need to
use the textread() function to remove them because the textread() func-
tion accepts multiple delimiter characters.

Importing selected rows or columns
Sometimes you don’t need an entire file, only certain rows and columns of it.
All four of the functions described earlier in the chapter provide some means
of selecting specific information, but the csvread() function provides a
straightforward example of how to perform this task.

To see just a range of data displayed, type CSVOutput = csvread(‘NumericData.
csv’, 0, 0, [0, 0, 1, 1]) and press Enter. You see the following output:

CSVOutput =
 15 25
 18 29

The first argument to csvread() is the name of the file to read. The second
and third arguments are the row and column to start reading. In this case, the
example starts with row 0 and column 0. The fourth argument is a matrix that

www.it-ebooks.info

http://www.it-ebooks.info/

225 Chapter 11: Importing and Exporting Data

specifies the range of values to read. The first two values in the matrix must
match the second and third argument because they specify the starting point
of the range. The second two values provide the ending point of the range.
To give you a better idea of precisely how the range feature works, type
CSVOutput = csvread(‘NumericData.csv’, 0, 1, [0, 1, 2, 2]) and press Enter.
This time the output changes to show the second and third columns of the
data in NumericData.csv:

CSVOutput =
 25 30
 29 33
 35 41

 The row and column values that you use with csvread() are zero based.
This means that the first row is actually row 0 and the first column is actually
column 0. A three-row table would have rows 0 through 2, not 1 through 3.
Likewise, a three-column table would contain columns 0 through 2, not 1
through 3.

Exporting Data
After you perform the calculations that you want to perform, you often need
to put them in a form that others can use. However, not everyone has a copy
of MATLAB on his or her computer, so you need to export the MATLAB data
in some other form. Fortunately, getting the data out in a usable form is actu-
ally easier than importing it. The following sections describe how to export
data, scripts, and functions.

Performing export basics
Importing data often focuses on getting the right results. For example, you
might use textscan() or readtable() on a comma-separated value file,
even though a perfectly usable csvread() function exists to perform the
task. The goal is to get the data from the .csv file into MATLAB and preserve
both the content and layout of the original information. However, now that
you have data inside MATLAB and want to export it, the goal is to ensure that
the resulting file is standardized so that the recipient has minimum problems
using it. As a result, you’d use writetable() only if the recipient really did
require a custom format rather than a standard .csv file, or if the MATLAB
data was such that you had to use something other than csvwrite().
Because of the difference in emphasis, the following sections of the chapter
focus on standardized export techniques.

www.it-ebooks.info

http://www.it-ebooks.info/

226 Part IV: Employing Advanced MATLAB Techniques

Working with matrices and numeric data
Before you can do anything with exporting, you need data to export. Type
ExportMe = [1, 2, 3; 4, 5, 6; 7. 8, 9] and press Enter. You see the following
result:

ExportMe =
 1 2 3
 4 5 6
 7 8 9

The result is a matrix of three rows and three columns. Exporting matrices
is simple because the majority of the functions accept a matrix as a default.
To see how exporting matrices works, type csvwrite(‘ExportedData1.csv’,
ExportMe) and press Enter. MATLAB creates the new file, and you see it
appear in the Current Folder window. When you open the file, you see some-
thing like the output shown in Figure 11-3. (What you see precisely will vary
depending on the application you use to view .csv files.)

Figure 11-3:
Matrices

provide
the easiest
source for

export.

 Not all MATLAB data comes in a convenient matrix. When you use csvwrite(),
you must supply a matrix. To get a matrix, you may have to convert the data
from the existing format to a matrix using a conversion function. For example,
when the data appears as a cell array, you can use the cell2mat() function to
convert it. However, some conversions aren’t so straightforward. For example,
when you have a table as input, you need to perform a two-step process:

 1. Use the table2cell() function to turn the table into a cell array.

 2. Use the cell2mat() function to turn the cell array into a matrix.

Working with mixed data
Exporting simple numeric data is straightforward because you have a number
of functions to choose from that create the correct formats directly. The
problem comes when you have a cell array or other data form that doesn’t

www.it-ebooks.info

http://www.it-ebooks.info/

227 Chapter 11: Importing and Exporting Data

precisely match the expected input for csvwrite(). To see how mixed data
works, start by typing MyCellArray = {‘Andria’, 42, true; ‘Michael’, 23, false;
‘Zarah’, 61, false} and pressing Enter. You see the following result:

MyCellArray =
 'Andria' [42] [1]
 'Michael' [23] [0]
 'Zarah' [61] [0]

The mixed data type is a problem. If the data were all one type, you could
use the cell2mat() function to convert the cell array to a matrix like this:
MyMatrix = cell2mat(MyCellArray). Unfortunately, if you try that
route with the data in MyCellArray, you see the following error message:

Error using cell2mat (line 46)
All contents of the input cell array must be of the same

data type.

To obtain the required .csv file output, you must first convert the cell array
into something else. The easiest approach is to rely on a table. Type MyTable =
cell2table(MyCellArray) and press Enter. You obtain the following output:

MyTable =
 MyCellArray1 MyCellArray2 MyCellArray3
 ____________ ____________ ____________
 'Andria' 42 true
 'Michael' 23 false
 'Zarah' 61 false

At this point, you can type writetable(MyTable, ‘ExportedData2.csv’,
‘WriteVariableNames’, false) and press Enter. The output will use commas
as delimiters between columns, so most applications will see the resulting
file as true .csv format. Figure 11-4 shows what the output looks like in
Excel. (Your output may vary from that shown in the screenshot based on
the application you use to view it.)

Figure 11-4:
Mixed data

can be
harder to

export.

www.it-ebooks.info

http://www.it-ebooks.info/

228 Part IV: Employing Advanced MATLAB Techniques

In this case, the exporting process works fine. However, you can always
use properties to fine-tune the output of writetable(), just as you do
with readtable(). (See the “Importing mixed strings and numbers” sec-
tion, earlier in the chapter, for details.) Here is a quick overview of the
writetable() properties and their uses:

 ✓ FileType: Defines the type of file. The two acceptable values are text
and spreadsheet.

 ✓ WriteVariableNames: Specifies whether the first row of the output
file contains variable names used in MATLAB. The acceptable values are
true (default), false, 1, or 0.

 ✓ WriteRowNames: Specifies whether the first column of the output file
contains the row names used in MATLAB. The acceptable values are
true, false (default), 1, or 0.

 ✓ Delimiter: Defines which characters are used as delimiters. You spec-
ify this value as a string of individual delimiter characters.

 ✓ Sheet: Indicates which worksheet to write in the file. The acceptable
values are 1 (default), any positive integer indicating the worksheet index,
or a string containing the worksheet name. The worksheets are written
one at a time, so you need multiple calls to write multiple worksheets.

 ✓ Range: Specifies the rectangular portion of worksheet to write. When
the MATLAB data exceeds the size of the range, the data is truncated
and only the data that will fit appears in the output file. This value is
supplied as a string.

Exporting scripts and functions
To export scripts and functions, you must actually publish them using the
publish() function. MATLAB supports a number of output formats for
this purpose. For example, if you want to publish the UseTextscan()
function that appears earlier in the chapter in HTML format, you type
publish(‘UseTextscan.m’, ‘html’) and press Enter. MATLAB provides the
following output:

ans =
C:\MATLAB\Chapter11\html\UseTextscan.html

The actual location varies by system, but you also obtain the location of the
published file. Notice that MATLAB places the published file in an html sub-
directory. Figure 11-5 shows typical output. (What you see may differ based
on your platform and the browser that you use.)

www.it-ebooks.info

http://www.it-ebooks.info/

229 Chapter 11: Importing and Exporting Data

Figure 11-5:
To export

scripts and
functions,
you must

publish
them.

Publishing is a much larger topic than can fit in a single section of a chapter.
Chapter 12 discusses publishing in considerably greater detail.

Working with Images
Images are more complex than text files because they use binary data that
isn’t easy for humans to understand, and the format of that data is intricate.
Small, hard-to-diagnose errors can cause the entire image to fail. However,
the process of exporting and importing images is relatively straightforward,
as described in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

230 Part IV: Employing Advanced MATLAB Techniques

Exporting images
Before you can export an image, you need an image to export. The “Using the
bar() function to obtain a flat 3D plot” section of Chapter 7 describes how to
create the 3D bar graph shown in Figure 11-6. This is the image used for the
remainder of this chapter.

Figure 11-6:
Create an
image to

export from
MATLAB.

Before you export the image, you must decide on the parameters for the
output. The most important parameter is the output type. Because Joint
Photographic Experts Group (.jpeg) files are common on most platforms,
the example uses a .jpeg. However, you can use any of the file formats listed
in the Image section of the chart at http://www.mathworks.com/help/
matlab/import_export/supported-file-formats.html.

After you decide on an export format, you can use the saveas() function
to perform the task. In this case, you type saveas(gcf(), ‘Bar1.jpeg’, ‘jpg’)
and press Enter. MATLAB exports the figure using whatever resolution is
currently set for the figure. Remember that the gcf() function obtains the
handle for the current figure. Figure 11-7 shows the plot in Windows Photo
Viewer as Bar1.jpeg.

www.it-ebooks.info

http://www.it-ebooks.info/

231 Chapter 11: Importing and Exporting Data

Figure 11-7:
The output

image
shows the

plot as
Windows

Photo
Viewer
sees it.

 Use the saveas() function to save MATLAB objects, such as plots. However,
when working with actual images, use the imwrite() function instead. The
imwrite() function works essentially the same way that saveas() does, but
it works directly with image files.

Importing images
MATLAB can also work with images that you import from other sources.
The basic method of importing an image is to use imread(). For example,
to import Bar1.jpeg, you type ImportedImage = imread(‘Bar1.jpeg’); and
press Enter. What you see as output is a matrix that has the same dimensions
as the image. If the image has a resolution of 900 × 1200, the matrix will also
be 900 × 1200. However, a third dimension is involved — the color depth. It
takes red, green, and blue values to create a color image. So the resulting
matrix is actually 900 × 1200 × 3.

 This is one of those situations in which the semicolon is absolutely essential
at the end of the command. Otherwise, you may as well go get a cup of coffee
as you wait for the numbers to scroll by. If you accidentally issue the com-
mand without the semicolon, you can always stop it by pressing Ctrl+C.

www.it-ebooks.info

http://www.it-ebooks.info/

232 Part IV: Employing Advanced MATLAB Techniques

To display your image, you use the image() function. For example, to dis-
play the image you just imported, you type image(ImportedImage) and press
Enter. Figure 11-8 shows the result of importing the image. You see the origi-
nal plot, but in image form.

Figure 11-8:
Seeing the

plot in image
form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Printing and Publishing Your Work
In This Chapter
▶ Modifying the appearance of text

▶ Creating a MATLAB data publication

▶ Sending your data to the printer

A
fter you have labored long to create the next engineering marvel or to
produce the next scientific breakthrough, you really do want others to

know about it. Most people want to shout about their achievements from the
mountaintops, but this chapter tells you only how to publish and print them.
Publishing is electronic output of your data; printing is the physical output of
your data. Whether you publish or print your data, it becomes available in a
form that other people can use, even if they don’t own a copy of MATLAB.

Part of the publishing and printing process is to the make the information
aesthetically appealing. It doesn’t matter how impressive the data is if no
one can read it. Formatting information is part of the documentation process
because people need cues about the purpose of the text they’re seeing. To
that end, this chapter helps you create nicely formatted electronic publica-
tions and printed documents.

Using Commands to Format Text
Presentation is a large part of how people receive and understand the material
you provide. The same information, presented in two different ways, will elicit
different responses from the audience. Little things, such as adding bold type
to certain elements, can make a subtle but important difference in how the
information is grasped by the audience.

 This book isn’t about desktop publishing or creating professional-level pre-
sentations. The following sections provide you with some ideas on how you
can dress up the appearance of your data so that an audience can see the

www.it-ebooks.info

http://www.it-ebooks.info/

234 Part IV: Employing Advanced MATLAB Techniques

data in a certain light. You can use various text effects to add emphasis where
needed or to point out a particular element of interest. In addition, the use of
special symbols lets you add explanatory text so that the data is more easily
understood.

Modifying font appearance
The fonts you use or misuse can say a lot about your presentation. Unfor-
tunately, fonts are more often misused than used effectively to convey
ideas. Here are the four ways in which you can modify the appearance of
fonts in MATLAB to good effect:

 ✓ Bold: Adds emphasis so that the viewer sees the affected text as being
more important than the text around it. However, bold is also used for
headings to provide separation between elements. Always think of bold
as grabbing the attention of the viewer in some way.

 ✓ Monospace: Creates an environment in which text elements line up,
as when using a typewriter. Most people use monospace for code or
numeric data presented free-form as a table because it helps present a
neat appearance. The viewer sees the data rather than being distracted
by the data’s lack of alignment.

 ✓ Italic: Defines elements that are special in some way but don’t require
emphasis. For example, if you define a term inline with the remainder
of your data, the term should appear in italics to cue the viewer that
it is explained in the material that follows. The point of italic type is to
provide your viewer with cues about added material rather than to add
emphasis.

 ✓ Underline: Provides pointers to additional resources or other external
information (such as the URLs found in Web pages). Some people use an
underline for emphasis as well, but this is actually a misuse of an under-
line because you already have bold to emphasize something. Combining
bold and underline is even worse because the recipient can perceive it
as shouting. Use underline as a means of pointing to other data that the
viewer should know about but that doesn’t appear in your presentation.

 You can probably find other opinions as to how to use various font styles, but
this is the approach used by many (if not most) technical documents, so your
viewer will already know the rules. Keeping things familiar and easy to under-
stand will help the viewer focus on your data rather than on the fonts and
styles you use. Always make the data king of the presentation and leave the
beautiful text to the artists of the world.

www.it-ebooks.info

http://www.it-ebooks.info/

235 Chapter 12: Printing and Publishing Your Work

Now that you have some idea of how to use the font styles, the following sec-
tions demonstrate how to add them to your presentation. The screenshots in
each section build on the section before it so that you can see all the effects
in action. You don’t have to work through the sections in any particular
order.

Bold
The use of emphasis, normally associated with bold type, can make data
stand out. However, in MATLAB, the term bold actually refers to font weight.
The strength of the font you use provides a level of emphasis. In fact, you can
set a font to four different levels of emphasis:

 ✓ Light

 ✓ Normal (default)

 ✓ Demi

 ✓ Bold

 Not every font that you have installed on your system supports all four levels
of emphasis, but at least some do. You may try to achieve a certain level of
emphasis with a font and find that your efforts are thwarted. In many cases,
it has nothing to do with your code and everything to do with the font you’re
using. With these font limitations in mind, the following steps help you see the
varying levels of emphasis that you can achieve using MATLAB.

 1. Type Bar1 = bar([5, 15, 8, 2, 9]); and press Enter.

 MATLAB creates a new bar chart, as shown in Figure 12-1.

Listing the available fonts
At some point, you need to know how to obtain
a list of fonts available on the local system. To do
so, you use the listfonts() function. To see
how this function works, type Fonts = listfonts();
and press Enter. The Fonts variable receives
a sorted list of fonts on the current system that
you can then search for appropriate values. To
find a specific font, such as Arial, type Found =
find(strcmp(Fonts, ’Arial’)); and press Enter. If
Found isn’t empty after the call (in other words,
length(Found) returns a value greater than 0),
the system supports the font you want to use.

Some elements can have special fonts in
MATLAB. To discover the identity of the special
font, you call listfonts() with the handle
of the element. For example, a user interface
element may have a special font. If you obtain a
handle to that user interface element and pass
it to the listfonts() function, you receive
not only a sorted list of the system fonts but
also the identity of the special font used in the
user interface element.

www.it-ebooks.info

http://www.it-ebooks.info/

236 Part IV: Employing Advanced MATLAB Techniques

Figure 12-1:
A bar chart

that you can
format.

 2. Type TBox1 = annotation(‘textbox’, [.13, .825, .14, .075], ‘String’, ‘Light’,
‘FontName’, ‘Arial’, ‘FontSize’, 16, ‘FontWeight’, ‘light’, ‘BackgroundColor’,
[1, 1, 0]); and press Enter.

 You see a new annotation of type textbox added to the plot. The vari-
ous entries that you typed change the default font, the font size (so that
you can more easily see the text), the font weight (as a matter of empha-
sis), and the background color (so that the textbox stands out from
the bars in the background). To see the various weights side by side,
the next few steps add three more textboxes, each with a different font
weight.

 3. Type TBox2 = annotation(‘textbox’, [.29, .825, .14, .075], ‘String’, ‘Normal’,
‘FontName’, ‘Arial’, ’FontSize’, 16, ‘FontWeight’, ‘normal’, ‘BackgroundColor’,
[1, 1, 0]); and press Enter.

 You see the next annotation placed on the second bar. In most cases,
you won’t see much (or any) difference between the light and normal
settings because few fonts support both light and normal. However,
some do, so it’s important to experiment.

 4. Type TBox3 = annotation(‘textbox’, [.45, .825, .14, .075], ‘String’, ‘Demi’,
‘FontName’, ‘Arial’, ‘FontSize’, 16, ‘FontWeight’, ‘demi’, ‘BackgroundColor’,
[1, 1, 0]); and press Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

237 Chapter 12: Printing and Publishing Your Work

 5. Type TBox4 = annotation(‘textbox’, [.61, .825, .14, .075], ‘String’, ‘Bold’,
‘FontName’, ‘Arial’, ‘FontSize’, 16, ‘FontWeight’, ‘bold’, ‘BackgroundColor’,
[1, 1, 0]); and press Enter.

 You see the final annotation placed on the plot. Looking at the four dif-
ferent annotations, you can see a progression of weights and emphasis.
Even though you may not see a difference between light and normal, the
weight differences among normal, demi, and bold are pronounced, as
shown in Figure 12-2.

Figure 12-2:
Different

font weights
provide

different
levels of text

emphasis.

Monospace
A monospace font is one in which the characters take up precisely the same
amount of space. It’s reminiscent of the kind of text that typewriters put out (if
you don’t know what a typewriter is, check out http://site.xavier.edu/
polt/typewriters/tw-history.html). The reason that monospace is still
useful is because getting elements to line up is easy. That’s why code is often
presented in monospace: You can easily see the indentation that the code
needs to look nice and work properly. The way that monospace is set for an
element is through the font. Here are some commonly used monospace fonts:

 ✓ Anonymous Pro

 ✓ Courier

www.it-ebooks.info

http://www.it-ebooks.info/

238 Part IV: Employing Advanced MATLAB Techniques

 ✓ Courier New

 ✓ Fixedsys

 ✓ Letter Gothic

 ✓ Lucida Sans Typewriter Regular

 ✓ Lucida Console

 ✓ Monaco

 ✓ Profont

 ✓ Ubuntu

 You can see some additional monospace fonts at http://www.fontsquirrel.
com/fonts/list/classification/monospaced. The point is to use a font
that provides the proper appearance for your application. To obtain a mono-
space font appearance, you simply change the FontName property to a mono-
space font. For example, type TBox5 = annotation(‘textbox’, [.13, .72, .15,
.075], ‘String’, ‘Monospaced’, ‘FontName’, ‘CourierNew’, ‘BackgroundColor’,
[0, 1, 1]); and press Enter to produce a text box containing monospace text
(using the plot generated in the preceding section of the chapter). Figure 12-3
shows the results of this command.

Figure 12-3:
Monospace
fonts make

aligning text
elements

easy.

www.it-ebooks.info

http://www.it-ebooks.info/

239 Chapter 12: Printing and Publishing Your Work

Italic
Fonts normally have a straight, up-and-down appearance. However, you can
skew the font to give an angle to the upright characters and change how the
font looks. The skewed version of a font is called italic. To create an italic
font, the person creating the font must design a separate set of letters and
place them in a file containing the italic version.

 Some fonts don’t have an italic version. When you encounter such a situation,
you can ask the computer to skew the font programmatically. The font file
hasn’t changed and the font is still straight up and down, but it looks italicized
onscreen. This version of italics is called oblique. The italic version of a font
always gives a better visual appearance than the oblique version because the
italic version is hand tuned — that is, individual pixels are modified so that
the font appears smoother.

To configure a font for either italic or oblique, you use the FontAngle prop-
erty. The following steps help you see the differences between the standard,
italic, and oblique versions of a font. These steps assume that you have cre-
ated the MATLAB plot found in the “Bold” section, earlier in this chapter.

 1. Type TBox6 = annotation(‘textbox’, [.13, .61, .14, .075], ‘String’, ‘Normal’,
‘FontSize’, 16, ‘FontAngle’, ‘normal’, ‘BackgroundColor’, [1, 0, 1]); and
press Enter.

 You see a textbox annotation containing a normal version of the default
MATLAB font for your system.

 2. Type TBox7 = annotation(‘textbox’, [.29, .61, .14, .075], ‘String’, ‘Italic’,
‘FontSize’, 16, ‘FontAngle’, ‘italic’, ‘BackgroundColor’, [1, 0, 1]); and
press Enter.

 You see a textbox annotation containing either a normal or an italic
version of the default MATLAB font for your system. The italic version
appears only if the font happens to have an italic version (most do).

 3. Type TBox8 = annotation(‘textbox’, [.45, .61, .15, .075], ‘String’, ‘Oblique’,
‘FontSize’, 16, ‘FontAngle’, ‘oblique’, ‘BackgroundColor’, [1, 0, 1]); and
press Enter.

 You see a textbox annotation containing an oblique version of the stan-
dard font. Figure 12-4 shows all three versions. You may see a slight
difference in angle between the italic and oblique versions. The oblique
version may seem slightly less refined. Then again, you might not see
any difference at all between italic and oblique.

www.it-ebooks.info

http://www.it-ebooks.info/

240 Part IV: Employing Advanced MATLAB Techniques

Figure 12-4:
Italic and

oblique
versions of

the same
font could

show subtle
differences.

Underline
Interestingly enough, MATLAB doesn’t provide a simple method to underline
text. For example, you can’t easily perform this particular task using the
GUI. In fact, the default method of creating text using code doesn’t provide a
method for underlining text, either. However, you have a way to accomplish
the goal using a special interpreter called LaTeX (http://www.latex-
project.org/).

The LaTeX interpreter is built into MATLAB, but it isn’t selected by default, so you
must set it using the Interpreter property. In addition to underlining text, you
use the \underline() LaTeX function. To see how this works, type TBox9 =
annotation(‘textbox’, [.13, .5, .175, .075], ‘String’, ‘\underline{Underline}’,
’FontSize’, 16, ‘BackgroundColor’, [.5, 1, .5], ‘Interpreter’, ‘latex’); and press
Enter. You see the output shown in Figure 12-5.

 Notice that the output differs quite a bit when using the LaTeX interpreter.
That’s because LaTeX ignores many of the formatting properties supplied by
MATLAB — you must set them using LaTeX functions. However, the problem is
more serious than simply setting a font because MATLAB appears to lack the
required font files for LaTeX. The bottom line is that you should avoid under-
lining text unless you truly need to do so. Use bold, italic, and font colors in
place of the underline as often as possible. The discussion at http://www.
mathworks.com/matlabcentral/newsreader/view_thread/114116
can provide you with additional information about this issue and some poten-
tial work-arounds.

www.it-ebooks.info

http://www.it-ebooks.info/

241 Chapter 12: Printing and Publishing Your Work

Figure 12-5:
Underlining

text is a little
harder than

perform-
ing other

formatting
tasks.

Using special characters
Sometimes you need to use special characters and character formatting in
MATLAB. The following sections describe how to add Greek letters to your
output, as well as work with superscript and subscript as needed.

Greek letters
The 24 Greek letters are used extensively in math. To add these letters to
MATLAB, you must use a special escape sequence, similar to the escape
sequences you use in previous chapters. Table 12-1 shows the sequences to
use for Greek letters.

Table 12-1 Adding Greek Letters to MATLAB
Letter Sequence Letter Sequence Letter Sequence
α \alpha β \beta γ \gamma

δ \delta ε \epsilon ζ \zeta

η \eta θ \theta ι \iota

κ \kappa λ \lambda μ \mu

ν \nu ξ \xi ο Not Used
π \pi ρ \rho σ \sigma

τ \tau υ \upsilon φ \phi

χ \chi ψ \psi ω \omega

www.it-ebooks.info

http://www.it-ebooks.info/

242 Part IV: Employing Advanced MATLAB Techniques

As you can see, each letter is preceded by a backslash, followed by the letter’s
name. The output is always lowercase Greek letters. Notice that omicron (ο)
has no sequence. To see how the letters appear onscreen, type TBox10 =
annotation(‘textbox’, [.13, .39, .17, .085], ‘String’, ‘\alpha\beta\gamma\delta\
epsilon\zeta\eta\theta\iota\kappa\lambda\mu \nu\xi\pi\rho\sigma\tau\
upsilon\phi\chi\psi\omega’, ‘BackgroundColor’, [.5, .5, 1]); and press Enter.
Figure 12-6 shows how your sample should look at this point.

 Many of the Greek letters are also available in uppercase form. All you need
to do is use initial caps for the letter name. For example, \gamma produces
the lowercase letter, but \Gamma produces the uppercase version of the same
letter. You can obtain additional information about text properties (including
additional symbols that you can use) at http://www.mathworks.com/
help/matlab/ref/text_props.html.

Figure 12-6:
MATLAB
provides

access to
the vari-

ous Greek
letters nor-
mally used

in formulas.

Superscript and subscript
Using superscript and subscript as part of the output is essential when cre-
ating formulas or presenting certain other kinds of information. MATLAB
uses the caret (^) to denote superscript and the underscore (_) to denote
subscript. You enclose the characters that you want to superscript or
subscript in curly brackets {}. To see how superscript and subscript
works, type TBox11 = annotation(‘textbox’, [.45, .39, .15, .075], ‘String’,
‘Normal^{Super}_{Sub}’, ‘BackgroundColor’, [.5, .5, 1]); and press Enter.
Figure 12-7 shows typical output from this command.

www.it-ebooks.info

http://www.it-ebooks.info/

243 Chapter 12: Printing and Publishing Your Work

Notice that the superscript and subscript characters appear in the command
without a space after the characters that are in normal type. The output
shows these characters immediately after the normal type. In addition, the
superscripted characters are over the top of the subscripted characters.

Figure 12-7:
Working

with super-
script and
subscript

characters.

Adding math symbols
You would have a tough time presenting formulas to others without being
able to use math symbols. MATLAB provides you with a wealth of symbols
that you can use for output purposes. The following sections describe the
most commonly used symbols and how you access them.

Fraction
Displaying a fraction onscreen doesn’t always include a numeric fraction; it
could be a formula that requires that sort of presentation. Whatever your
need, you can display fractions whenever needed. However, to do that, you
must use the LaTeX interpreter mentioned in the “Underline” section, earlier
in the chapter. This means that your formatting options are limited and that
the output won’t necessarily reflect the formatting choices you normally
make when using MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

244 Part IV: Employing Advanced MATLAB Techniques

The fraction requires use of a LaTeX display style that you access using $\
displaystyle\frac. The fraction itself appears in two curly brackets, such
as {1}{2} for the symbol ½. The entry ends with another dollar sign ($). To
see how fractions work with something a little more complex, type TBox12 =
annotation(‘textbox’, [.13, .3, .14, .075], ‘String’, ‘$\displaystyle\frac{x-2y}
{x+y}$’, ‘BackgroundColor’, [1, .5, .5], ‘Interpreter’, ‘latex’); and press Enter.
Figure 12-8 shows typical output from this command.

Figure 12-8:
Using

fractions
to display
formulas

correctly.

Square root
MATLAB makes displaying a square root symbol easy. However, getting the
square root symbol the right size and with the bar extended over the expres-
sion whose root is being taken requires LaTeX. As with many LaTeX commands,
you enclose the string that you want to format in a pair of dollar signs ($).
The function used to perform the formatting is \sqrt{}, and the value that
you want to place within the square root symbol appears within the curly
brackets.

To see the square root symbol in action, type TBox13 = annotation(‘textbox’,
[.29, .3, .14, .075], ‘String’, ‘\sqrt{f}’, ‘BackgroundColor’, [1, .5, .5],
‘Interpreter’, ‘latex’); and press Enter. The variable f will appear in the
square root symbol, as shown in Figure 12-9.

www.it-ebooks.info

http://www.it-ebooks.info/

245 Chapter 12: Printing and Publishing Your Work

Figure 12-9:
Displaying
the square

root symbol
so that the

bar extends
over the f.

Sum
Displaying a summation formula complete with sigma and the upper and
lower limit involves using LaTeX with the \sum function. You supply all three
elements of the display in a single statement: the lower limit first, the upper
limit second, and the expression third. Each element appears in separate
curly brackets. The lower limit is preceded by the underscore used for sub-
scripts and the upper limit is preceded by the caret used for superscripts.
The entire statement appears within dollar signs ($), as is normal for LaTeX.
However, in this particular case, you must include a second set of dollar signs
or the expression doesn’t appear correctly onscreen. (The upper and lower
limits don’t appear in the correct places.)

To see how summation works, type TBox14 = annotation(‘textbox’, [.45, .285,
.14, .1], ‘String’, ’$$\sum_{i=1}^{2n}{|k_i-k_j|}$$’, ‘BackgroundColor’, [1, .5, .5],
‘Interpreter’, ‘latex’); and press Enter. Notice the use of the double dollar signs in
this case. In addition, be sure to include both the underscore and caret, as shown.
Figure 12-10 shows the result of using this command.

www.it-ebooks.info

http://www.it-ebooks.info/

246 Part IV: Employing Advanced MATLAB Techniques

Figure 12-10:
Showing a
summation

complete
with upper
and lower

limits.

Integral
To display a definite integral, you use the LaTeX \int function, along with
the \d function for the slices. The \int function accepts three inputs: two
for the interval and the third for the function. In many respects, the format
is the same as that used for summation. The beginning of the interval relies
on the superscript caret character, while the ending of the interval relies on
the subscript underscore character. You must enclose the entire command
within double dollar signs ($$) or else the formatting of the superscript and
subscript will fail.

To see how to create an integral, type TBox15 = annotation(‘textbox’, [.61,
.285, .22, .1], ‘String’, ‘$$\int_{y1(x)}^{y2(x)}{f(x,y)}\d{dx}\d{dy}$$’,
‘BackgroundColor’, [1, .5, .5], ‘Interpreter’, ‘latex’); and press Enter. Notice
that the two slices come after the \int function and that each slice appears
in its own \d function. Figure 12-11 shows the result of this command.

Derivative
When creating a derivative, you use LaTeX to define a combination of a frac-
tion with superscripts. So, in reality, you’ve already created a derivative in the
past — at least in parts. To see how a derivative works, type TBox16 =
annotation(‘textbox’, [.13, .21, .14, .085], ‘String’, ‘$\displaystyle\frac{d^2u}
{dx^2}$’, ‘BackgroundColor’, [1, .5, .5], ‘Interpreter’, ‘latex’); and press
Enter. Figure 12-12 shows the output from this command.

www.it-ebooks.info

http://www.it-ebooks.info/

247 Chapter 12: Printing and Publishing Your Work

Figure 12-11:
Defining a

definite inte-
gral com-
plete with

interval.

Figure 12-12:
Use a com-
bination of

fractions
and super-

scripts to
create a

derivative.

www.it-ebooks.info

http://www.it-ebooks.info/

248 Part IV: Employing Advanced MATLAB Techniques

Publishing Your MATLAB Data
At some point, you want to publish the information you create. Of course,
most of the time, you don’t need to publish a matrix or other source data.
What you want to publish are the plots you create from the data. A picture
is worth a thousand words — you’ve heard the phrase a million times, yet
it still holds true. The following sections describe the techniques you use
to output MATLAB data of any sort to other formats. However, it does focus
on plots because that’s the kind of data you output most often. (If you want
to discover the basics of how to publish functions and scripts, see the
“Exporting scripts and functions” section of Chapter 11.)

Performing advanced script and
function publishing tasks
The publish() function can perform a number of different sorts of pub-
lishing tasks. The simplest way to publish a script or function is to call
publish() with the name of the file. This approach produces an HTML file
output. If you want to specify a particular kind of output, you provide the file
format as the second input, such as publish('Bar1.m', 'pdf'). MATLAB
supports the following output formats:

 ✓ .doc

 ✓ .html (default)

 ✓ .latex

 ✓ .pdf

 ✓ .ppt

 ✓ .xml

 After you finish publishing a script or function in HTML format, you can view it
using the web() function. To test this feature, first publish the Bar1.m script
by typing publish(‘Bar1.m’) and pressing Enter. After you see the success
message, type web(‘html\Bar1.html’) and press Enter. You see the MATLAB
browser output, shown in Figure 12-13. However, even if this output looks per-
fect, always test the published output using the applications that your viewers
will use to ensure that everything displays correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

249 Chapter 12: Printing and Publishing Your Work

Figure 12-13:
Display the

results of
the publica-

tion pro-
cess using
MATLAB’s

browser.

Saving your plot as a script
MATLAB provides two command-based methods
for saving your plot as a script. Both involve
using the saveas() function. The first method
creates a complete script for your plot, which
makes the code used to create the plot easy to
edit. Assuming that you want to save the Bar1
plot used throughout this chapter, you type
saveas(Bar1, ’CreateBar1’, ’mmat’) and press
Enter. The output is a script containing all the
required drawing commands and an associated
resource file with a .mat extension. This first
method will eventually become obsolete (and
you see a message telling you so), but it works
fine in the current version of MATLAB.

The second method creates a script for pro-
grammatically loading the plot from disk. To
perform this task, type saveas(Bar1, ’Bar1’, ’m’)
and press Enter. In this case, you get a script for
loading the plot from disk. In addition, MATLAB

saves a copy of the plot for you. However, it
saves just the plot because you used the Bar1
handle. If you want to save the entire figure
instead, you must type saveas(gcf(), ’Figure 1’,
’m’) and press Enter (assuming that Figure 1 is
indeed the current figure).

Another possibility is to use the GUI to create a
function for your plot. To perform this task, choose
File➪Generate Code in the figure window. You
see a message telling you that MATLAB is gen-
erating the code for you. When the message box
disappears, the code is complete, and you see
an editor window containing the resulting code.
This technique creates a function to regenerate
the entire figure. You can also click Edit Plot on
the figure toolbar and then right-click individual
elements. Choose Show Code from the context
menu and you see an editor window containing
a function to generate just that element.

www.it-ebooks.info

http://www.it-ebooks.info/

250 Part IV: Employing Advanced MATLAB Techniques

You can also use a version of publish() with name and value pair options.
This version of publish() gives you the most control over the published
output. You can control precisely where the document is saved and the
size of any images provided with the output. Table 12-2 contains a list of the
options and describes how you can use them.

Table 12-2 Using the publish() Options
Name Values Type Description
catchError true (default) or

false
Code Determines how

MATLAB handles errors
during the publishing
process.

codeToEvaluate String containing the
required code

Code Allows you to provide
additional code with
the published docu-
ment so that it’s pos-
sible to perform tasks
such as evaluating the
code when the associ-
ated function requires
inputs.

createThumbnail true (default) or
false

Figure Determines whether
the output document
contains a thumbnail
version of the full image
(when an image is part
of the output).

evalCode true (default) or
false

Code Forces MATLAB to
evaluate the code as it
publishes the script or
function, which results
in additional details in
the output file in some
cases.

figureSnapMethod entireGUIWindow
(default), print,
getframe, or
entireFigure
Window

Figure Defines the tech-
nique used to obtain
the figure contained
within the published
document.

format doc, html (default),
latex, pdf, ppt,
and xml

Output Determines the format
of the published
document.

www.it-ebooks.info

http://www.it-ebooks.info/

251 Chapter 12: Printing and Publishing Your Work

Name Values Type Description

imageFormat png, epsc2, jpg,
bmp, tiff, eps,
eps2, ill, meta,
or pdf

Figure Indicates the format of
the figure contained
within the published
document. The default
setting depends on
the output document
format. Some document
formats won’t access
all the format types. For
example, PDF output is
limited to the bmp or
jpg options, but XML
output can accept any
of the file formats.

maxHeight ' ' (default) or posi-
tive integer value

Figure Determines the
maximum height of
the figure contained
within the published
document.

maxOutputLines Inf (default) or non-
negative integer value

Code Specifies the number
of lines of code that
MATLAB includes in the
published document.
Setting this value to 0
means that no code is
in the output.

maxWidth ' ' (default) or posi-
tive integer value

Figure Determines the maxi-
mum width of the figure
contained within the
published document.

outputDir ' ' (default) or
full path to output
directory

Output Specifies where to
place the published
document on disk.

showCode true (default) or
false

Code Determines whether
the published document
contains any source
code.

stylesheet ' ' (default) or full
path and XSL filename

Output Specifies the location
and name of an XSL file
to use when generating
XML file output.

useNewFigure true (default) or
false

Figure Specifies that MATLAB
is to create a new
figure prior to publish-
ing the document.

www.it-ebooks.info

http://www.it-ebooks.info/

252 Part IV: Employing Advanced MATLAB Techniques

Saving your figures to disk
You must save your figures to disk if you want to use them the next session.
However, saving a figure to disk can also help you publish the information in
a form that lets others use the information as well. The format you choose
determines how the saved information is used. Only the MATLAB figure (.fig)
format provides an editable form that you can work with during the next ses-
sion. The following sections describe the GUI and command method of saving
figures to disk.

Using the GUI to save figures
To save an entire figure, choose File➪Save As in the figure window. You see
the Save As dialog box, shown in Figure 12-14. Type a name for the file in the
File Name field, select the format that you want to use to save the file in the
Save As Type field, and click Save to complete the process.

Using commands to save figures
The command version of saving a figure depends on the saveas() command.
To use this command, you supply a handle to the figure that you want to save
as the first argument. The second argument is a filename. When you provide a
type of file format to use as the third argument, the filename need not include
a file extension. However, if you provide just the filename, you must provide
an extension as well. MATLAB supports these file formats:

 ✓ .ai

 ✓ .bmp

 ✓ .emf

 ✓ .eps

 ✓ .fig

 ✓ .jpg

 ✓ .m

 ✓ .pbm

 ✓ .pcx

 ✓ .pdf

 ✓ .pgm

 ✓ .png

 ✓ .ppm

 ✓ .tif

www.it-ebooks.info

http://www.it-ebooks.info/

253 Chapter 12: Printing and Publishing Your Work

 The handle that you provide need not be the figure itself. For example, if you
type saveas(TBox1, ’TBox1.jpg’) and press Enter, MATLAB still saves the
entire figure. (Note that you have no way to specify that you want to save just
a portion of the figure.)

Figure 12-14:
Saving an

entire figure.

Printing Your Work
Printing is one of the tasks that most people use the GUI to perform, even
the most ardent keyboard user. The issue is one of convenience. Yes, you can
use the printopt() and print() functions to perform the task using the
keyboard, but only if you’re willing to perform the task nearly blind. The GUI
actually shows you what the output will look like (or, at least, a close approxi-
mation). Using the commands is significantly harder in this case and isn’t
discussed in the book. The following sections describe how to use the GUI to
output your document.

Configuring the output page
Before you print your document, you need to tell MATLAB how to print it.
Choose File➪Print Preview in the figure window to display the Print Preview
dialog box, shown in Figure 12-15.

www.it-ebooks.info

http://www.it-ebooks.info/

254 Part IV: Employing Advanced MATLAB Techniques

Figure 12-15:
Configuring

the page
before you

print it.

The right side of the dialog box shows an approximation of the changes you
make on the left side. The settings are presented on four tabs with the follow-
ing functions:

 ✓ Layout: Defines how the plot or other document will appear on the page.
You specify the margins, size of the paper, and presentation of the infor-
mation itself. The best way to work through the layout process is simply
to try the settings and see how they affect the image shown in the right
side of the dialog box.

 ✓ Lines/Text: Specifies the line widths and types of text used to print the
documentation. In some cases, you find that using a different line weight
or font for printing improves the output appearance of the document.
Some of these settings are printer specific. For example, a built-in font is
likely to provide a more pleasing appearance than a software font pro-
vided as part of the system.

www.it-ebooks.info

http://www.it-ebooks.info/

255 Chapter 12: Printing and Publishing Your Work

 ✓ Color: Fixes the color changes between the display and the printer.
What you see onscreen is unlikely to be what you get from the printer.
The reasons for the difference are complex, but from an overview per-
spective, printers use subtractive color mixing, while displays use addi-
tive color mixing. The two kinds of color presentation don’t always work
in sync with each other. Read the article at http://www.worqx.com/
color/color_systems.htm for additional information.

 ✓ Advanced: Provides access to features such as recomputing the links
and ticks before printing. You won’t generally need these settings unless
you notice a problem during the printing process.

Printing the data
After you create an output configuration, you can print the document. To
perform this task, choose File➪Print. You see the Print dialog box, in which
you can choose a printer, configure it if necessary by clicking the Properties
button, and then click OK to print the document.

 You don’t have to have direct access to the printer you want to use. The Print
to File option in the Print dialog box lets you output the printed material to a
file on disk. You can then send this file to the printer when you do have access
to it. As an alternative, you can also send the file to someone else who needs
the printed output (assuming that the person has access to the necessary
printer).

www.it-ebooks.info

http://www.it-ebooks.info/

256 Part IV: Employing Advanced MATLAB Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Recovering from Mistakes
In This Chapter
▶ Understanding error messages

▶ Considering the uses of quick alerts

▶ Obtaining common fixes for MATLAB error messages

▶ Developing your own error messages

▶ Embracing good coding practices

A
lot of people associate mistakes with failure. Actually, everyone makes
mistakes, and they’re all learning opportunities. Some of the greatest

minds the world has ever seen thrived quite nicely on mistakes. (Consider how
many tries it took Edison to get the light bulb right; also, see my blog post at
http://blog.johnmuellerbooks.com/2013/04/26/defining-the-
benefits-of-failure/ on the benefits of failure.) The point is that mistakes
are normal, common, and even advantageous at times, as long as you get over
them and recover. That’s what this chapter is all about — helping you recover
from mistakes.

MATLAB can’t talk to you directly, so it communicates through error mes-
sages. Part of the problem is that MATLAB and humans speak two different
languages, so sometimes the error messages aren’t quite as helpful as they
could be. This chapter helps you understand the error messages so that you
can do something about them. You can even find sources for common fixes
to these error messages, so the work of overcoming any issues may have
already been done by someone. All you’ll have to do is go to the right source.

When you write your own applications, sometimes you have to tell other
people that they have made a mistake. Unfortunately, you can’t record your
voice saying, “Oops, I think you meant to type a number instead of some
text here” and expect MATLAB to play it for someone using your application.
Therefore, you need to create your own custom error messages so that you
can communicate with others using your applications.

Of course, the best way to handle error messages is to not make mistakes.
Even though some mistakes are unavoidable (and others have had positive
benefits, such as the making of the glue found on the back of sticky notes),
you can work in ways that tend to reduce errors of all sorts. The final section

www.it-ebooks.info

http://www.it-ebooks.info/

258 Part IV: Employing Advanced MATLAB Techniques

of this chapter discusses good coding practices to use to avoid trouble. No,
this section can’t prevent you from ever seeing an error message, but by fol-
lowing its advice, you can see fewer of them.

Working with Error Messages
Error messages are designed to tell you that something has gone wrong. It
seems like an obvious thing to say, but some people actually view error mes-
sages as the computer’s way of telling them it dislikes them. Computers don’t
actually hate anyone — they simply like things done a certain way because
they really don’t understand any other way.

Error messages come in two levels:

 ✓ Error: When an actual error occurs, processing stops because the
MATLAB application can’t continue doing useful work. You can tell an
error message because it appears in dark-red type and the system makes a
sound. However, the most important aspect of an error is that the applica-
tion stops running, and you need to fix the problem before it can proceed.

 ✓ Warning: When a warning condition occurs, the computer tells you about
it but continues processing the application as long as doing so is safe.
The message type shows up in a lighter red in this case, and you don’t
hear any sort of system sound. In addition, the error message is preceded
by the word Warning. In fact, you might not know that a warning has hap-
pened until you look at the Command window. Fixing a warning is still
important because warnings have a habit of becoming errors over time.

 The most important thing to remember about error and warning messages
is that someone created them based on what that person thought would
happen, rather than what is happening. You sometimes see an error or warn-
ing message that doesn’t quite make sense in the situation or is possibly
completely wrong. Of course, first you try reacting to the error message, but
if you can’t find a cause for the error, it’s time to start looking in other places.
The error or warning message is designed to provide you with help after
something has gone wrong — and sometimes the help is absolutely perfect
and at other times it isn’t, and you need to work a little harder to resolve the
situation.

Responding to error messages
Until now, every time an error has happened, it has simply displayed in the
Command window without much comment. However, you can do more about
errors than simply wait for them to announce themselves. MATLAB lets you

www.it-ebooks.info

http://www.it-ebooks.info/

259 Chapter 13: Recovering from Mistakes

intercept errors and handle them in various ways using a special try...
catch structure. Listing 13-1 shows how to create such a structure in a func-
tion. You can also find this function in the Broken.m file supplied with the
downloadable source code.

Listing 13-1: Using the try...catch Structure

function [] = Broken()
%BROKEN A broken piece of code.
% This example is designed to generate an error.

 try
 Handle = fopen('DoesNotExist.txt');
 Data = fread(Handle);
 disp(Data);
 catch exc
 disp('Oops, an error has occurred!');
 disp(exc)
 end
end

First, look at the source of the error. The call to fopen() uses a file that
doesn’t exist. Using this call isn’t a problem; in fact, some calls to fopen()
are expected to fail. When this failure happens, fopen() returns a handle
with a value of –1. The problem with this code occurs in the next call.
Because Handle doesn’t contain a valid handle, the fread() call fails.
Reading data from a file that doesn’t exist isn’t possible.

 The try...catch block contains the code that you want to execute between
try and catch. When an exception does occur, the information is placed in
exc, where you can use it in whatever way is necessary. In this case, the error-
handling code (error handler) — the code between catch and end — dis-
plays a human-readable message and a more specific MATLAB error message.
The first is meant for the user; the second is meant for the developer.

To try this code, type Broken() and press Enter in the Command window.
You see the following output:

Oops, an error has occurred!
 MException with properties:

 identifier: 'MATLAB:FileIO:InvalidFid'
 message: 'Invalid file identifier. Use fopen to
 generate a valid file identifier.'
 cause: {0x1 cell}
 stack: [1x1 struct]

www.it-ebooks.info

http://www.it-ebooks.info/

260 Part IV: Employing Advanced MATLAB Techniques

The exception information starts with the second line. It tells you that the
exception is a member of the MException class and has certain properties.
Here’s the additional information you receive:

 ✓ identifier: A short, specific description of the error. An identifier pro-
vides a category of errors, and you can use it to find additional informa-
tion about the error as a whole.

 ✓ message: A longer message that provides details about the problem in
this particular instance. The message is generally easier for humans to
understand than is the other information.

 ✓ cause: When establishing a cause for the problem is possible, this prop-
erty contains a list of causal sources.

 ✓ stack: The path that the application has followed to get to this point.
By tracing the application path, you can often find a source for an
error in some other function — the caller of the current function (or
one of its callers all the way up to the main application in the call
hierarchy).

Understanding the MException class
The MException class is the basis for the exception information that
you receive from MATLAB. It provides you with the properties and func-
tions needed to work with exceptions; you’d then use the exceptions to
overcome, or at least reduce, the effect of errors on the user. The previ-
ous section of the chapter acquaints you with the four properties that the
MException class provides. Here’s a list of the functions that you use
most often:

 ✓ addCause(): Appends the cause that you provide to the list of causes
already provided with the exception. You can use this feature to provide
ancillary information about an exception.

 ✓ getReport(): Outputs a formatted report of the exception information
in a form that matches the output that MATLAB provides.

 ✓ last(): Obtains the last exception that the application threw.

 ✓ rethrow(): Sends an exception to the next higher level of the applica-
tion hierarchy when handling the error at the current level isn’t pos-
sible. (After an exception is accepted by an application, it’s no longer
active, and you must rethrow it to get another part of the application to
act on it.)

 ✓ throw(): Creates an exception that either displays an error message or
is handled by another part of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

261 Chapter 13: Recovering from Mistakes

 ✓ throwAsCaller(): Creates an exception using the caller’s identifier
that either displays an error message or is handled by another part of the
application. (When one part of an application accesses a function, the
part that performs the access is named the caller, so this function makes
the exception appear as it if were created by the caller rather than the
current function.)

One of the more interesting functions provided by the MException class
is getReport(). Listing 13-2 shows how to use this function to obtain for-
matted output for your application. You can also find this function in the
Broken2.m file supplied with the downloadable source code.

Listing 13-2: Creating an Error Report

function [] = Broken2()
%BROKEN2 A broken piece of code.
% This example is designed to generate an error
% and display a report about it.

 try
 Handle = fopen('DoesNotExist.txt');
 Data = fread(Handle);
 disp(Data);
 catch exc
 disp('Oops, an error has occurred!');
 disp(exc.getReport());
 end
end

 Notice that you must still use the disp() function to actually output the
formatted string to screen. The getReport() output is nicely formatted, if
rather inflexible, because you don’t have access to the individual MException
properties. However, the output works fine for most uses. Here’s the output of
this example:

Oops, an error has occurred!
Error using fread
Invalid file identifier. Use fopen to generate a valid

file identifier.

Error in Broken2 (line 8)
 Data = fread(Handle);

The output includes all four properties. However, the cause isn’t used in this
case because the cause can’t be identified by MATLAB. You need to use the
addCause() function to add a cause when desired.

www.it-ebooks.info

http://www.it-ebooks.info/

262 Part IV: Employing Advanced MATLAB Techniques

Creating error and warning messages
As previously mentioned, MATLAB supports both error and warning mes-
sages. You have a number of ways to create exceptions based on application
conditions. The easiest way is to use the error() and warning() functions.
The first creates an error condition, while the second creates a lesser, warn-
ing condition.

The example shown in Listing 13-3 presents a basic method of issuing an
error or warning due to user input. However, you can use the same technique
whenever an error or warning condition arises and you can’t handle it locally.
You can also find this function in the ErrorAndWarning.m file supplied with
the downloadable source code.

Listing 13-3: Creating Errors and Warnings

function [] = ErrorAndWarning()
%ERRORANDWARNING Create Error and Warning Messages
% This example shows how to create error and warning

messages.

 NotDone = true;

 while NotDone
 try

 Value = input('Type something: ', 's');

 switch Value
 case 'error'
 error('Input Error');
 case 'warning'
 warning('Input Warning');
 case 'done'
 NotDone = false;
 otherwise
 disp(['You typed: ', Value]);
 end
 catch Exception
 disp('An exception occurred!');
 disp(Exception.getReport());
 end
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

263 Chapter 13: Recovering from Mistakes

The example begins by creating a loop. It then asks the user to type some-
thing. If that something happens to be error or warning, the appropriate
error or warning message is issued. When the user types done, the applica-
tion exits. Otherwise, the user sees a simple output message. The example
looks simple, and it is, but it has a couple of interesting features. The follow-
ing steps help you work with the example:

 1. Type ErrorAndWarning() and press Enter in the Command window.

 The application asks you to type something.

 2. Type Hello World! and press Enter.

 You see the following output:

You typed: Hello World!

 The application asks the user to type something else.

 3. Type warning and press Enter.

 You see the following output:

Warning: Input Warning
> In ErrorAndWarning at 16

 Notice that the message doesn’t say anything about an exception. A
warning is simply an indicator that something could be wrong, not that
something is wrong. As a result, you see the message, but the applica-
tion doesn’t actually generate an exception. The application asks the
user to type something else.

 4. Type error and press Enter.

 You see the following output:

An exception occurred!
Error using ErrorAndWarning (line 14)
Input Error

 This time, an exception is generated. If the exception handler weren’t
in place, the application would end at this point. However, because
an exception handler is in place, the application can ask the user to
type something else. Adding exception handlers makes recovering
from exceptions possible, as happens in this case. Of course, your
exception handler must actually fix the problem that caused the
exception.

 5. Type done and press Enter.

 The application ends.

www.it-ebooks.info

http://www.it-ebooks.info/

264 Part IV: Employing Advanced MATLAB Techniques

The example application uses the simple form of the error() and warning()
functions. Both the error() and warning() functions can accept an identi-
fier as the first argument, followed by the message as the second. You can also
add the cause and stack trace elements as arguments. The point is, all you
really need in most cases is a simple message.

Setting warning message modes
Error messages always provide you with any details that the application pro-
vides. Warning messages are different — you can tell MATLAB to provide only
certain details as needed. You can set the configuration globally or base it on
the message identifier (so that warnings with some identifiers provide more
information than others do). To set the global configuration, you provide two
arguments. The first is the warning state:

 ✓ on: Sets the configuration element on.

 ✓ off: Turns the configuration element off.

 ✓ query: Determines whether the configuration element is currently on
or off.

At a global level, you have access to two settings, which are provided as the
second argument to the warning() function:

 ✓ backtrace: Determines whether the output includes stack trace
information.

 ✓ verbose: Determines whether the output includes a short message or
one with all the details as well.

To see how this works, type warning(‘query’, ‘backtrace’) and press Enter.
You should see an output message telling you the current status of the
backtrace configuration element. (The default setting turns it on so that
you can see the stack trace as part of the warning message when a stack
trace is provided.)

The message identifier-specific form of the warning() function starts with
a state. However, in this case, the second argument is a message identifier.
For example, if you type warning(‘query’, ‘MATLAB:FileIO:InvalidFid’) and
press Enter, you see the current state of the MATLAB:FileIO:InvalidFid
identifier.

 Setting warnings for particular message identifiers to off is usually a bad idea
because the system can’t inform you about problems. This is especially true
for MATLAB-specific messages (rather than custom messages that you create,

www.it-ebooks.info

http://www.it-ebooks.info/

265 Chapter 13: Recovering from Mistakes

as described in the “Making Your Own Error Messages” section later in the
chapter). However, setting them to off during troubleshooting can help you
avoid the headache of seeing the message all the time.

Understanding Quick Alerts
Errors can happen at any time. In fact, there seems to be an unwritten law
that errors must happen at the most inconvenient time possible and only
when anyone who can possibly help is out of the building. When you face
this problem, at least you have the assurance that every other person to ever
write an application has faced the same problem. Waiting by your phone for
a call that you don’t want to hear (because it’s always a bad news call) is
one solution to the problem, but probably not the best solution because the
person on the other end of the line is unlikely to have the information you so
desperately need about the issue.

This is a situation in which sending yourself a note is probably a better option
than waiting for the call. Fortunately, MATLAB provides the sendmail()
function for this purpose. It’s possible for you to make one of the responses
in your error-handling code be sending an email that you can pick up on your
smartphone. The result is that you get information directly from the applica-
tion that helps you fix the problem right where you are, rather than have to go
into work. The sendmail() function accepts these arguments:

 ✓ Recipients: Provides a list of one or more recipients for the message.
Each entry is separated from the other with a semicolon.

 ✓ Subject: Contains the message topic. If the problem is short enough, you
can actually present the error message in the subject line.

 ✓ Message (optional): Details the error information.

 ✓ Attachments (optional): Specifies the path and full filename of any
attachment you want to send with the message.

 Before you can send an email, you must configure MATLAB to recognize your
Simple Mail Transfer Protocol (SMTP) server and provide a From address. In
order to do this, you must use a special setpref() function. For example,
if your server is smtp.mycompany.com, then you type setpref(‘Internet’,
‘SMTP_Server’, ‘smtp.mycompany.com’) in the Command window and
press Enter. After you set the SMTP address, you set the From address by
providing your email address as input to the setpref() function, as in
setpref('Internet', 'E_mail', 'myaddress@mycompany.com').

www.it-ebooks.info

http://www.it-ebooks.info/

266 Part IV: Employing Advanced MATLAB Techniques

Listing 13-4 shows a technique for sending an email. The code used to
create the error is similar to the Broken example used earlier in the chapter.
However, this time the example outputs an email message rather than a mes-
sage onscreen. You can also find this function in the Broken3.m file supplied
with the downloadable source code.

Listing 13-4: Sending an Email Alert

function [] = Broken3()
%BROKEN3 A broken piece of code.
% This example is designed to generate an error
% and send an e-mail about it.

 try
 Handle = fopen('DoesNotExist.txt');
 Data = fread(Handle);
 disp(Data);
 catch exc
 disp('Sending for help!');
 sendmail('myaddress@mycompany.com',...
 'Broken2',...
 ['Identifier: ', exc.identifier,10,...
 'Message: ', exc.message]);
 end
end

Notice how the example uses the sendmail() function. The address and
subject appear much as you might think from creating any other email mes-
sage. The message is a concatenation of strings. The first line is the error
identifier and the second is the error message. Notice the number 10 between
the two lines. This value actually creates a new line so that the information
appears on separate lines in the output message. Figure 13-1 shows a typical
example of the message (displayed using Outlook in this case).

Figure 13-1:
A typi-

cal email
message

containing
MATLAB

error
information.

www.it-ebooks.info

http://www.it-ebooks.info/

267 Chapter 13: Recovering from Mistakes

Relying on Common Fixes for
MATLAB’s Error Messages

MATLAB does try to inform you about errors whenever it finds them. Of
course, your first line of defense in fixing those errors is to rely on MATLAB
itself. Previous chapters of the book have outlined a number of these auto-
matic fixes. For example, when you make a coding error, MATLAB usually
asks whether you meant to use some alternative form of the command, and
it’s right quite often about the choice it provides.

The editor also highlights potential errors in orange. When you hover the mouse
over these errors, you see a small dialog box telling you about the problem and
offering to fix it for you. The article at http://www.mathworks.com/help/
matlab/matlab_prog/check-code-for-errors-and-warnings.html
discusses a number of other kinds of automatic fixes that you should consider
using.

 Sometimes an automatic fix doesn’t make sense, but the combination of the
error message and the automatic fix provides you with enough information
to fix the problem on your own. The most important things to do are to read
both the error message and the fix carefully. Humans and computers speak
different languages, so there is a lot of room for misunderstanding. After you
read the information carefully, look for typos or missing information. For
example, MATLAB does understand A*(B+C) but doesn’t understand A(B+C).
Even though a human would know that the A should be multiplied by the
result of B+C, MATLAB can’t make that determination. Small bits of missing
text have a big impact on your application, as do seemingly small typos, such
as typing Vara instead of VarA.

Don’t give up immediately, but at some point you need to start consulting other
resources rather than getting bogged down with an error that you can’t quite
fix. The MATLAB documentation can also be a good source of help, but know-
ing where to look (when you can barely voice the question) is a problem. That’s
where MATLAB Answers (http://www.mathworks.com/matlabcentral/
answers/) comes into play. You can use this resource to obtain answers from
MATLAB professionals, in addition to the usual peer support. If you can’t find
someone to help you on MATLAB Answers, you can usually get script and
function help on Code Project (http://www.codeproject.com/script/
Answers/List.aspx?tab=active&tags=922) and other third-party answer
sites.

 Fortunately, there are other documentation alternatives when the MATLAB doc-
umentation can’t help. For example, the MATLAB Programming/Error Messages
article at http://en.wikibooks.org/wiki/MATLAB_Programming/
Error_Messages describes a number of common errors and how to fix
them. Another good place to look for helpful fixes to common problems is

www.it-ebooks.info

http://www.it-ebooks.info/

268 Part IV: Employing Advanced MATLAB Techniques

MATLAB Tips (http://www3.nd.edu/~nancy/Math20550/Matlab/tips/
matlab_tips.html). In short, you have many good places to look online for
third-party assistance if your first line of help fails.

 Although you can find a lot of MATLAB information online, be aware that not
all of it is current. Old information may work fine with a previous version of
MATLAB, but it may not work at all well with the version installed on your
system. When looking for help online, make sure that the help you obtain is
for the version of MATLAB that you actually have installed on your machine,
or test the solution with extreme care to ensure that it does work.

Making Your Own Error Messages
At some point, the standard error messages that MATLAB provides will fall
short, and you’ll want to create custom error messages of your own. For exam-
ple, MATLAB has no idea how your custom function is put together, so the stan-
dard messages can’t accommodate a situation in which a user needs to provide
a specific kind of input. The only way you can tell someone that the input is
incorrect is to provide a custom error message.

Fortunately, MATLAB provides the means for creating custom error messages.
The following sections describe how to create the custom error messages
first, and then how to ensure that your custom error messages are as useful
as possible. The most important task of an error message is to inform others
about the problem at hand in a manner that allows them to fix it. So creating
custom error messages that really do communicate well is essential.

Developing the custom error message
This is the first place in the book that involves you in an example that’s a
little more complex. When you develop something like custom error mes-
sages, you want to create the code itself, followed by a means to test that
code. Developers use a fancy term, testing harness, to describe the code used
to test other code. It really isn’t necessary to give it an odd name. One file
contains the code that you use to check for a condition and another contains
the test code. The following sections describe the two files used for this
example.

Creating the exception code
Testing user inputs is usually a good idea because you never know what a user
will provide. In Listing 13-5, the code performs a typical set of checks to ensure
that the input is completely correct before using it to perform a task — in

www.it-ebooks.info

http://www.it-ebooks.info/

269 Chapter 13: Recovering from Mistakes

this case, displaying the value onscreen. The technique used in this example
is a good way to ensure that no one can send you data that isn’t appropri-
ate for a particular application need. You can also find this function in the
CustomException.m file supplied with the downloadable source code.

Listing 13-5: Checking for Exceptional Conditions

function [] = CustomException(Value)
%CUSTOMEXCEPTION Demonstrates custom exceptions.
% This example shows how to put a custom exception
% together.

 if nargin < 1
 NoInput = MException('MyCompany:NoInput',...
 'Not enough input arguments!');
 NoInput.throw();
 end

 if not(isnumeric(Value))
 NotNumeric = MException('MyCompany:NotNumeric',...
 'Input argument is type %s number needed!',...
 class(Value));
 NotNumeric.throw();
 end

 if (Value < 1) || (Value > 10)
 NotInRange = MException('MyCompany:NotInRange',...
 'Input argument not between %d and %d!',...
 1, 10);
 NotInRange.throw();
 end

 fprintf('Successfully entered the value: %d.\r',...
 Value);

end

The code begins by checking the number of arguments. This example contains
no default value, so not supplying a value is an error, and the code tells the
caller about it. The NoInput variable contains an MException object that has
an identifier for MyCompany:NoInput. This is a custom identifier, the sort you
should use when creating your own exceptions. An identifier is a string, such
as your company name, separated by a colon from the exception type, which
is NoInput in this case.

The message following the identifier provides additional detail. It spells out
that the input doesn’t provide enough arguments in this case. If you wanted,
you could provide additional information, such as the actual input require-
ments for the application.

www.it-ebooks.info

http://www.it-ebooks.info/

270 Part IV: Employing Advanced MATLAB Techniques

After NoInput is created, the code uses the throw() method to cause an
exception. If the caller hasn’t placed the function call in a try...catch
block, the exception causes the application to fail. The exception does cause
the current code to end right after the call to throw().

 The second exception works much the same as the first. In this case, the code
checks to ensure that the input argument (now that it knows there is one) is a
numeric value. If Value isn’t numeric, another exception is thrown. However,
notice that this exception detects the kind of input actually provided and
returns it as part of the message. The messages you create can use the same
placeholders, such as %d and %s, as the sprintf() and fprintf() func-
tions used in earlier chapters.

 Note the order of the exceptions. The code tests to ensure that there is an
argument before it tests the argument type. The order in which you test for
conditions that will stop the application from running properly is essential.
Each step of testing should build on the step before it.

The third exception tests the range of the input number (now that the code
knows that it is indeed a number). When the range is outside the required
range, the code throws an exception.

When everything works as it should, the code ends by displaying Value.
In this case, the application uses fprintf() to make displaying the infor-
mation easier than it would be when using disp(), because disp() can’t
handle numeric input.

Creating the testing code
Testing your code before using it in a full-fledged application is essen-
tial. This is especially true for error-checking code, such as that found in
CustomException(), because you rely on such code to tell you when
other errors occur. Any code that generates exceptions based on errant
input must be held to a higher standard of testing, which is why you need
to create the testing harness shown in Listing 13-6. You can also find this
function in the TestCustomException.m file supplied with the download-
able source code.

Listing 13-6: Testing the Exception Code

function [] = TestCustomException()
%TESTCUSTOMEXCEPTION Tests the CustomException() function.
% Performs detailed testing of the CustomException()

function
% by checking for input type and ranges.

www.it-ebooks.info

http://www.it-ebooks.info/

271 Chapter 13: Recovering from Mistakes

 % Check for no input.
 try
 disp('Testing no input.');
 CustomException();
 catch Exc
 disp(Exc.getReport());
 end

 % Check for logical input.
 try
 disp('Testing logical input.');
 CustomException(true);
 catch Exc
 disp(Exc.getReport());
 end

 % Check for string input.
 try
 disp('Testing string input.');
 CustomException('Hello');
 catch Exc
 disp(Exc.getReport());
 end

 % Check for number out of range.
 try
 disp('Testing input too low.');
 CustomException(-1);
 catch Exc
 disp(Exc.getReport());
 end
 try
 disp('Testing input too high.');
 CustomException(12);
 catch Exc
 disp(Exc.getReport());
 end

 % Check for good input.
 try
 disp('Testing input just right.');
 CustomException(5);
 catch Exc
 disp(Exc.getReport());
 end
end

This code purposely creates exceptions and then outputs the messages
generated. By running this code, you can ensure that CustomException()
works precisely as you thought it would. Notice that the test order follows

www.it-ebooks.info

http://www.it-ebooks.info/

272 Part IV: Employing Advanced MATLAB Techniques

the same logical progression as the code in the CustomException.m file.
Each test step builds on the one before it. Here’s the output you see when
you run TestCustomException():

Testing no input.
Error using CustomException (line 9)
Not enough input arguments!
Error in TestCustomException (line 9)
 CustomException();
Testing logical input.
Error using CustomException (line 16)
Input argument is type logical number needed!
Error in TestCustomException (line 17)
 CustomException(true);
Testing string input.
Error using CustomException (line 16)
Input argument is type char number needed!
Error in TestCustomException (line 25)
 CustomException('Hello');
Testing input too low.
Error using CustomException (line 23)
Input argument not between 1 and 10!
Error in TestCustomException (line 33)
 CustomException(-1);
Testing input too high.
Error using CustomException (line 23)
Input argument not between 1 and 10!
Error in TestCustomException (line 39)
 CustomException(12);
Testing input just right.
Successfully entered the value: 5.

The output shows that each phase of testing ends precisely as it should.
Only the final output provides the desired result. Notice how the incorrect
input types generate a custom output message that defines how the input is
incorrect.

Creating useful error messages
Creating useful error messages can be hard. When you find yourself
scratching your head, trying to figure out just what’s wrong with your
input, you’re experiencing a communication problem. The error message
doesn’t provide enough information in the right form to communicate
the problem to you. However, creating good error messages really is an
art, and it takes a bit of practice. Here are some tips to make your error-
message writing easier:

www.it-ebooks.info

http://www.it-ebooks.info/

273 Chapter 13: Recovering from Mistakes

 ✓ Keep your messages as short as possible because long messages tend to
become difficult to understand.

 ✓ Focus on the problem at hand, rather than what you think the problem
might be. For example, if the error message says that the file is missing,
focus on the missing file, rather than on something like a broken network
connection. It’s more likely that the user mistyped the filename than it
is that the network is down. If it turns out that the filename really is cor-
rect, then it could have gotten erased on disk. You do need to eventually
check out the network connection, but focus on the problem at hand
first and then move out from there so that your error trapping is both
procedural and logical.

 ✓ Provide specific information whenever possible by returning the errant
information as part of the error message.

 ✓ Ask others to try your test harness, read the messages, and provide
feedback.

 ✓ Make the error message a more detailed version of the message identi-
fier and ensure that the message identifier is unique.

 ✓ Verify that every message is unique so that users don’t see the same
message for different conditions. If you can’t create unique wording,
perhaps you need to create a more flexible version of the message that
works for both situations.

 ✓ Ensure that each message is formatted in a similar way so that users can
focus on the content rather than the format.

 ✓ Avoid humorous or irritating language in your messages — make sure
that you focus on simple language that everyone will understand and
that won’t tend to cause upset rather than be helpful.

Using Good Coding Practices
A lot of places online tell you about good coding practice. In fact, if you ask
five developers about their five best coding practices, you get five different
answers, partly because everyone is different. The following list represents
the best coding practices from a number of sources (including personal
experience) that have stood the test of time.

 ✓ Get a second opinion: Many developers are afraid to admit that they
make mistakes, so they keep looking at the same script or function
until they’re bleary eyed, and usually end up making more mistakes as
a result. Having someone else look at the problem could save you time
and effort, and will most definitely help you discover new coding prac-
tices more quickly than if you go it alone.

www.it-ebooks.info

http://www.it-ebooks.info/

274 Part IV: Employing Advanced MATLAB Techniques

 ✓ Write applications for humans and not machines: As people spend more
time writing code, they start to enjoy what they do and start engaging
in writing code that looks really cool but is truly horrible to maintain. In
addition, the code is buggy and not very friendly to the people using it.
Humans use applications. No one uses cool code — people use applica-
tions that are nearly invisible that help them get work done quickly and
without a lot of fuss.

 ✓ Test often/make small changes: A few people actually try to write an
entire application without ever testing it, even once, and then they’re
surprised when it doesn’t work. The best application developers work
carefully and test often. Making small changes means that you can find
errors faster and fix them faster still. When you write a whole bunch of
code without testing it, you really don’t have any way to know where to
start looking for problems.

 ✓ Don’t reinvent the wheel: Take the opportunity to use someone else’s
fully tested and bug-free code whenever you can (as long as you don’t
have to steal the code to do so). In fact, actively look for opportunities
to reuse code. Using code that already works in another application
saves you time writing your application.

 ✓ Modularize your application: Writing and debugging a piece of coding
takes time and effort. Maintaining that code takes even longer. If you
have to make the same changes in a whole bunch of places every time
you discover a problem with your code, you waste time and energy that
you could use to do something else. Write the code just one time, place
it in a function, and then access that piece of code everywhere you
need it.

 ✓ Plan for mistakes: Make sure your code contains plenty of error trap-
ping. It’s easier to catch a mistake and allow your application to fail
gracefully than it is to have the application crash and lose data that
you must recover at some later time. When you do add error-trapping
code, make sure to write it in such a manner to actually trap the sorts of
errors that you expect, and then add some general-purpose error trap-
ping for the mistakes you didn’t expect.

 ✓ Create documentation for your application: Every application requires
documentation. Even if you plan to use the application to meet just your
own needs, you need documentation because all developers eventually
forget how their code works. Professionals know from experience that
good documentation is essential. When you do create the documentation,
make sure that you discuss why you designed the software in a certain
manner, what you were trying to achieve by creating it, problems you
encountered making the software work, and fixes you employed in the
past. In some cases, you want to also document how something works,
but keep the documentation of code mechanics (how it works) to a
minimum.

www.it-ebooks.info

http://www.it-ebooks.info/

275 Chapter 13: Recovering from Mistakes

 ✓ Ensure that you include documentation within your application as
comments: Comments within applications help at several different
levels, the most important of which is jogging your memory when you
try to figure out how the application works. However, it’s also important
to remember that typing help('ApplicationName') and pressing
Enter will display the comments as help information to people using
your application.

 ✓ Code for performance after you make the application work: Performance
consists of three elements: reliability, security, and speed. A reliable appli-
cation works consistently and checks for errors before committing changes
to data. A secure application keeps data safe and ensures that user mis-
takes are caught. A fast application performs tasks quickly. However,
before you can do any of these things, the application has to work in the
first place. (Remember that you can use the profile() command to
measure application performance and determine whether changes you
implement actually work as intended.)

 ✓ Make the application invisible: If a user has to spend a lot of time
acknowledging the presence of your application, your application will
eventually end up collecting dust. For example, the most annoying appli-
cation in the world is the one that displays those “Are you sure?” mes-
sages. If the user wasn’t sure, then there would be no reason to perform
the act. Instead, make a backup of the change automatically so that the
user can reverse the change later. Users don’t even want to see your
application — it should be invisible for the most part. When a user can
focus on the task at hand, your application becomes a favorite tool and
garners support for things like upgrades later.

 ✓ Force the computer to do as much work as possible: Anytime you can
make something easier for the user, you reduce the chance that the user
will make a mistake that you hadn’t considered as part of the application
design. Easy doesn’t mean fancy. For example, applications that try to
guess what the user is going to type next usually get it wrong and only
end up annoying everyone. Let the user type whatever is needed, but
then you can check the input for typos and ensure that the input won’t
cause the application to fail. In fact, rather than try to guess what the
user will type next, create an interface that doesn’t actually require any
typing. For example, instead of asking the user to enter a city and state
in a form, have the user type a zip code and obtain the city and state
from the zip code information.

www.it-ebooks.info

http://www.it-ebooks.info/

276 Part IV: Employing Advanced MATLAB Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

Part V
Specific MATLAB Applications

 See how a comet plot adds animation to your presentation without any effort on your
part at http://www.dummies.com/extras/matlab.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ Use algebra to solve equations and find roots.

 ✓ Obtain the statistics needed for a presentation.

 ✓ Perform analysis using algebra and calculus.

 ✓ Solve differential equations.

 ✓ Create unusual plots and dress up existing plots.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Solving Equations and
Finding Roots

In This Chapter
▶ Using the Symbolic Math Toolbox

▶ Solving algebraic problems

▶ Solving statistical problems

M
ATLAB is amazing when it comes to helping you solve equations and
find roots. Of course, getting the right answer happens only when

you know how to ask the right question. Communicating with MATLAB in
a manner it understands is an important part of solving the questions you
have. This chapter demonstrates how to solve specific kinds of equations
and how to find roots. The important thing to consider as you read is how
the information creates patterns that you can use to solve your specific alge-
braic or statistical problem.

 In most cases, there are multiple ways to obtain an answer to any question.
This chapter demonstrates one method for each kind of equation or root.
However, you can find additional solutions online in locations such as MATLAB
Answers (http://www.mathworks.com/matlabcentral/answers/).
The point is that MATLAB can provide an answer as long as you have a viable
means to ask the question.

Working with the Symbolic Math Toolbox
The Symbolic Math Toolbox immensely reduces the work required to solve
equations. In fact, it might almost seem like magic to some people. Of course,
no magic is involved — the clever programmers at MathWorks just make it
look that way.

www.it-ebooks.info

http://www.it-ebooks.info/

280 Part V: Specific MATLAB Applications

However, before you can begin using the Symbolic Math Toolbox to perform
amazing feats, you need to have it installed. If you have the student version,
the Toolbox is installed by default and you can skip the first two sections
that follow (going right to the “Working with the GUI” section). Otherwise,
start with the first section that follows to get your copy of the Symbolic Math
Toolbox and install it on your system.

Obtaining your copy of the Toolbox
You need to obtain either a trial version or a purchased version of the Symbolic
Math Toolbox before you can do anything else. (When getting a trial version,
you must discuss the download with someone from MATLAB before you
can actually download the product.) Check out the product information at
http://www.mathworks.com/products/symbolic/ and click one of the
links in the Try or Buy section of the page (normally on the right side). After
you have received confirmation of your purchase, use the following steps to
obtain the software:

 1. Navigate to http://www.mathworks.com/downloads/web_
downloads/ using your browser.

 You see the MathWorks Downloads page, as shown in Figure 14-1.

Figure 14-1:
Go to the

download
page to

start the
download

process.

www.it-ebooks.info

http://www.it-ebooks.info/

281 Chapter 14: Solving Equations and Finding Roots

 2. Click the Download link found on the Licensed Products tab.

 You see the login page, as shown in Figure 14-2. (If you’re already logged
in, you don’t see the login page and can go directly to Step 4.)

Figure 14-2:
You must

login before
you can

download
the product.

 3. Type your email address and password in the appropriate fields; then
click Log in.

 You see a number of product releases, as shown in Figure 14-3.

 4. Click the link for the MATLAB release that you have installed on your
system.

 When you select the product installed on your system, you should see a
link for the Symbolic Math Toolbox.

 5. Click the box next to the Symbolic Math Toolbox to select it.

 You may need to download updates to MATLAB itself in order to install
the Symbolic Math Toolbox.

 6. Click Download.

 Depending on your platform, you should see a dialog box for the down-
load agent. The form this dialog box takes varies by platform. If you’re
able to use the download agent, the download process will start and you
can skip Steps 7 and 8. Follow any directions that the download agent
provides to start the download process.

www.it-ebooks.info

http://www.it-ebooks.info/

282 Part V: Specific MATLAB Applications

Figure 14-3:
After login,

you see a
number of

product
releases

to choose
from.

 7. Click the Manually Download Your Products link at the bottom of the
page.

 You see a download dialog box.

 8. Use the standard procedure for downloading software for your browser
and platform.

 The download is a little on the large size, so receiving it can take a while.
After the download completes, you end up with a copy of the required
files on your system.

Installing the Symbolic Math Toolbox
When you reach this part of the chapter, you should have a number of files
on your hard drive. These files provide everything needed to install the
Symbolic Math Toolbox. You have two ways by which you can interact with
the files:

 ✓ If you were able to use the download agent, you see a dialog box telling
you that the download is complete. At this point, you can perform one of
these two tasks:

 • Select the Start Installer option and click Finish to start the instal-
lation process. The Symbolic Math Toolbox installer will start
automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

283 Chapter 14: Solving Equations and Finding Roots

 • Select the Open Location of the Downloaded Files option and click
Finish. You see the location of the files open, and you must double-
click the installer file to start the installation process. (The installer
file is typically the only executable program in the folder.)

 ✓ If you performed the manual download process, you need to find the
download location of the files. You must double-click the installer file to
start the installation process. (The installer file is typically the only execut-
able program in the folder.)

Windows platform users may see a User Account Control (UAC) dialog box
when starting the installer. Click Yes to give the installer permission to install
the Symbolic Math Toolbox. Otherwise, the installation will fail.

No matter how you start the installer, eventually you see a MathWorks installer
dialog box like the one shown in Figure 14-4. This dialog box determines the
source of the files that you use to perform the installation. (Choosing the Install
Using the Internet option downloads the files directly from the MathWorks
site — you also have the option of using source files on your hard drive.) The
following steps help you complete the installation process.

Figure 14-4:
The

MathWorks
Installer

dialog box
determines
the source

of files
used for the
installation

process.

 1. Select an installation source (either Internet or local hard drive) and
click Next.

 You see the License Agreement dialog box.

www.it-ebooks.info

http://www.it-ebooks.info/

284 Part V: Specific MATLAB Applications

 2. Read the licensing agreement, click Yes, and then click Next.

 You see the File Installation Key dialog box shown in Figure 14-5. This
is where you supply the licensing information. If you don’t have the
key, make sure that you select the second option and follow the steps
required to obtain the license.

Figure 14-5:
Provide or
obtain the
file instal-
lation key
needed to

continue the
installation.

 3. Supply the File Installation Key and click Next.

 The installer asks you to select an installation method, as shown in
Figure 14-6. In most cases, you obtain a better, faster, more error-free
installation by selecting the Typical option. The steps that follow
assume that you have chosen the Typical option.

 4. Click the Typical option and then click Next.

 The installer asks you to choose an installation destination. This des-
tination differs by platform. In most cases, choosing the default instal-
lation destination is the best idea. However, if you have an existing
installation and want to preserve this installation precisely as it is, you
need to choose a different installation location.

 5. Choose a destination location, if necessary, and click Next.

 If you already have a copy of MATLAB installed and you choose the
default installation location, the installer will ask whether you want to
overwrite the existing copy. Click Yes To All (if you need to update your
copy of MATLAB) or No (when you have the most current version) to

www.it-ebooks.info

http://www.it-ebooks.info/

285 Chapter 14: Solving Equations and Finding Roots

proceed. When you click Yes To All, you agree to allow the installer to
remove your old copy of MATLAB and install a new one. Be aware that
you’ll likely lose any special configuration options you have set up,
along with any features you had installed previously.

 The installer displays a Confirmation dialog box. Check the details care-
fully to ensure that the installation provides everything you need.

Figure 14-6:
Choose an
installation

method.

 6. Click Install.

 The installation process begins. You can watch the progress by checking
the progress bar. The installation can require several minutes depending
on the installation options you choose, the complexity of the installa-
tion, and the speed of your system.

 When the installation process is complete, you see an Installation
Complete dialog box.

 7. Select the Activate MATLAB option and then click Next.

 MATLAB asks whether you want to activate your copy using the Internet
or manually. Using the Internet is generally the faster and easier option,
unless you have already downloaded a license file (license.lic) as
part of getting the file installation key.

 8. Choose an activation option and click Next.

 When you choose the Internet option, you must provide your email
address and password to log on to the system for activation purposes. If

www.it-ebooks.info

http://www.it-ebooks.info/

286 Part V: Specific MATLAB Applications

you don’t have an account, you can also choose to create an account or
provide the location of your locally stored license.lic file, as shown
in Figure 14-7.

Figure 14-7:
Provide
access

to some
means of

activation.

 9. Supply any required input and click Next.

 If activation is successful, you see an Activation Complete dialog box.
(When you don’t see this dialog box, retry obtaining the required activa-
tion or contact MathWorks support.)

 10. Click Finish.

 The installation is complete.

Working with the GUI
When you install the Symbolic Math Toolbox, you see an entry added to the
Apps tab — MuPAD Notebook. This is an application that you can use to create
and interact with equations of various sorts. In addition, you can perform plot-
ting based on the equations you create and work directly with matrices.

 MuPAD supports a considerable number of operations; you can find the full
documentation for it at http://www.mathworks.com/discovery/mupad.
html. (This section of the chapter provides you with an extremely fast tour of
MuPAD so that you get an idea of what the application can do.)

www.it-ebooks.info

http://www.it-ebooks.info/

287 Chapter 14: Solving Equations and Finding Roots

To see how MuPAD works, click the MuPAD Notepad icon on the Apps tab.
You see a window like the one shown in Figure 14-8. The work area appears
on the left side of the display, a toolbox (named the Command Bar) for per-
forming various kinds of tasks on the right, and the usual toolbar at the top.
The work area is divided into input regions (where you type a command),
output regions (where you see a response), and text regions (where you can
type plain text). One of the reasons to use MuPAD is to create nicely format-
ted reports and presentations.

Figure 14-8:
Use MuPAD

to perform
math tasks

graphically.

You can use MuPAD to perform general math tasks. For example, when you
type 1 + 1 and press Enter, you get the expected response of 2. Notice that
the input region has a gray bracket next to it and that the text is in red.
When you press Enter, another bracket appears directly below the first
that contains the output area. This is the output region, and the text is in
blue. Immediately after the first two brackets, you see another bracket.
This is a new input region, and it’s separated from the other two by a
space, as shown in Figure 14-9.

Entering information works the same as it does with MATLAB. For example,
you use the caret (^) to raise a value to a power; 7^2 is seven squared, for
example. A fractional power still obtains a root. For example, 27^1/3 is the
cube root of 27.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Part V: Specific MATLAB Applications

Figure 14-9:
The work

area is
separated
into input,

output, and
text regions.

The more interesting feature of MuPAD is the Command Bar. You can simply
select a command from it to perform a required task. Many of the entries
have down arrows next to them that reveal a range of related commands. For
example, when you click the down arrow next to sin a, you see a listing of
trigonometric commands, as shown in Figure 14-10.

When you insert a new command, the replaceable text is highlighted. To see
how this works, select n! from the Command Bar. The command actually dis-
plays as (#n)!. Type 5 and press Enter. The output region displays a value
of 120. You can either type something in or select another command to place
within the first one.

 Unlike MATLAB, MuPAD lets you modify commands after evaluating them.
Replace the 5 in the previous paragraph with a 6 and press Enter. The output
region now displays a value of 720.

One of the more powerful commands is solve(). You find it in the General
Math drop-down menu. solve() has a number of forms. To see one of them
in action, choose General Math➪Solve➪Exact. The input region now displays
solve(#). Type 2 * x + 3 * y - 22 = 0 and press Enter. MuPAD provides the
output shown in Figure 14-11.

www.it-ebooks.info

http://www.it-ebooks.info/

289 Chapter 14: Solving Equations and Finding Roots

Figure 14-10:
The

Command
Bar provides

access to
a wealth of
commands.

Figure 14-11:
Solving

equations
is one of
the more
powerful

features of
MuPAD.

www.it-ebooks.info

http://www.it-ebooks.info/

290 Part V: Specific MATLAB Applications

 One mistake that many people make is not remembering the requirement to
include the multiplication symbol between numeric values and symbols. It’s
easy to type 2x instead of 2 * x. MuPAD doesn’t understand that the multi-
plication symbol is implied, so you must provide it specifically.

MuPAD can also add graphics, plots, and other features to whatever sort of
report or presentation you want to create. The idea is that you can create a
nicely formatted output to use when discussing your ideas with other people.
This chapter simply doesn’t offer enough space to demonstrate everything
(or even a small percentage of it).

Typing a simple command
in the Command window
The essentials of the MATLAB Command window haven’t changed since you
installed the Symbolic Math Toolbox. However, you do have access to new
functionality. MATLAB can access some MuPAD functionality as well as use fea-
tures such as solve(). You can get all the details about MuPAD functionality at
http://www.mathworks.com/help/symbolic/index.html#btgytun-1.
The details about the new functions that MATLAB can access from the Symbolic
Math Toolbox appear at http://www.mathworks.com/help/symbolic/
functionlist.html.

The process for using solve() with MATLAB differs from using it with MuPAD.
The previous section of the chapter discusses how to work with MuPAD and
a specific equation. The following steps show how to perform the same task
using MATLAB at the Command window:

 1. Type syms x y and press Enter.

 MATLAB creates two symbolic variables, x and y. You use symbolic
variables when working with solve(). When you look in the Workspace
window, you see that the variables are actually defined as being symbolic.

 2. Type solve(2 * x + 3 * y - 22 == 0) and press Enter.

 You see the following output:

ans =
11 - (3*y)/2

 Notice that you must use a double equals sign (==) when working with
MATLAB, versus the single equals sign when working with MuPAD. The
output is also different. Compare the output here to the output shown in
Figure 14-11.

www.it-ebooks.info

http://www.it-ebooks.info/

291 Chapter 14: Solving Equations and Finding Roots

 3. Type solve(2 * x + 3 * y - 22 == 0, y) and press Enter.

 This time, solve() solves for y rather than x. The output is now:

ans =
22/3 - (2*x)/3

 4. Type solve(11 - (3*y)/2) and press Enter.

 You now have the value of x, which is 22/3.

 5. Type solve(2 * 22/3 + 3 * y - 22 == 0) and press Enter.

 The value of y is 22/9. If you plug in both values, you find that the equa-
tion works precisely as expected. The output is now 0.

The point of these two sections is that you can use MuPAD and MATLAB in
different ways with the Symbolic Math Toolbox. Both approaches are valu-
able, but knowing how to access the one you need is important.

Performing Algebraic Tasks
MATLAB lets you perform a wide range of algebraic tasks even without the
Symbolic Math Toolbox installed, but adding the Toolbox makes performing the
tasks easier. The following sections discuss using the Symbolic Math Toolbox
to perform a variety of algebraic tasks. You also discover a few alternatives for
performing these tasks.

Differentiating between numeric
and symbolic algebra
The essential difference between numeric and symbolic algebra is that the
first is used by computer science to explore principles of algebra using sym-
bols in place of values, while the second is used by science to obtain approxi-
mations of equations for real-world use. In the “Typing a simple command in
the Command window” section, earlier in this chapter, you type equations
to perform symbolic algebra. In that case, you use solve(), which outputs
a precise number (which is why you see a value of x that is 22/3). When you
want to perform numeric algebra, you use the vpasolve() function instead.
The following steps demonstrate how to perform this task:

www.it-ebooks.info

http://www.it-ebooks.info/

292 Part V: Specific MATLAB Applications

 1. Type syms x y and press Enter.

 Even when performing numeric algebra, you must define the variables
before you use them.

 2. Type vpasolve(2 * x + 3 * y - 22 == 0, x) and press Enter.

 You see the following output:

ans =
11.0 - 1.5*y

 The output is simpler this time, but notice that it also relies on floating-
point numbers. In order to ensure precision, symbolic algebra relies on
integers. A floating-point number is an approximation in the computer —
an integer is precise.

 When working with vpasolve(), you must specify which variable to
solve for. There is no assumption, and if you don’t provide a variable
when working with multiple variables, the output is less than useful. In
this case, vpasolve() solves for x.

 3. Type vpasolve(11.0 - 1.5*y) and press Enter.

 You see the following output:

ans =
7.3333333333333333333333333333333

 The output is a floating-point number. You aren’t dealing with a fraction
any longer, but the number is also an approximation. You need to note
that vpasolve() defaults to providing 32-digit output — a double is 16
digits.

 4. Type vpasolve(2 * 7.3333333333333333333333333333333 + 3 * y - 22 == 0)
and press Enter.

 You see the following output:

ans =
2.4444444444444444444444444444444

 Again, the output is a floating-point number. The result is imprecise.
However, seeing whether the computer can actually show you how
much it’s off might be interesting.

 5. Type 2 * 7.3333333333333333333333333333333 + 3 * 2.4444444444444444
444444444444444 - 22 and press Enter.

 MATLAB likely outputs a value of 0. The point is that the two output
values truly aren’t precise values, but the computer lacks the precision
to detect just how much of an error exists.

www.it-ebooks.info

http://www.it-ebooks.info/

293 Chapter 14: Solving Equations and Finding Roots

Solving quadratic equations
There are times when using the Symbolic Math Toolbox makes things easier
but using it isn’t absolutely necessary. This is the case when working with
quadratic equations. You actually have a number of ways to solve a quadratic
equation, but two straightforward methods exist: solve() and roots().

 The solve() method is actually easier to understand, so type solve(x^2 +
3*x - 4 == 0) and press Enter. You see the following output:

ans =
 1
 -4

Converting between symbolic and numeric data
Symbolic and numeric objects aren’t compat-
ible. You can’t directly use one with the other.
To make the two coexist, you must perform a
conversion. Fortunately, MATLAB makes con-
verting between symbolic and numeric data
easy. The following functions perform the con-
versions for you:

 ✓ double(): Converts a symbolic matrix to
a numeric form.

 ✓ char(): Converts symbolic objects to
plain strings.

 ✓ int8(): Converts a symbolic matrix into
8-bit signed integers.

 ✓ int16(): Converts a symbolic matrix into
16-bit signed integers.

 ✓ int32(): Converts a symbolic matrix into
32-bit signed integers.

 ✓ int64(): Converts a symbolic matrix into
64-bit signed integers.

 ✓ poly2sym(): Converts a polynomial
coefficient vector to a symbolic polynomial.

 ✓ single(): Converts a symbolic matrix
into single-precision floating-point values.

 ✓ sym(): Defines new symbolic objects.

 ✓ sym2poly(): Converts a symbolic poly-
nomial to a polynomial coefficient vector.

 ✓ symfun() : Defines new symbolic
functions.

 ✓ uint8(): Converts a symbolic matrix into
8-bit unsigned integers.

 ✓ uint16(): Converts a symbolic matrix
into 16-bit unsigned integers.

 ✓ uint32(): Converts a symbolic matrix
into 32-bit unsigned integers.

 ✓ uint64(): Converts a symbolic matrix
into 64-bit unsigned integers.

 ✓ vpa(): Performs a conversion between
symbolic and numeric output. For example,
vpa(22/3) results in an output of 7.333
3333333333333333333333333333.

www.it-ebooks.info

http://www.it-ebooks.info/

294 Part V: Specific MATLAB Applications

In this case, you work with a typical quadratic equation. The equation is
entered directly as part of the solve() input. Of course, you need to use a
double equals sign (==), remembering to add the multiplication operator, but
otherwise, the equation looks precisely as you might write it manually.

The roots() approach isn’t quite as easy to understand by just viewing it.
Type roots([1 3 -4]) and press Enter. As before, you get the following output:

ans =
 -4
 1

Except for being in reverse order, the outputs are the same. However, when
working with roots(), you pass a vector containing just the constants (coef-
ficients) for the equation in a vector. Nothing is wrong with this approach, but
six months from now, you may look at the roots() call and not really under-
stand what it does.

Working with cubic and other
nonlinear equations
The Symbolic Math Toolbox makes it easy to solve cubic and other nonlinear
equations. The example in this section explores the cubic equation, which
takes the form: ax^3+bx^2+cx+d=0. Each of the coefficients take these
forms:

 ✓ a=2

 ✓ b=-4

 ✓ c=-22

 ✓ d=24

Now that you have the parameters for the cubic equation, it’s time to solve
it. The following steps show you how to solve the problem in the Command
window:

 1. Type syms x and press Enter.

 MATLAB creates the required symbolic object.

 2. Type each of the following coefficients in turn, pressing Enter after
each coefficient:

www.it-ebooks.info

http://www.it-ebooks.info/

295 Chapter 14: Solving Equations and Finding Roots

a=2;
b=-4;
c=-22;
d=24;

 3. Type Solutions = solve(a*x^3 + b*x^2 + c*x + d == 0) and press Enter.

 You see the following output:

Solutions =
 1
 4
 -3

 Of course, you can get far fancier than the example shown here, but the exam-
ple gives you a good starting point. The main thing to consider is the coef-
ficients you use. (If you ever want to check your answers, the Cubic Equation
Calculator at http://www.1728.org/cubic.htm can help.)

Understanding interpolation
MATLAB supports a number of types of interpolation. (See http://whatis.
techtarget.com/definition/extrapolation-and-interpolation for
a description of interpolation.) You can see an overview of support for interpo-
lation at http://www.mathworks.com/help/matlab/interpolation-1.
html. For this section, you work with 1D interpolation using the interp1()
function. The following steps show how to perform the task:

 1. Type x = [0, 2, 4]; and press Enter.

 2. Type y = [0, 2, 8]; and press Enter.

 These two steps create a series of points to use for the interpolation.

 3. Type x2 = [0:.1:4]; and press Enter.

 At this point, you need to calculate the various forms of interpolation:
linear, nearest, spline, and pchip. Steps 4 through 7 take you through
this process. (Older versions of MATLAB also had a cubic option that’s
been replaced by pchip.)

 4. Type y2linear = interp1(x, y, x2); and press Enter.

 5. Type y2nearest = interp1(x, y, x2, ‘nearest’); and press Enter.

 6. Type y2spline = interp1(x, y, x2, ‘spline’); and press Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

296 Part V: Specific MATLAB Applications

 7. Type y2pchip = interp1(x, y, x2, ‘pchip’); and press Enter.

 At this point, you need to plot each of the interpolations so that you can
see them onscreen. Steps 8 through 11 take you through this process.

 8. Type plot(x,y,‘sk-’) and press Enter.

 You see a plot of the points, which isn’t really helpful, but it’s the starting
point of the answer.

 9. Type hold on and press Enter.

 The plot will contain several more elements, and you need to put the
plot into a hold state so that you can add them.

 10. Type plot(x2, y2linear, ‘g--’) and press Enter.

 You see the interpolation added to the figure (along with the others as
you plot them).

 11. Type plot(x2, y2nearest, ‘b--’) and press Enter.

 12. Type plot(x2, y2spline, ‘r--’) and press Enter.

 13. Type plot(x2, y2pchip, ‘m--’) and press Enter.

 14. Type legend(‘Data’,‘Linear’, ‘Nearest’, ‘Spline’, ‘PCHIP’, ‘Location’, ‘West’)
and press Enter.

 You see the result of the various calculations, as shown in Figure 14-12.

Figure 14-12:
Viewing the

results of
the inter-
polation

operations.

www.it-ebooks.info

http://www.it-ebooks.info/

297 Chapter 14: Solving Equations and Finding Roots

 15. Type hold off and press Enter.

 MATLAB removes the hold on the figure.

Working with Statistics
Statistics is an interesting area of math that deals with the collection, organi-
zation, analysis, interpretation, and presentation of data. You use it to deter-
mine the probability of the next customer buying your new widget instead
of the obviously inferior widget offered by your competition. The fact is that
modern business couldn’t exist without the use of statistics.

 MATLAB provides basic statistical support. However, if your living depends on
working with statistics and you find the default MATLAB support a little lack-
ing, you can check out the Statistics Toolbox at http://www.mathworks.
com/products/statistics/ to gain additional functionality. Likewise, if
you perform a lot of curve fitting, you may find that the Curve Fitting Toolbox
found at http://www.mathworks.com/products/curvefitting/ comes
in handy. (Admittedly, you can perform elementary ad hoc curve fitting in the
figure window, but it’s usually not sufficient to get the results you want.) The
following sections don’t use either the Statistics Toolbox or the Curve Fitting
Toolbox for examples.

Understanding descriptive statistics
When working with descriptive statistics, the math quantitatively describes the
characteristics of a data collection, such as the largest and smallest values, the
mean value of the items, and the average. This form of statistics is commonly
used to summarize the data, thus making it easier to understand. MATLAB
provides a number of commands that you can use to perform basic statistics
tasks. The following steps help you work through some of these tasks:

 1. Type rng(‘shuffle’, ‘twister’); and press Enter.

 You use the rng() function to initialize the pseudo-random number
generator to produce a sequence of pseudo-random numbers. Older ver-
sions of MATLAB use other initialization techniques, but you should rely
on the rng() function for all new applications.

 The first value, shuffle, tells MATLAB to use the current time as a seed
value. A seed value determines the starting point for a numeric sequence
so that the pattern doesn’t appear to repeat. If you want to exactly
repeat the numeric sequence for testing purposes, you should provide a
number in place of shuffle.

www.it-ebooks.info

http://www.it-ebooks.info/

298 Part V: Specific MATLAB Applications

 The second value, twister, is the number generator to use. MATLAB
provides a number of these generators so that you can further random-
ize the numeric sequences you create. The upcoming “Creating pseudo-
random numbers” sidebar discusses this issue in more detail.

 2. Type w = 100 * rand(1, 100); and press Enter.

 This command produces 100 pseudo-random numbers that are uni-
formly distributed between the values 0 and 1. The numbers are then
multiplied by 100 to bring them up to the integer values used in Steps 4
and 5.

 3. Type x = 100 * randn(1, 100); and press Enter.

 This command produces 100 pseudo-random numbers that are normally
distributed. The numbers can be positive or negative, and multiplying
by 100 doesn’t necessarily ensure that the numbers are between –100
and 100 (as you see later in the procedure).

 4. Type y = randi(100, 1, 100); and press Enter.

 This command produces 100 pseudo-random integers that are uniformly
distributed between the values of 0 and 100.

 5. Type z = randperm(200, 100); and press Enter.

 This command produces 100 unique pseudo-random integers between the
values of 0 and 200. There is never a repeated number in the sequence,
but the 100 values are selected from the range of 0 to 200.

 6. Type AllVals = [w; x; y; z]’; and press Enter.

 This command creates a 100 x 4 matrix for plotting purposes. Combining
the four values lets you create a plot with all four distributions without a
lot of extra steps.

 7. Type hist(AllVals, 50); and press Enter.

 You see a histogram created that contains all four distributions.

 8. Type legend(‘rand’, ‘randn’, ‘randi’, ‘randperm’); and press Enter.

 Adding a legend helps you identify each distribution, as shown in
Figure 14-13. Notice how the various distributions differ. Only the
randn() distribution provides both positive and negative output.

 9. Type set(gca, ‘XLim’, [0, 200]); and press Enter.

 Figure 14-14 shows a close-up of the rand(), randi(), and randperm()
distributions, which are a little hard to see in Figure 14-12. Notice the rela-
tively even lines for randperm(). The rand() and randi() output has
significant spikes.

This procedure has demonstrated a few aspects of working with statistics,
the most important of which is that choosing the correct function to gener-
ate your random numbers is important. When viewing the results of your

www.it-ebooks.info

http://www.it-ebooks.info/

299 Chapter 14: Solving Equations and Finding Roots

choices, you can use plots such as the histogram. In addition, don’t forget
that you can always modify the appearance of the plot to get a better view of
what you have accomplished.

Figure 14-13:
The

histogram
shows the

distribution
of the vari-

ous numeric
values.

Figure 14-14:
Zoom in to

see the dif-
ferences in

distributions
better.

www.it-ebooks.info

http://www.it-ebooks.info/

300 Part V: Specific MATLAB Applications

 Of course, you can interact with the vectors in other ways. For example, you can
use standard statistical functions on them. (If you have forgotten what some of
these terms mean, check out http://anothermathgeek.hubpages.com/
hub/How-to-calculate-simple-statistics.) Table 14-1 contains a list
of the functions, tells what they do, and provides a short example based on the
example in the steps in this section.

Table 14-1 MATLAB Basic Statistical Functions
Function Usage Example
corrcoef() Determines the correlation

coefficients between members
of a matrix.

corrcoef(AllVals)

cov() Determines the covariance
matrix for either a vector or a
matrix.

cov(AllVals)

max() Specifies the largest element in
a vector. When working with a
matrix, you see the largest ele-
ment in each row.

max(w)

mean() Calculates the average or
mean value of a vector. When
working with a matrix, you see
the mean for each row.

mean(w)

median() Calculates the median value of
a vector. When working with a
matrix, you see the median for
each row.

median(w)

min() Specifies the smallest element
in a vector. When working with
a matrix, you see the smallest
element in each row.

min(w)

mode() Determines the most frequent
value in a vector. When working
with a matrix, you see the most
frequent value for each row.

mode(w)

std() Calculates the standard devia-
tion for a vector. When working
with a matrix, you see the stand-
ard deviation for each row.

std(w)

var() Determines the variance of a
vector. When working with a
matrix, you see the variance for
each row.

var(w)

www.it-ebooks.info

http://www.it-ebooks.info/

301 Chapter 14: Solving Equations and Finding Roots

Creating pseudo-random numbers
Creating truly random numbers on a computer is
impossible without resorting to some really exotic
techniques. All random sequences on a com-
puter are generated by algorithms, making them
pseudo random. The numeric sequence has a
pattern that eventually repeats itself. Depending
on the algorithm used, the sequence can be
quite long and, to a human, nearly indistinguish-
able from a random sequence. However, other
computers aren’t fooled, and any computer can
eventually detect the repetition of the sequence.

MATLAB provides three methods of making
the pseudo-random numbers created by it
appear more random. The first is the seed
value. Choosing a different starting point in the
numeric sequence (which is quite large) means
that people are less likely to actually notice
any repetition. The second method provides
four different distributions: rand() produces
a uniform distribution of random numbers;
randn() produces a normalized distribution
of random numbers; randi() produces a uni-
form distribution of integers (where only whole
numbers are needed); and randperm()
produces a random permutation (where each
number appears only once). The third method
provides a number of randomizing generators (or
engines) — essentially different algorithms — to
produce the numeric sequence:

 ✓ ’combRecursive’: Relies on the com-
bined Multiple Recursive Generator (MRG)
(see http://random.mat.sbg.
ac.at/results/karl/server/
node7.html for details).

 ✓ ’multFibonacci’ : Uses the
Multipl icative Lagged Fibonacci
Generator (MLFG) variant of the Lagged
Fibonacci Generator (LFG) (see http://
northstar-www.dartmouth.edu/
doc/sprngsv1.0/DOCS/www/
paper/node13.html for details).

 ✓ ’twister’: Relies on the Mersenne Twister
algorithm (see http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/
emt.html for details).

 ✓ ’v5uniform’: Specifies the legacy
MATLAB 5.0 uniform generator, which pro-
duces the same result as the ’state’
option with rand(). You should use the
rng() function to randomize the gen-
erators, rather than the rand() function
used in the past (see http://www.
mathworks.com/help/matlab/
math/updating-your-random-
number-generator-syntax.html
for details).

 ✓ ’v5normal’ : Specifies the legacy
MATLAB 5.0 normal generator, which pro-
duces the same result as the ’state’
option with randn().You should use the
rng() function to randomize the genera-
tors, rather than the randn() function
used in the past (see http://www.
mathworks.com/help/matlab/
math/updating-your-random-
number-generator-syntax.html
for details).

 ✓ ’v4’: Specifies the legacy MATLAB 4.0
generator, which produces the same
result as using the ’seed’ option. This
option has been replaced by newer,
better, pseudo-random number gen-
erators, and you should use it only when
necessary to precisely reproduce a
number sequence (see http://www.
mathworks.com/help/matlab/
math/updating-your-random-
number-generator-syntax.html
for details).

www.it-ebooks.info

http://www.it-ebooks.info/

302 Part V: Specific MATLAB Applications

Understanding robust statistics
Robust statistics is a form of descriptive statistics in which the extreme values
are discarded in favor of analysis with smaller changes and less potential
for error. You use robust statistics when you have a potential for error in
the extreme values. For example, you might use it when trying to figure out
the average height of drivers today compared with those of 1940. However,
you wouldn’t use it when building a bridge because the extreme values are
important in this second case. When working with MATLAB without any of
the specialized toolkits, the best way to create robust statistics is to simply
eliminate the largest and smallest values from a vector.

 The easiest way to find and remove the largest and smallest values is to use
the statistical functions found in Table 14-1. For example, to remove the larg-
est value from a vector, a, you use a(a == max(a)) = [];. The max(a)
part of the command finds the maximum value in vector a. The index (a ==
max(a)) tells MATLAB to find the index where the maximum value resides.
You then set this element to an empty value, which deletes it.

Removing the smallest value from a vector is almost the same as removing
the largest value. However, in this case you use a(a == min(a)) = [];.
Notice that the min(a) function has taken the place of max(a).

To verify that the changes are successful, you use the std(), or standard
deviation, function. As you remove large and small values, you start to see
smaller std() output values.

Employing least squares fit
Least squares fit is a method of determining the best curve to fit a set of points
(you can read more about this process at http://mathworld.wolfram.
com/LeastSquaresFitting.html). In order to perform many of the tasks
in Chapters 14 and 15, you need the Symbolic Math Toolbox. However, least
squares fit is one task that you can do without the Toolbox. The following
sections show both techniques. What you need to take away from these sec-
tions is that multiple methods of performing many tasks are available, so
you don’t absolutely have to have the Toolbox to do it, but the Toolbox does
save time.

Using MATLAB alone
In order to compute this information using just MATLAB, you need to do a lot
of typing. The following steps get you started. The output is the parameters
and the sum of the squares of the residuals. If you want to obtain additional

www.it-ebooks.info

http://www.it-ebooks.info/

303 Chapter 14: Solving Equations and Finding Roots

information, such as the 95 percent confidence level used by some people,
you need to perform additional coding.

 1. Type XSource = 1:1:10; and press Enter.

 2. Type YSource = [1, 2, 3.5, 5.5, 4, 3.9, 3.7, 2, 1.9, 1.5]; and press Enter.

 The XSource and YSource vectors create a series of points to use for the
least squares fit. The two vectors must be the same size.

 3. Type plot(XSource, YSource) and press Enter.

 You see a plot of the points, as shown in Figure 14-15, which is helpful in
visualizing how this process might work.

Figure 14-15:
A plot of the
points used

for the least-
squares-fit

exercise.

 4. Type fun = @(p) sum((YSource - (p(1)*cos(p(2)*XSource)+p(2)*sin(p(1)
*XSource))).^2); and press Enter.

 This complex bit of typing is actually a function. You can use functions to
automate the process of working with complex equations like this one.
The equation is based on the least-squares-fitting methods described
on various sites (such as the MathWorld site listed in the introduction
to this section). The function accepts a single input — a guess as to the
parameters for the least squares fit.

www.it-ebooks.info

http://www.it-ebooks.info/

304 Part V: Specific MATLAB Applications

 5. Type Guess = [2, 2]; and press Enter.

 To make the function work, you have to provide a guess. Your guesses
affect the output of the function, just as they do when performing the
calculation manually.

 6. Type [p, fminres] = fminsearch(fun, Guess) and press Enter.

 The fminsearch() function accepts the function that you created and
the guess that you made. Essentially, it performs unconstrained, nonlin-
ear optimization of the function based on the guess that you provide. In
this case, you see an output of

p =
 1.6204 1.8594
fminres =
 104.9327

When using this approach, you can use the output values of p for your next
guess. In this case, you’d type Guess = [1.6204, 1.8594] and press Enter to
change the guess value. Then you’d type [p, fminres] = fminsearch(fun,
Guess) and press Enter to obtain the new output value of

p =
 1.6205 1.8594
fminres =
 104.9327

Using MATLAB with the Symbolic Math Toolbox
When working with the Symbolic Math Toolbox, you can use MuPAD to make
things easier. In addition, the Symbolic Math Toolbox can greatly reduce the
work you need to do by performing some of the calculations for you. The fol-
lowing steps assume that you have the Symbolic Math Toolbox installed and
that you’ve worked through the basic material in the “Working with the GUI”
section, earlier in this chapter.

 1. Open MuPAD by clicking the MuPAD Notebook entry on the Apps tab.

 You see a new notebook open.

 2. Type XSource := [1, 2, 3, 4, 5, 6, 7, 8, 9,10]: and press Enter.

 This command creates the same XSource vector as that used for the
previous example. To assign the vector to XSource, you use :=, rather
than just the assignment operator used in MATLAB (=). Adding the
colon (:) to the end of the statement keeps MuPAD from providing
output.

 3. Type YSource := [1, 2, 3.5, 5.5, 4, 3.9, 3.7, 2, 1.9, 1.5]: and press Enter.

www.it-ebooks.info

http://www.it-ebooks.info/

305 Chapter 14: Solving Equations and Finding Roots

 Again, this is the same set of elements used for the example in the pre-
ceding section. You now have the points needed for the least squares fit.

 4. Type stats::reg(XSource,YSource,p1*cos(p2*x)+p2*sin(p1*x),[x],[p1,p2],
StartingValues=[2, 2]) and press Enter.

 This long statement performs the same tasks as Steps 4, 5, and 6 in the
preceding example. So, even though this example looks more complex, it
actually saves steps. You see the output shown in Figure 14-16.

Figure 14-16:
MuPAD out-
puts approx-

imately the
same values

as the
MATLAB-

only version,
but with less

work.

 The 1.620458778, 1859399122 part of the output are the parameters. You
can use them to make your next guess.

 5. Highlight the 2, 2 part of the equation and type 1.620458778,
1.859399122.

 MuPAD replaces the old values with the new values you typed.

 6. Press Enter.

 You see the updated values shown in Figure 14-17. Again, they’re pretty
close to the values output by the MATLAB-only solution.

www.it-ebooks.info

http://www.it-ebooks.info/

306 Part V: Specific MATLAB Applications

 Using the Symbolic Math Toolbox saves time and effort by reducing the
number of steps you must take to find a solution. However, the output isn’t
any different from working with MATLAB alone (a really good thing). The big-
gest time savings comes from being able to make guesses a lot faster and with
greater ease.

Figure 14-17:
Each guess

brings you
closer to

the precise
answer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

Performing Analysis
In This Chapter
▶ Working with linear algebra

▶ Using calculus

▶ Resolving differential equations

C
hapter 14 introduces you to the Symbolic Math Toolbox and shows
you how to use it to perform a number of tasks. This chapter expands

on some of the information presented in Chapter 14. In fact, before you pro-
ceed, make sure that you have the Symbolic Math Toolbox installed. The
student version of MATLAB comes with the Symbolic Math Toolbox installed
by default — otherwise, you must install it manually, using the instructions
found in the first section of Chapter 14.

This chapter doesn’t provide you with a detailed look at any one particular
area of solving equations, but it does provide a good start on working with
linear algebra, calculus, and differential equations. Being able to solve these
equations quickly and correctly can make a huge difference in the success of
your project.

 You may think that these kinds of math are used only in high-tech environ-
ments, such as building a sub that can safely traverse the Marianas Trench.
(You can read about James Cameron’s successful exploration of the trench
using a custom submarine at http://news.nationalgeographic.
com/news/2012/03/120325-james-cameron-mariana-trench-
challenger-deepest-returns-science-sub/.) However, these equa-
tions are used in everyday life. For example, check out this story about
how linear algebra can be employed to make a restaurant more profitable:
http://smallbusiness.chron.com/restaurants-use-linear-
programming-menu-planning-37132.html. The point is that you don’t
really know when or where you’ll encounter these equations, so it’s a good
idea to be prepared to use them.

www.it-ebooks.info

http://www.it-ebooks.info/

308 Part V: Specific MATLAB Applications

Using Linear Algebra
You use linear algebra to perform a number of tasks with matrixes in MATLAB.
For example, you can determine whether a matrix is singular or unimodular by
using the det() function. You can also reduce a matrix to determine whether
it’s solvable. In fact, you can perform a relatively wide range of tasks using linear
algebra with MATLAB and the Symbolic Math Toolbox; the following sections
tell you how. (See Chapter 14 for details on the Symbolic Math Toolbox add-on.).

Working with determinants
Determinants are used in the analysis and solution of systems of linear equa-
tions. A nonzero value means that the matrix is nonsingular and that the
system has a unique solution. A value of 1 usually indicates that the matrix
is unimodular — that it’s a real square matrix, in other words. The function
used to obtain the determinant value is det(). You supply a matrix, and the
output value tells you about the ability to create a solution for that matrix.

 Equally important is to know about the cond() function, which tests for sin-
gular matrices. Again, you supply a matrix as an input value, and the output
provides a condition number that specifies the sensitivity of the matrix to error.
An output value near 1 indicates a well-conditioned matrix. (The YouTube video
at https://www.youtube.com/watch?v=JODxbi9B3tg provides an incred-
ibly simplified illustration of the difference between a well-conditioned and an
ill-conditioned matrix.)

To see how these two functions work together, type A = [1, 2, 3; 4, 5, 6; 7, 8, 9];
and press Enter to create a test matrix. This is a singular matrix. Type cond(A)
and press Enter. The result of 3.8131e+16 tells you that this is a highly sensitive
matrix — a singular matrix. Type det(A) and press Enter. Again, the incredibly
small output value of 6.6613e-16 tells you that this is a singular matrix. (If you
want to see a perfect singular matrix, try [0, 0, 0; 0, 0, 1; 0, 0, 0];
the cond() value is Inf, or infinity, and the det() value is 0.)

For comparison purposes, try a unimodal matrix. Type B = [2, 3, 2; 4, 2, 3;
9, 6, 7]; and press Enter to create the matrix. Type cond(B) and press Enter
to see the condition number of 313.1721, which isn’t perfect, but it’s quite
close. Type det(B) and press Enter to see the result of 1.0000, which is good
(doesn’t approximate 0) for a unimodal matrix.

Performing reduction
Reduction lets you see the structure of what a matrix represents, as well as
to write solutions to the system. MATLAB provides the rref() function to
produce the Reduced Row Echelon Form (RREF). (You can find out more

www.it-ebooks.info

http://www.it-ebooks.info/

309 Chapter 15: Performing Analysis

about RREF at http://www.millersville.edu/~bikenaga/linear-
algebra/row-reduction/row-reduction.html.) There is also an
interesting tool that you can use to see the steps required to produce RREF
using any matrix as input at http://www.math.odu.edu/~bogacki/cgi-
bin/lat.cgi?c=rref. The point is that you can perform reduction using
MATLAB, and doing so requires only a couple of steps.

The first step is to create the matrix. In this case, the example uses a magic
square. Type A = magic(5) and press Enter. The magic() function will pro-
duce a magic square of any size for you. (You can read about magic squares
at http://mathworld.wolfram.com/MagicSquare.html). The output
you see is

A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The second step is to perform the reduction. Type rref(A) and press Enter.
Any nonsingular matrix will reduce to identity, as follows:

ans =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

You can use rref() to solve linear equations. In this case, if A*x=y and
y=[1;0;0;0;0], then B=rref([A,y]) solves the equation. The following
steps demonstrate how this works:

 1. Type y=[1;0;0;0;0]; and press Enter.

 2. Type A=magic(5); and press Enter.

 3. Type B=rref([A,y]) and press Enter.

 You see the following output:

B =
1.0000 0 0 0 0 -0.0049
 0 1.0000 0 0 0 0.0431
 0 0 1.0000 0 0 -0.0303
 0 0 0 1.0000 0 0.0047
 0 0 0 0 1.0000 0.0028

www.it-ebooks.info

http://www.it-ebooks.info/

310 Part V: Specific MATLAB Applications

 4. Type x=B(:,6) and press Enter.

 You see the following output:

x =
 -0.0049
 0.0431
 -0.0303
 0.0047
 0.0028

 At this point, you want to test the equation.

 5. Type A*x and press Enter.

 You see the following output:

ans =
 0.9999
 -0.0001
 -0.0001
 -0.0001
 -0.0001

 Notice that the output values match the original value of y to within a
small amount. In other words, the steps have proven the original equa-
tion, A*x=y, true.

Using eigenvalues
An eigenvalue (v) is an eigenvector of a square matrix. The variable A is a non-
zero matrix. When v is multiplied by A, it yields a constant multiple of v that is
commonly denoted by λ. Eigenvalues are defined by the following equation:

Av = λv

Eigenvalues are used in all sorts of ways, such as for graphics manipulation
(sheer mapping) and analytic geometry (to display an arrow in three dimen-
sional space). You can read more about eigenvalues at http://mathworld.
wolfram.com/Eigenvalue.html.

To see how this works, you first need to create a matrix. Type A = gallery-
(‘riemann’, 4) and press Enter. The gallery() function produces test matri-
ces of specific sizes filled with specific information so that you can repeat test
results as needed. The output of gallery() depends on the matrix size and
the function used to create the matrix. (You can read more about gallery()
at http://www.mathworks.com/help/matlab/ref/gallery.html.) The
output from this particular call is

www.it-ebooks.info

http://www.it-ebooks.info/

311 Chapter 15: Performing Analysis

 1 -1 1 -1
 -1 2 -1 -1
 -1 -1 3 -1
 -1 -1 -1 4

 Obtaining the eigenvalue comes next. The output will contain one value for
each row of the matrix. Type lambda = eig(A) and press Enter to see the eigen-
value of the test matrix, A, as shown here:

lambda =
 -0.1249
 2.0000
 3.3633
 4.7616

Understanding factorization
Factorization is the decomposition of an object, such as a number, polyno-
mial, or matrix. The idea behind factorization is to reduce the complexity
of the object so that it’s easier to understand and solve. In addition, it helps
you determine how the object is put together, such as its use for prime fac-
torization (see http://www.calculatorsoup.com/calculators/math/
prime-factors.php). You can read more about factorization at http://
mathworld.wolfram.com/Factorization.html.

You perform factorization in MATLAB using the factor() function. You can
use the factor() function in a number of ways: working with numbers,
working with polynomials, and working with matrices.

When working with a number, you simply provide the number as input. For
example, type factor(2) and press Enter. The output is 2 because 2 is a prime
number. Type factor(12) and press Enter. The output is [2, 2, 3] because
2 * 2 * 3 equals 12.

Polynomials require that you declare symbolic objects first by using syms.
Type syms x y and press Enter to create the required objects. Type factor(x^2 +
2*x*y + y^2) and press Enter. The output is (x + y)^2.

Working with matrices requires a little more work. Begin by creating a matrix
by typing A = magic(4) and pressing Enter. You see the following output:

A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

www.it-ebooks.info

http://www.it-ebooks.info/

312 Part V: Specific MATLAB Applications

 The factorization takes place on an element-by-element basis. However, you
must enclose the matrix within the sym() function to get the factor() func-
tion to accept it. Type factor(sym(A)) and press Enter. The output that follows
shows how each element in the matrix is factorized:

ans =
[2^4, 2, 3, 13]
[5, 11, 2*5, 2^3]
[3^2, 7, 2*3, 2^2*3]
[2^2, 2*7, 3*5, 1]

Employing Calculus
Calculus can solve myriad problems that algebra can’t. It’s really the study of
how things change. This branch of math is essentially split into two pieces:
differential calculus, which considers rates of change and slopes of curves,
and integral calculus, which considers the accumulation of quantities and the
areas between and under curves. The following sections show how you can
use MATLAB with the Symbolic Math Toolbox to solve a number of relatively
simple calculus problems.

Working with differential calculus
MATLAB offers good differential calculus support. The example in this sec-
tion starts with something simple: Univariate differentiation. (Remember that
univariate differentiation has a single variable.) MATLAB supports a number
of forms of differential calculus — each of which requires its own set of func-
tions. In this case, you use the diff() function to perform the required
tasks. The following steps help you perform a simple calculation:

 1. Type syms x and press Enter.

 MATLAB creates a symbolic object to use in the calculation.

 2. Type f(x) = sin(x^3) and press Enter.

 Doing so creates the symbolic function used to perform the calculation.
Here’s the output you see:

f(x) =
sin(x^3)

 3. Type Result = diff(f) and press Enter.

 The output shows the result of the differentiation:

Result(x) =
3*x^2*cos(x^3)

www.it-ebooks.info

http://www.it-ebooks.info/

313 Chapter 15: Performing Analysis

 Result(x) is actually a symbolic function. You can use it to create a
picture of the output.

 4. Type plot(Result(1:50)) and press Enter.

 Figure 15-1 shows the plot created from the differentiation of the original
symbolic function.

Figure 15-1:
The plot

shows the
result of the

differen-
tiation.

Using integral calculus
You’ll also find great integral calculus support in MATLAB. As does the
example in the preceding section, the example in this section focuses on a
univariate calculation. In this case, the example relies on the int() function
to perform the required work. The following steps help you perform a simple
calculation:

 1. Type syms x and press Enter.

 MATLAB creates a symbolic object to use in the calculation.

 2. Type f(x) = (x^3 + 3*x^2) / x^3 and press Enter.

 The symbolic function that you create produces the following output:

f(x) =
(x^3 + 3*x^2)/x^3

www.it-ebooks.info

http://www.it-ebooks.info/

314 Part V: Specific MATLAB Applications

 3. Type Result = int(f, x) and press Enter.

 Notice that you must provide a symbolic variable as the second input.
The output shows the following symbolic function as the result of the
integration:

Result(x) =
x + 3*log(x)

 4. Type plot(Result(1:50)) and press Enter.

 Figure 15-2 shows the plot created from the integration of the original
symbolic function.

Figure 15-2:
The output
is usually a

curve.

Working with multivariate calculus
The “Working with differential calculus” section, earlier in the chapter, shows
how to work with a single variable. Of course, many (if not most) problems
don’t involve just one variable. With this in mind, the following steps demon-
strate a problem with more than one variable — a multivariate example:

 1. Type syms x y and press Enter.

 MATLAB creates the two symbolic objects used for this calculation.

www.it-ebooks.info

http://www.it-ebooks.info/

315 Chapter 15: Performing Analysis

 2. Type f(x, y) = x^2 * sin(y) and press Enter.

 This symbolic function accepts two inputs, x and y, and uses them to
perform a calculation. Here’s the output from this step:

f(x, y) =
x^2*sin(y)

 3. Type Result = diff(f) and press Enter.

 The output shows the result of the differentiation:

Result(x, y) =
2*x*sin(y)

 In this case, Result(x, y) accepts two inputs, x and y. As before, you
can create a picture from the output of Result().

 The example shows the derivative with respect to x, which is the default.
To obtain the derivative with respect to y (df/dy), you type diff(f, y)
instead.

 4. Type plot(Result(1:50, 1:50)) and press Enter.

 Figure 15-3 shows the output of the plot created in this case.

 Notice that in this case, you must provide both x and y inputs, which
isn’t surprising. However, the two vectors must have the same number
of elements or MATLAB will raise an exception.

Figure 15-3:
Using two
variables
requires

vectors of
equal size.

www.it-ebooks.info

http://www.it-ebooks.info/

316 Part V: Specific MATLAB Applications

Solving Differential Equations
When working with differential equations, MATLAB provides two different
approaches: numerical and symbolic. The following sections demonstrate
both approaches to solving differential equations. Note that these sections
provide just an overview of the techniques; MATLAB provides a rich set of
functions to work with differential equations.

Using the numerical approach
When working with differential equations, you must create a function that
defines the differential equation. This function is passed to MATLAB as part of
the process of obtaining the result. There are a number of functions you can
use to perform this task; each has a different method of creating the output.
You can see a list of these functions at http://www.mathworks.com/help/
matlab/ordinary-differential-equations.html. The example in this
section uses ode23(), but the technique works for the other functions as well.

 MATLAB has a specific way of looking at your function. The order in which
the variables appear is essential, so you must make sure that your function is
created with this need in mind. The example in this section simplifies things
to avoid the complexity of many examples online and let you see the process
used to perform the calculation. The following steps get you started:

 1. Type Func = @(T, Y) cos(T*Y) and press Enter.

 You see an output of

Func =
 @(T,Y)cos(T*Y)

 Many of the sources you see will tell you that you must place the equa-
tion in a separate function file on disk. However, this example demon-
strates that creating a temporary function works just fine.

 The requirements for the differential function are that you must provide
an input for time and another input containing the values for your equa-
tion. The time value, T, is often unused, but you can use it if you want.
The variables can consist of anything required to obtain the result you
want. In this case, you input a simple numeric value, Y, but inputs can be
vectors, matrices, or other objects as well.

 2. Type [TPrime, YPrime] = ode23(Func, [-10, 10], .2); and press Enter.

 When using ode23(), you must provide a function — Func in this case —
as input. As an alternative, you provide the name of the file containing the
function. The second argument is a vector that contains the starting and
ending times of the calculation. The third argument is the starting input
value for the calculation.

www.it-ebooks.info

http://www.it-ebooks.info/

317 Chapter 15: Performing Analysis

 The TPrime output is always a vector that contains the time periods
used for the calculation. The YPrime output is a vector or matrix that
contains the output value or values for each time period. In this case,
YPrime is a vector because there is only one output value.

 3. Type plot(TPrime, YPrime) and press Enter.

 You see the plotted result for this example, as shown in Figure 15-4.

Figure 15-4:
Obtaining a
result using
the numeric

approach.

Using the symbolic approach
When working with the symbolic approach, you rely on the functionality of
the Symbolic Math Toolbox to speed the solution along and make it a little
easier to solve. Even though the solution in the previous section looks easy, it
can become quite complicated when you start working with larger problems.
The symbolic approach is a little more straightforward. When using the sym-
bolic approach, you rely on dsolve(), which is described at http://www.
mathworks.com/help/symbolic/dsolve.html. The following steps show
a simple example of using dsolve() to create a differential solution and then
plot it:

 1. Type Solution = dsolve(‘Dy=(t^2*y)/y’, ‘y(2)=1’, ‘t’) and press Enter.

 The arguments to dsolve() consist of the equation you want to solve,
the starting point for y (a condition), and the name of the independent
variable. You see the following output from this entry:

www.it-ebooks.info

http://www.it-ebooks.info/

318 Part V: Specific MATLAB Applications

Solution =
t^3/3 - 5/3

 2. Type Values = subs(Solution, ‘t’, -10:.1:10); and press Enter.

 Solution simply contains the solution to the equation given the condi-
tions you provide. The subs() function substitutes values for t one at
a time. In this case, the values range from –10 to 10 in 0.1 increments.
When this command completes, Values contains a list of results for the
values you provided that you can use as plot points.

 3. Type plot(Values) and press Enter.

 You see the output shown in Figure 15-5.

Figure 15-5:
Obtaining a
result using

the symbolic
approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16

Creating Super Plots
In This Chapter
▶ Defining the characteristics of a super plot

▶ Adding features to a standard plot

▶ Generating advanced plot types

▶ Animating your plot

P
 lots help people understand data; there is no doubt about that. Previous
chapters demonstrate that MATLAB provides excellent plotting features,

which only makes sense considering the value of plots to everyone who uses
MATLAB. Without plots, trying to explain the math behind a project would be
hard — and describing the consequences of the math would be impossible.
In order to truly understand math, most people need a picture, and plotting
provides that picture.

You may have looked at the plots in the previous chapters and thought that
there must be more functionality available. There is more — more of every-
thing needed to create just the plot you had in mind! That’s what this chapter
is about — creating plots that distinguish themselves with regard to clarity
and their ability to communicate abstract concepts in clear terms. In other
words, this chapter is about plot pizazz.

Of course, misusing the power of plots is easy to do, especially plots that
have the features of MATLAB at their disposal. The first section of the chap-
ter helps define precisely what a super plot is, why you’d want to use one,
and how to avoid bedazzling your viewers to the point that nothing gets
through. In other words, this first section is essential for people who want to
create amazing plots without first getting an art degree.

The remainder of the chapter is about actually using advanced plot features.
You discover that MATLAB provides access to a number of features that you
can use to enhance any given plot. MATLAB also provides specialized plots
that help you convey information in new ways — ways other than the omni-
present bar chart beloved by so many businesspeople. (Not that there is

www.it-ebooks.info

http://www.it-ebooks.info/

320 Part V: Specific MATLAB Applications

anything particularly wrong with a bar chart when you really do need one,
but these other plots give you interesting alternatives.) Finally, in this chapter
you see how to animate your plots. No, animation is not for entertainment
purposes (although, animation could certainly be used to achieve that goal).
Rather, animation helps you to view a problem from several perspectives and
to understand the solutions needed to address it.

Understanding What Defines
a Super Plot

A super plot is actually just a regular plot, but with a lot more pizazz. You
add features to a regular plot that emphasize certain elements or make spe-
cific concepts clearer. The idea is to use these features to clarify concepts
and to help remove the abstractions that cause people to avoid thinking
about math most of the time. In short, you use specific features to turn
your abstract idea into something concrete — something that others can
grasp and understand. Until you get to the point at which others can truly
see what you mean with the numbers, trying to convince anyone to see
your point of view is useless.

 It might be easy at first to think that a super plot is meant to bedazzle the
audience — to hide bad numbers or simply impress people in a manner that
makes them less likely to disagree. However, in this day of dramatic special
effects that only slightly faze people, a plot with amazing graphics isn’t going
to achieve much. So, a super plot isn’t meant to hide anything.

A problem for most people embarking on a journey of intense graphic manipu-
lation for the first time is that the eye candy does become quite addictive. You
end up wanting to add just about everything to your plot. The result is often
hideous and sometimes comical, but it isn’t convincing. Here are some things
you can do to keep your plots from becoming a little too intense:

 ✓ Avoid using too many plot extras on a single plot. Use only those plot
extras that truly enhance the numbers in a way that makes them easier
to understand.

 ✓ Create a consistent look across plots so that you don’t end up with plots
that are more distracting than informative.

 ✓ Rely on labels and other graphic elements (such as text boxes) to help
explain the data whenever necessary.

 ✓ Use the same rotation (the same perspective or point of view) in associ-
ated plots whenever possible. (You see how to use rotation in Chapter 7,

www.it-ebooks.info

http://www.it-ebooks.info/

321 Chapter 16: Creating Super Plots

and several other chapters work with rotation in various ways. Later in
this chapter you also see rotation-type effects.)

 ✓ Create specialized plots only when the specialized version conveys
information in a manner that a standard plot doesn’t. (People are often
distracted by the special plots.)

 ✓ Employ animation carefully to show a numeric sequence or to allow view-
ing of a problem from all sides. Avoid using animation as a special effect.

 ✓ Define the target of emphasis for each plot before you actually add any
emphasis so that you can focus on just the area that needs adjustment.

 ✓ Develop a strategy for presenting the information before you actually
create the plots so that you have a clear plan in mind.

Using the Plot Extras
Chapters 6 and 7 of the book focus attention on the basics of creating and
using plots to convey information to others. You see a few extras used in
the presentation of data in Chapter 12. The following sections go beyond
the materials in these other chapters to describe the kinds of extras you
can use for emphasizing specific data. For example, the way in which you
configure the grid can help make differences between data more obvious.

 You can always clear the current figure from the window by typing cla and
pressing Enter. This command clears all the plot information from the figure,
but doesn’t close the figure window.

Using grid()
The grid helps you see how data interrelates on a plot. However, sometimes
the grid isn’t in the right place; it’s too large, or simply in the way. The follow-
ing grid() functions help you use a grid effectively on your plot:

 ✓ grid('on'): Turns the grid on so that it appears in the current figure.

 ✓ grid('off'): Turns the grid off so that you can’t see it in the current
figure.

 ✓ grid(): Toggles the grid between on and off.

 ✓ grid('minor'): Toggles the minor grid ticks on and off.

www.it-ebooks.info

http://www.it-ebooks.info/

322 Part V: Specific MATLAB Applications

Obtaining the current axis using gca
Many of the functions used to enhance the appearance of a plot require access
to the current axis. However, when you create a plot, the only handle you have
is the one to the plot itself. To obtain the axis handle, you type something like
Bar1Axis = gca and press Enter. The result is that you now have an axis
handle in Bar1Axis.

Creating axis dates using datetick()
You use datetick() to add dates to a plot axis. When using datetick(),
you need an axis that has numbers that are in the range of the dates you
need. For example, when you type datenum(‘9,15,2014’) and press Enter, you
get an output value of 735857. When datetick() sees this value, it con-
verts the number to a date.

 The datenum() function also accepts time as input. When you type datenum
(‘09/15/2014 08:00:00 AM’) and press Enter, you get 7.3586e+05 as output.
Notice that the integer portion of the value is the same as before, but the
decimal portion has changed to show the time. If you don’t provide a time, the
output is for midnight of the day you select. You can convert a numeric date
back to a string date using the datestr() function.

The x-axis in this example uses date values. To create an x-axis data source, type
XSource = linspace(datenum(‘09/15/2014’), datenum(‘09/19/2014’), 5); and
press Enter. This act creates a vector that contains the dates from 09/15/2014 to
09/19/2014. The linspace() function returns a vector that contains the speci-
fied number of value (5 in this case) between the two values you specify.

To create the y-axis data source, type YSource = [1, 5, 9, 4, 3]; and press Enter.
Type Bar1 = bar(XSource, YSource) and press Enter to create the required plot.
The default tick spacing will show too many points, so type set(gca, ‘XTick’, lins
pace(datenum(‘09/15/2014’), datenum(‘09/19/2014’), 5)) and press Enter to set
the tick spacing. Figure 16-1 shows how your plot should look. Notice that the
x-axis doesn’t use the normal numbering scheme that begins with 1 — it uses a
date number instead (expressed as an exponent rather than an integer). Even
though the x-axis numbers look the same, you see in the next paragraph that
they aren’t.

To turn the x-axis labels into dates, you now use the datetick() function.
Type datetick(‘x’, ‘dd mmm yy’, ‘keeplimits’, ‘keepticks’) and press Enter.
Figure 16-2 shows the plot with dates in place.

www.it-ebooks.info

http://www.it-ebooks.info/

323 Chapter 16: Creating Super Plots

Figure 16-1:
A plot with

numbers
in place of

dates.

Figure 16-2:
Creating

dates in a
specific
format.

www.it-ebooks.info

http://www.it-ebooks.info/

324 Part V: Specific MATLAB Applications

All the arguments used with datetick() are optional. When you use
datetick() by itself, the output appears on the x-axis using a two-digit
month and a two-digit day. The end points also have dates, so instead of
seeing just five dates, you see seven (one each for the ends). The example
uses the following arguments in this order to modify how datetick() nor-
mally works:

 ✓ Axis: Determines which axis to use. You can choose the x-, y-, or z-axis
(when working with a 3D plot).

 ✓ Date format: Specifies how the date should appear. You can either use
a string containing the format as characters, as shown in Table 16-1,
or you can use a number to choose a default date option, as shown in
Table 16-2. (The two tables assume a datenum() value of '09/15/2014
08:00:00 AM'.) The example uses a custom format, so one of the
numeric options won’t work.

 ✓ 'keeplimits': Prevents MATLAB from adding entries to either end
of the axis. This means that the example plot retains five x-axis entries
rather than getting seven.

 ✓ 'keepticks': Prevents MATLAB from changing the value of the ticks.

Table 16-1 Strings Used to Create a Date Format
String Purpose Example
yyyy Four-digit year 2014

yy Two-digit year 14

QQ Quarter of the year using the
letter Q and a single number

Q1

mmmm Month using full name September

mmm Three-letter month name Sep

mm Two-digit month 09

m Single-letter month name S

dddd Day using full name Monday

ddd Three-letter day name Mon

dd Two-digit day 15

d Single-letter day name M

HH Two-digit hour 08 when no AM/PM used,
8 AM otherwise

MM Two-digit minutes 00

www.it-ebooks.info

http://www.it-ebooks.info/

325 Chapter 16: Creating Super Plots

String Purpose Example

SS Two-digit seconds 00

FFF Three-digit milliseconds 000

AM or
PM

AM or PM is used rather than
24-hour military time

8:00:00 AM

Table 16-2 Numeric Selections for Standardized Dates
Number String Format Equivalent Example
-1
(default)

'dd-mmm-yyyy HH:MM:SS' or
'dd-mmm-yyyy' (no time
output at midnight)

15-Sep-2014
08:00:00 or
15-Sep-2014

0 'dd-mmm-yyyy HH:MM:SS' 15-Sep-2014
08:00:00

1 'dd-mmm-yyyy' 15-Sep-2014

2 'mm/dd/yy' 09/15/14

3 'mmm' Sep

4 'm' S

5 'mm' 09

6 'mm/dd' 09/15

7 'dd' 15

8 'ddd' Mon

9 'd' M

10 'yyyy' 2014

11 'yy' 14

12 'mmmyy' Sep14

13 'HH:MM:SS' 08:00:00

14 'HH:MM:SS PM' 8:00:00 PM

15 'HH:MM' 08:00

16 'HH:MM PM' 8:00 PM

17 'QQ-YY' Q3-14

18 'QQ' Q3

19 'dd/mm' 15/09
(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

326 Part V: Specific MATLAB Applications

Number String Format Equivalent Example

20 'dd/mm/yy' 15/09/14

21 'mmm.dd,yyyy HH:MM:SS' Sep.15,2014
08:00:00

22 'mmm.dd,yyyy' Sep.15,2014

23 'mm/dd/yyyy' 09/15/2014

24 'dd/mm/yyyy' 15/09/2014

25 'yy/mm/dd' 14/09/15

26 'yyyy/mm/dd' 2014/09/15

27 'QQ-YYYY' Q3-2014

28 'mmmyyyy' Sep2014

29 'yyyy-mm-dd' (ISO 8601) 2014-09-15

30 'yyyymmddTHHMMSS' (ISO 8601) 20140915T080000

31 'yyyy-mm-dd HH:MM:SS' 2014-09-15
08:00:00

Creating plots with colorbar()
Using a color bar with your plot can help people see data values based
on color rather than pure numeric value. The color bar itself can assign
human-understandable values to the numeric data so that the data means
something to those viewing it. The best way to work with color bars is
to see them in action. The following steps help you create a color bar by
using the colorbar() function and use it to define values in a bar chart:

 1. Type YSource = [4, 2, 5, 6; 1, 2, 4, 3]; and press Enter.

 MATLAB creates a new data source for the plot.

 2. Type Bar1 = bar3(YSource); and press Enter.

 You see a new bar chart like the one shown in Figure 16-3. Even though
the data is in graphic format, it’s still pretty boring. To make the bar
chart easier to work with, the next step changes the y-axis labels.

 3. Type CB1 = colorbar(‘EastOutside’); and press Enter.

Table 16-2 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

327 Chapter 16: Creating Super Plots

 You see a color bar appear on the right side of the plot, as shown in
Figure 16-4. You can choose other places for the color bar, including
inside the plot. Don’t worry about the color bar ticks not matching those
of the bar chart for now.

Figure 16-3:
Defining a
basic bar
chart that

doesn’t
make use of

color.

 4. Type the following code into the Command window, pressing Enter
after each line.

for Element = 1:length(Bar1)
 ZData = get(Bar1(Element),'ZData');
 set(Bar1(Element), 'CData', ZData,...
 'FaceColor', 'interp')
end

 A number of changes take place. The bars are now colored according to
their value. In addition, the ticks on the color bar now match those of the
bar chart as shown in Figure 16-5. However, the color bar just contains
numbers, so it doesn’t do anything more than the y-axis labels do to tell
what the colors mean.

 5. Type set(CB1, ‘YTickLabel’, {‘’, ‘Awful’, ‘OK’, ‘Better’, ‘Average’, ‘Great!’,
‘BEST’}); and press Enter.

 The chart now has meanings assigned to each color level, as shown in
Figure 16-6.

www.it-ebooks.info

http://www.it-ebooks.info/

328 Part V: Specific MATLAB Applications

Figure 16-4:
The color

bar appears
on the right
side of the

plot.

Figure 16-5:
The bars are
now colored

to show
their values.

www.it-ebooks.info

http://www.it-ebooks.info/

329 Chapter 16: Creating Super Plots

Figure 16-6:
The color

bar now
conveys
meaning

to the bar
chart.

 The color scheme that MATLAB uses by default isn’t the only color scheme
available. The colormap() function lets you change the colors. For example,
if you type colormap(‘cool’) and press Enter, the colors change appropriately.
You can also create custom color maps using a variety of techniques. To get
more information, see the colormap() documentation at http://www.
mathworks.com/help/matlab/ref/colormap.html.

Interacting with daspect
How the 3D effect appears onscreen depends on the data aspect ratio. The
daspect() function lets you obtain the current aspect ratio and set a new
one. The aspect ratio is a measure of how the x-, y-, and z-axis interact. For
example, an aspect ratio of [1, 2, 3] would mean that for every 1 unit of the
x-axis, there are two units of the y-axis and three units of the z-axis. Perform
the following steps to see how this feature works:

 1. Type YSource = [1, 3, 5; 3, 7, 9; 5, 7, 11]; and press Enter.

 MATLAB creates a data source for you.

 2. Type Bar1 = bar3(YSource); and press Enter.

 You see a 3D bar chart appear.

 3. Type rotate(Bar1, [0, 0, 1], 270); and press Enter.

 The bar chart rotates so that you can see the individual bars easier, as
shown in Figure 16-7.

www.it-ebooks.info

http://www.it-ebooks.info/

330 Part V: Specific MATLAB Applications

Figure 16-7:
A 3D bar

chart that
you can use
to work with

the data
aspect ratio.

 4. Type daspect() and press Enter.

 The output contains three values, like this:

ans =
 0.3571 0.2679 2.1670

 So, you now know the current aspect ratio of the plot, with the first
number representing the x-axis value, the second number the y-axis
value, and the third number the z-axis value. Your numbers may not pre-
cisely match those shown in the book.

 5. Type daspect([.25, 1, 1.2]); and press Enter.

 The data aspect ratio changes to create tall, skinny-looking bars like those
shown in Figure 16-8. Compare Figures 16-7 and 16-8 and you see that the
differences between the individual bars appears greater, even though
nothing has changed. The data is precisely the same as before, as is the
rotation, but the interpretation of the data changes.

 6. Type daspect([.65, .5, 7]); and press Enter.

 The impression is now that the differences between the data points are
actually quite small, as shown in Figure 16-9. Again, nothing has changed
in the data or the rotation. The only thing that has changed is how the
data is presented.

 7. Type daspect(‘auto’) and press Enter.

 The data aspect returns to its original state.

www.it-ebooks.info

http://www.it-ebooks.info/

331 Chapter 16: Creating Super Plots

Figure 16-8:
Modifying
the aspect

ratio
changes
how the

data is
perceived.

Figure 16-9:
You can

make the
differences

between
data points

appear
great or

small.

www.it-ebooks.info

http://www.it-ebooks.info/

332 Part V: Specific MATLAB Applications

Interacting with pbaspect
The previous section tells how to modify the data aspect ratio. In addition, you
see a number of examples that show how to use rotation to modify the appear-
ance of the data. This section discusses the plot box aspect ratio. Instead of
modifying the data, the plot box aspect ratio modifies the plot box — the ele-
ment that holds the plot in its entirety — as a whole. The appearance of the
data still changes, but in a different way than before. The following steps get
you started with this example:

 1. Type YSource = [1, 3, 5; 3, 7, 9; 5, 7, 11]; and press Enter.

 MATLAB creates a data source for you.

 2. Type Bar1 = bar3(YSource); and press Enter.

 You see a 3D bar chart appear.

 3. Type rotate(Bar1, [0, 0, 1], 270); and press Enter.

 The bar chart rotates so that you can see the individual bars easier.
(Refer to Figure 16-7.)

 4. Type pbaspect() and press Enter.

 As before, you get three values: x-, y-, and z-axis. However, the numbers
differ from before because now you’re working with the plot box aspect
ratio and not the data aspect ratio. Here are typical output values at this
point:

ans =
 2.8000 4.0000 2.4721

 5. Type pbaspect([1.5, 1.5, 7]); and press Enter.

 The differences between the data points seem immense, as shown in
Figure 16-10.

 Notice how changing the plot box aspect ratio affects both the plot box
and the data so that the plot box no longer is able to change settings,
such as the spacing between bars (as shown in Figures 16-8 and 16-9).
What this means in particular is that you don’t have to worry about bars
ending up outside the plot area and not being displayed. The bars and
the plot box are now locked together.

 6. Type pbaspect([4, 5, 1]); and press Enter.

 The data points now seem closer together, even though nothing has
changed in the data, as shown in Figure 16-11. At this point, it helps
to compare Figures 16-7 through 16-11. These figures give you a
better idea of how aspect ratio affects the perception of your data in
various ways.

www.it-ebooks.info

http://www.it-ebooks.info/

333 Chapter 16: Creating Super Plots

 7. Type pbaspect(‘auto’); and press Enter.

 The plot aspect returns to its original state.

Figure 16-10:
The data

and plot box
are locked

together.

Figure 16-11:
The differ-
ences are

smaller, but
the view

differs from
a change in
data aspect

alone.

www.it-ebooks.info

http://www.it-ebooks.info/

334 Part V: Specific MATLAB Applications

Working with Plot Routines
Previous chapters discuss some of the more common plots. These are the
sorts of plots you might find anywhere, such as a bar chart. Just about
everyone uses them, so they’re good plots to choose for your data as well.
Familiarity with the form lets people focus on the data rather than the plot.
Use one of these common plots whenever possible.

Unfortunately, using a common plot is not always possible. Sometimes you
need to model data in a manner that requires a special kind of plot. MATLAB
provides a large assortment of these special plot types. The following sec-
tions demonstrate a number (but not all) of them. If you don’t see what you
want, check Appendix B for a complete listing of plots.

Finding data deviations using errorbar()
An error bar chart shows the level of confidence in each data point along a
line. What you see is the transition between data points as a solid line, and
then a bar that shows the amount of deviation, both positive and negative,
from that point. A viewer can tell whether the data is truly accurate or simply
a guess by looking at the amount of deviation for particular points along the
line. This kind of plot helps with analysis in determining whether the data
is solid enough to rely on or whether additional input is needed to obtain a
better estimate. The following steps help you create an error bar plot:

 1. Type YSource = [1, 2, 4, 7, 5, 3]; and press Enter.

 These values represent the actual data points. They tell the viewer what
you think the actual values might be.

 2. Type ESource = [.5, 1, 1, 1.5, 1, .5]; and press Enter.

 These values represent the amount of error for each data point. This is
the plus or minus amount and tells the viewer how confident you are
about the values in YSource.

 3. Type EBar1 = errorbar(YSource, ESource); and press Enter.

 This step creates the error bar plot shown in Figure 16-12. Notice that
each data point has an error bar associated with it, showing the poten-
tial amount of deviation for that data point.

Ranking related measures using pareto()
The Pareto diagram was originally created by Vilfredo Pareto in early 1900s
Europe. It shows the relations of measures in decreasing order of occurrence.
By using a Pareto diagram, it becomes possible to see where to spend most of

www.it-ebooks.info

http://www.it-ebooks.info/

335 Chapter 16: Creating Super Plots

your time looking for a problem. You can read more about Pareto diagrams at
http://www.pqsystems.com/qualityadvisor/DataAnalysisTools/
pareto_diagram.php.

Figure 16-12:
The error
bar plot is
extremely

useful
for data

analysis.

To create this example, you begin by defining a data source with multiple
occurrences of some values. Type YSource = [1, 2, 4, 2, 6, 2, 3, 4, 1, 2]; and
press Enter to define the data source. Now that you have a data source,
create the Pareto diagram by typing Par1 = pareto(YSource); and pressing
Enter. Figure 16-13 shows typical output from this example.

Plotting digital data using stairs()
The stairstep plot is commonly used to display time history plots of digitally
sampled systems. The plot shows the result of continuous change, but also
defines the interval at which these changes occur as a precise time order
rather than a continuous change as you see in analog systems. The following
steps help you create a stairstep plot:

 1. Type YSource = [1, 2, 4, 7, 5, 3]; and press Enter.

 These values represent the actual data points. They tell the viewer what
you think the actual values might be.

www.it-ebooks.info

http://www.it-ebooks.info/

336 Part V: Specific MATLAB Applications

Figure 16-13:
Use Pareto

diagrams
to see the

ranking
of related

measures.

 2. Type XSource = datenum(‘9/15/2014’):1:datenum(‘9/20/2014’); and press
Enter.

 These values represent dates on which the data points were collected.
In this case, the range is from 9/15/2014 to 9/20/2014 with a single day
between values. The output is a vector containing six date values.

 3. Type Stair1 = stairs(XSource, YSource); and press Enter.

 You see the start of the plot. However, the dates are still numbers, and
MATLAB has provided a half-day interval instead of the one-day interval
you might like.

 4. Type set(gca, ‘XTick’, XSource); and press Enter.

 The dates now appear as a single date for each data point, and there is a
one-day interval between each date.

 5. Type datetick(‘x’, 6, ‘keeplimits’, ‘keepticks’); and press Enter.

 The plot now contains actual date strings that contain the month and
day. This is the number 6 selection from Table 16-2. The completed plot
appears in Figure 16-14.

Showing data distribution using stem()
A stem plot, which shouldn’t be confused with a stem and leaf display
(see http://www.purplemath.com/modules/stemleaf.htm for
details), shows a distribution of numbers across a range using the x-axis

www.it-ebooks.info

http://www.it-ebooks.info/

337 Chapter 16: Creating Super Plots

as the starting point. Each data point appears as the endpoint of a line
that goes from the x-axis to the value of that particular data point. The
stem plot has a number of uses, especially when used in the 3D form.
For example, you could use it to track particle motion (as described at
http://people.rit.edu/pnveme/pigf/ThreeDGraphics/thrd_bp_
stem.html).

Figure 16-14:
Stairstep

plots let
you track

digitally
sampled
systems

over time.

To create a stem plot, begin by defining a data source. Type YSource =
[-10:1:10]; and press Enter. Type stem(YSource); and press Enter to create
the actual plot. However, you will find that the y-axis limits usually aren’t
set to see all the endpoints properly. Fix this issue by typing set(gca,
‘YLim’, [-11, 11]); and pressing Enter. Figure 16-15 shows typical output for
this plot.

Drawing images using fill
You can create images using MATLAB. All you need is a mathematical
model that describes the points used to describe the image shape. For
example, to draw a square, you simply provide the x- and y-axis coordinate
for each corner. You can see a number of these shapes demonstrated at

www.it-ebooks.info

http://www.it-ebooks.info/

338 Part V: Specific MATLAB Applications

http://www.mathworks.com/matlabcentral/fileexchange/35293-
matlab-plot-gallery-fill-plot/content/html/Fill_Plot.html.
The following steps help you create an image of your own.

Figure 16-15:
You can

use a stem
plot to

show data
distributions.

 1. Type XSource = [1, 1, 5, 5]; and press Enter.

 2. Type YSource = [1, 5, 5, 1]; and press Enter.

 The XSource and YSource variables contain coordinates to draw a
square. The lower-left corner is at 1,1; the upper-left corner is at 1,5; the
upper-right corner is at 5,5; and the lower-right corner is at 5,1.

 3. Type fill(XSource, YSource, ‘b’); and press Enter.

 MATLAB creates the image, but the image consumes the entire drawing
area. Notice that the image is filled with blue. You can choose any color
you like using the options in Table 16-3. To see the image set apart from
the plot area, you need to change the x and y limits.

 4. Type set(gca, ‘XLim’, [0, 6]); and press Enter.

 5. Type set(gca, ‘YLim’, [0, 6]); and press Enter.

 The image is now clear and in the center of the plot, as shown in
Figure 16-16.

www.it-ebooks.info

http://www.it-ebooks.info/

339 Chapter 16: Creating Super Plots

Figure 16-16:
You can

draw
shapes

using the
plot area as

a canvas.

 Selecting a color for your plot is important. Table 16-3 contains a listing of the
most common colors — those you can specify using a color letter or descrip-
tive name. However, you can specify partial RGB values. For example, an RGB
value of [.5, .25, 0] provides a nice brown. Each entry for red, green, and
blue must have a value between 0 and 1.

Table 16-3 Color Choices for fill()
RGB Value Color Letter Description
[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

www.it-ebooks.info

http://www.it-ebooks.info/

340 Part V: Specific MATLAB Applications

Displaying velocity vectors using quiver()
A quiver plot shows the velocity vectors defined by the components u and
v at points described by the coordinates defined by x and y. (You can read
more about the composition of velocity vectors at http://mathworld.
wolfram.com/VelocityVector.html.) When you don’t specify x and y,
the plot is created using equally spaced values along the x-axis with a value
of y = 1. The following steps help you create a quiver plot.

 1. Type XSource = [1, 1, 1, 1, 1, 1]; and press Enter.

 2. Type YSource = [1, 1, 1, 1, 1, 1]; and press Enter.

 These two vectors define the x/y coordinate pairs used as the starting point
for the vectors. In this case, all the vectors have the same origin of 1, 1.

 3. Type USource = [1, 2, 3, 4, 5, 6]; and press Enter.

 4. Type VSource = [6, 5, 4, 3, 2, 1]; and press Enter.

 These two vectors define the positions of the velocity vectors within the
x-y plane.

 Notice that the four vectors are the same size. Whenever you create a
quiver plot, the vectors must be the same size because they act in pairs
to create coordinates.

 5. Type quiver(XSource, YSource, USource, VSource); and press Enter.

 You see a quiver plot similar to the one shown in Figure 16-17.

Displaying velocity vectors
using feather()
A feather plot is similar to the quiver plot, except that it draws the vectors
evenly spaced along the x-axis. To see this plot in action, type USource =
[-6:1:6]; and press Enter to create u; type VSource = [6:-1:-6]; to create v. Type
feather(USource, VSource) and press Enter to see a plot similar to the one
shown in Figure 16-18.

Displaying velocity vectors
using compass()
The concept behind a compass plot is that it provides a similar view to a
feather and quiver plot, but all the values emanate from a single starting point
and the output is a kind of polar plot. The values of u and v create Cartesian
coordinates. (See the description of Cartesian coordinates at http://www.

www.it-ebooks.info

http://www.it-ebooks.info/

341 Chapter 16: Creating Super Plots

mathsisfun.com/data/cartesian-coordinates.html for more details.)
A compass plot could be used to display directional data, such as wind direc-
tion and velocity. (See the discussion at http://dali.feld.cvut.cz/
ucebna/matlab/techdoc/umg/chspec20.html for more details.)

Figure 16-17:
A quiver plot

showing
values of u
and v with

an origin
of 1,1.

Figure 16-18:
A feather

plot show-
ing values

of u and
v equally

spaced
along the

x-axis.

www.it-ebooks.info

http://www.it-ebooks.info/

342 Part V: Specific MATLAB Applications

To see this plot in action, type USource = [1, -4, 3, -7, 8, -9, 2, 4, -2, 3, -5, 8, 9];
and press Enter to create u; type VSource = [12:-2:-12]; to create v. Type
compass(USource, VSource) and press Enter to see a plot similar to the one
shown in Figure 16-19.

Figure 16-19:
A compass

plot showing
values of u
and v ema-
nating from

a single
starting

point.

Working with polar coordinates
using polar()
A polar plot accepts polar coordinates (see http://www.mathsisfun.com/
polar-cartesian-coordinates.html for a discussion of the difference
between polar and Cartesian coordinates) as input, and plots them in the
Cartesian plain using a polar plot. The value of theta is the angle between the
x-axis and the vector. The value of rho is the length of the vector. To see this
plot in action, type theta = 0:0.01:2*pi; and press Enter to create theta; type
rho = 1 - theta; to create rho. Type polar(theta, rho) to display the plot shown
in Figure 16-20.

Displaying angle distribution using rose()
A rose plot shows the distribution of angles expressed as theta in radians.
The output is an angle histogram that relies on a polar plot, where the angle
of each histogram is controlled by the angle of theta. You can define the

www.it-ebooks.info

http://www.it-ebooks.info/

343 Chapter 16: Creating Super Plots

number of bins used to compute the distribution. The default number of bins
is 20. To see this plot in action, type theta = 0:0.01:2*pi; and press Enter to
create theta. Type rose(theta, 36) to display the plot shown in Figure 16-21.

Figure 16-20:
Working

with polar
coordinates.

Figure 16-21:
Displaying
the distri-
bution of

angles as
described
by theta in

radians.

www.it-ebooks.info

http://www.it-ebooks.info/

344 Part V: Specific MATLAB Applications

Spotting sparcity patterns using spy()
The spy plot accepts a sparse matrix as input, analyzes it for a pattern, and
displays a plot that shows the sparcity pattern. When you supply a full matrix
(one that doesn’t contain empty elements), the spy plot analyzes the pattern
of nonzero elements.

 The example in this section uses a mystery function, bucky(), that creates a
sparse matrix for spy() to analyze. The bucky() function actually creates a
sparse matrix based in what amounts to a ball. You can read about bucky()
at http://matlab.izmiran.ru/help/techdoc/math/sparse12.html.
Relying on bucky() whenever you need a sparse matrix simply makes testing
easier because bucky() provides a standard output matrix.

To see this example work, type spy(bucky()); and press Enter. You see the
output shown in Figure 16-22.

Figure 16-22:
Showing

the pattern
created by

a sparse
matrix.

Employing Animation
Animation presents a story of data changes over time. When you look at a
standard plot, what you see is a snapshot of data at a specific time — the
time the plot was created. It could be that the data won’t change any time

www.it-ebooks.info

http://www.it-ebooks.info/

345 Chapter 16: Creating Super Plots

soon or possibly at all. However, most data does change. When it does, you
need to decide whether presenting a series of views of these changes is in the
viewer’s interest. If so, then animation becomes part of your display strategy.

 It’s easy to misuse animation or to use it poorly. An example of a misuse of ani-
mation is when the animation becomes the focus of the presentation, rather
than the data. Displaying the single set of test results from a recent experi-
ment with flashing bars is an example of animation misuse because the flash-
ing bars, rather than the data, become the presentation. Poor animation use is
when you choose a method of presentation that detracts from the data even
though the data is the focus of the presentation. For example, when the screen
updates too slowly, the animation, not the data, has become the focus of the
presentation.

MATLAB provides access to three kinds of animation. Choosing the right
kind of animation for your particular need is important. The following list
describes the kinds of animation and when you typically use them:

 ✓ Static image playback: The oldest and most common form of animation
is the playback of a series of static images. When you go to the the-
ater, you really do see a series of static images — one after another —
presented in rapid succession, creating the illusion of a continuous
stream of information. The movie approach is best used for any sort
of complex plot presentation. The screen can update quickly, creat-
ing smooth animation. The downside to this approach is that it isn’t
dynamic. You still rely on static data, which means that you can’t pro-
vide updates during the presentation.

 ✓ Object updates: Modifying the object properties is another way to create
animation. You can adjust data values, color schemes, and other object
properties to create the illusion of animation. Of the three approaches,
this is the most flexible and the least reliant on outside resources. In
addition, it’s quite fast. The downside is that you need to write a lot of
code to make this technique work. In addition, the information tends to
be more static than the third approach, but less static than the first. You
can create data updates, but doing so requires writing more code, which
is time-consuming and inconvenient at times (as contrasted to the auto-
mation provided by the other methods).

 ✓ Data updates: It’s possible to connect plot objects directly to data
sources. As the data source changes, so does the plot. Of the three
approaches, this one is the most dynamic. You commonly use this
approach to model real-time data (information that is actually changing
during your presentation). However, you don’t have as much control
over the presentation of the data as you do with the second approach.
The downside to this approach is that you normally need an external
data source to make it effective — that is, to truly get the full benefit
of using this approach. Unfortunately, presentations often suffer from
glitches such as loss of connectivity.

www.it-ebooks.info

http://www.it-ebooks.info/

346 Part V: Specific MATLAB Applications

Working with movies
The static image playback approach, also called a movie, requires that
you grab a series of screenshots of your data as it changes by calling
getframe(). Most of the examples of using getframe() show it being used
to grab the default object, which are the axes. However, you can supply a
handle to any object and make it the focus of your movie. In addition, you
can specify that only part of the target object appear in the movie by speci-
fying a cropping rectangle using one of the arguments. This feature lets you
do things like create wipe effects, where you focus in on one object and pro-
gressively reveal the rest of the plot from there by changing the rectangular
settings.

 The frames are placed in a matrix. After you have collected enough frames,
you can play your movie using the movie() function. This function accepts a
number of inputs, but the three most common are the matrix holding the data
to play, the number of times you want to play the movie, and the rate at which
to play the movie (the frames per section, or fps). Listing 16-1 shows a typical
use of the getframe() and movie() functions. You can also find this script
in the MakeMovie.m file supplied with the downloadable source code.

Listing 16-1: Creating a Movie Animation

YSource = [1, 2, 5; 2, 4, 8; 7, 9, 10];
Bar1 = bar3(YSource);
rotate(Bar1, [0, 0, 1], 270)

FigHandle = gcf();

for Frame = 1:32
 Frames(Frame) = getframe(FigHandle,...
 [0, 0, 15 * Frame, 15 * Frame]);
end

clf
movie(FigHandle, Frames, 1, 5);

The code begins by creating a 3D bar chart and rotating it so that you can
easily see the bars. The rotate() function accepts three arguments in this
case: the handle of the bar chart; a vector containing indicators of which axis
to turn (x, y, and z); and the amount to rotate the bar chart in degrees. In this
case, the plot rotates around the z-axis.

 You can add a call to rotate3d('on') to allow mouse-based rotation of
the figure by the user. When you no longer want to allow rotation, call
rotate3d('off') instead. Calling rotate3d() by itself toggles between the

www.it-ebooks.info

http://www.it-ebooks.info/

347 Chapter 16: Creating Super Plots

on and off state. When you supply a handle to the rotate3d() function, the
changes affect the figure pointed to by the handle rather than the current figure.

The next step is to generate the movie data. The data consists of 32 frames
of data. Each loop obtains information from the figure as a whole, starting
in the lower-left corner of the figure. The width and height of the screenshot
increases with each loop, so each screenshot is a little bigger and shows a
little more of the image as a whole.

After creating the movie, the code clears the screen and then calls movie()
to display the movie onscreen. The screenshots are grabbed using the figure
handle, not the axis handle, so the movie must also be played using the figure
handle. This is the first argument to movie(). The next argument is the
movie matrix itself. The final two arguments determine the number of times
to play the movie (once) and the frame rate to use (5 fps).

Working with objects
You have all sorts of ways to interact with plot data directly. Previous examples
in the book demonstrate just a few of them. By using the pause() function, you
can create an animation of these changes. Listing 16-2 shows such an example.
In this case, the bars in the first row of the 3D bar chart change color one at
a time. You could use such an effect during a presentation to bring focus to a
particular data item. You can also find this script in the ChangeObjects.m file
supplied with the downloadable source code.

Listing 16-2: Creating Animation Using Object Changes

YSource = [1, 2, 5; 2, 4, 8; 7, 9, 10];
Bar1 = bar3(YSource);
rotate(Bar1, [0, 0, 1], 270)

Colors = get(Bar1(1), 'CData');

for i = 1:6:18
 Colors(i,:) =[2, 2, 2, 2];
 Colors(i+1,:) =[2, 2, 2, 2];
 Colors(i+2,:) =[2, 2, 2, 2];
 set(Bar1(1), 'CData', Colors);
 pause(2);

 Colors(i,:) =[1, 1, 1, 1];
 Colors(i+1,:) =[1, 1, 1, 1];
 Colors(i+2,:) =[1, 1, 1, 1];
 set(Bar1(1), 'CData', Colors);
 pause(2);
end

www.it-ebooks.info

http://www.it-ebooks.info/

348 Part V: Specific MATLAB Applications

The code begins by creating a 3D bar chart and rotating it so that you can see
the data clearly. The code then obtains the colors used to fill the various bars
from the CData property and places these values in Colors.

For this example, the CData property is an 18 × 4 matrix containing the
colors for each face of the bar chart. Each bar in a chart uses six rows in the
CData property. So if this chapter had four bars instead of three, the CData
property would have 24 rows rather than 18. The colors for the first bar are
contained in rows 1, 2, and 3. The second bar colors appear in 7, 8, and 9,
while the third bar colors appear in rows 13, 14, and 15. The other three rows
in each set are hidden from view. There is a separate CData property for each
of the bar groups. The example works only with the first group, Bar1(1).

 Notice how this example uses the for loop. The values show that there are
18 elements. Each bar consumes six elements, so this for loop skips six ele-
ments. Instead of having the for loop set i to 1, 2, and 3, this for loop sets
the values to 1, 7, and 13, which is precisely what is needed to set the color
values in Colors. After it changes the color in each of the three face elements
for a particular row, the code goes on to the next row by adding 1 or 2 to the
value of i. The final step is to then set the CData value in Bar1(1). You see
the change occur onscreen: The bar is highlighted. After a two-second pause,
the colors are returned to their original state.

Performing data updates
Directly changing a data source is another way to create animation. The tech-
nique involves creating a link between the plot data and the data source. You
can create a local data source, such as a variable, to create the animation, but
this technique is more likely used with external data sources. Listing 16-3 shows
how you can create animation using this approach. You can also find this script
in the ChangeData.m file supplied with the downloadable source code.

Listing 16-3: Creating Animation Using Data Changes

YSource = [2, 0, 1, 4, 5, 2, 3];
Bar1 = bar(YSource);

set(Bar1, 'YDataSource', 'YSource');
set(gca, 'YLim', [0, 8]);

for i = 2:7
 YSource(3) = i;
 pause(2);
 refreshdata;
end

www.it-ebooks.info

http://www.it-ebooks.info/

349 Chapter 16: Creating Super Plots

The code begins with a simple bar chart. It then assigns the bar chart’s
YDataSource to a variable, YSource. However, a change to YSource
doesn’t automatically show up on the plot; you must also call refreshdata,
as shown later in the code.

 Adjusting the display of a plot is often necessary to accommodate the anima-
tion you provide. In this example, the plot would need to adjust for the higher
data values added during the animation. The effect is disruptive because the
viewer would focus on these adjustments rather than the data. The call to
change the YLim value eliminates this problem. Make certain that you check
for adjustments of this sort in your own code.

The for loop modifies one of the values in YSource, waits for two seconds,
and then calls refreshdata to make the change appear in the plot. What
you see onscreen is an increase in one of the bars as the values change. The
change simulates data changes that you might see in a real-world, real-time
display.

www.it-ebooks.info

http://www.it-ebooks.info/

350 Part V: Specific MATLAB Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Part VI
The Part of Tens

 Enjoy an additional Part of Tens article about ten amazing MATLAB add-ons at
http://www.dummies.com/extras/matlab.

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .
 ✓ See how other people use MATLAB to perform math-related

tasks.

 ✓ Discover how others use MATLAB in areas you never thought
possible.

 ✓ Get a list of places you could work with your new found
MATLAB skills.

 ✓ Consider the job titles associated with having MATLAB
knowledge.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17

Top Ten Uses of MATLAB
In This Chapter
▶ Engineering new technologies

▶ Educating new scientists

▶ Performing linear algebra

▶ Analyzing numerical data

▶ Discovering new marvels in science

▶ Solving math problems

▶ Creating computer applications

▶ Performing research

▶ Simulating the real world

▶ Processing images

M
ATLAB is used in a lot of different ways by lots of people in occupa-
tions you might not necessarily think about when it comes to a math

product. In fact, math is used in ways that many people don’t consider. For
example, video games simply wouldn’t exist without a lot of relatively com-
plex math. However, even the chair you’re sitting in required some use of
math to ensure that it would perform as expected. A mission to Mars or to
the bottom of the ocean would be impossible without all sorts of different
math applications. Even the mixtures of food we eat require an explanation
based on math principles. In short, you might be surprised at just how many
different ways MATLAB is being used, and this chapter tells you only about
ten of the most popular uses. Explaining every potential MATLAB use would
likely require an entire book.

Engineering New Solutions
Many engineering disciplines are out there, some of which are quite exotic
while others are mundane. However, they all have one thing in common:
They rely on various kinds of math to ensure that the results of any design

www.it-ebooks.info

http://www.it-ebooks.info/

354 Part VI: The Part of Tens

process or new theory of how the universe works actually make sense. A new
building isn’t much use if it can’t hold up to the stresses placed on it. Sending
someone to Mars without doing the math work first could send that person
to anywhere but Mars.

 Creating new technologies means first computing how this new technology
will work. Many ideas and concepts used in engineering rely on math as a
starting point because math provides the means to express the idea in a
form that others can understand. In short, if you’re an engineer of any sort,
you eventually need to perform math-related tasks that could benefit from
MATLAB. You can get some additional ideas of just how useful MATLAB
could be to you as an engineer by reading the discussion at http://www.
mathworks.com/matlabcentral/answers/72325-will-i-even-use-
matlab-in-my-engineering-career.

Getting an Education
Mathworks places a strong emphasis on education. In fact, you can find a
special place for education-related materials at http://www.mathworks.
com/academia/. The point of the education process is to obtain knowledge,
of course, but it also means building certain disciplines (skills, methods of
viewing information, and so on) — good habits is another way to look at it.
To build these habits, you really need to have a product you can use that will
allow you to practice performing tasks in the same way that you do after you
leave school. Even if the organization that employs you doesn’t use MATLAB,
the principles you learn by working through problems with MATLAB follow
standards that apply equally well to other products.

 One of the more useful resources that you find on the MATLAB site at
http://www.mathworks.com/academia/student_center/tutorials/
is the list of tutorials. The tutorials help you get started using MATLAB and
then take you through various kinds of tasks. After you finish reading this
book, you can use these tutorials to increase your knowledge, take your edu-
cation in a specific direction, and build the skills needed to either start or con-
tinue performing the work you do.

If you’re a student and you need a copy of MATLAB, you can purchase it at
http://www.mathworks.com/academia/student_version/. Several
versions of MATLAB are available for student use, so make sure that you
pick the package that best suits your needs. Note that you may require
some special add-ons for your classes, which you can get at https://www.
mathworks.com/store/link/products/student/.

www.it-ebooks.info

http://www.it-ebooks.info/

355 Chapter 17: Top Ten Uses of MATLAB

Working with Linear Algebra
It may be hard to believe, but linear algebra really is part of the workplace
(and not just for sending someone to the moon). For example, to calculate
Return on Investment (ROI), you must know algebra. The same holds true for
the following:

 ✓ Predicting the amount of turnover a company will have

 ✓ Determining how many items to keep in inventory

 ✓ Making life and business decisions, such as whether it’s cheaper to rent
a car or to buy one outright

 ✓ Creating a financial plan, such a determining whether it makes more
sense to pay down a credit card or build up savings

No one would obtain MATLAB to perform these tasks just one time. However,
if your job is helping people perform these sorts of tasks, you really do need
something like MATLAB so that you can get the answers you need fast.

 Uses for linear algebra often appear in places that you might never consider. For
example, if you’re a restaurant owner, you might use linear algebra on a regular
basis to make your business more efficient. Check out the article at http://
smallbusiness.chron.com/restaurants-use-linear-programming-
menu-planning-37132.html for details. Imagine how surprised you might
be if you walked into the back room of a restaurant sometime to find the man-
ager poking away at a keyboard with a copy of MATLAB running!

Performing Numerical Analysis
Numerical analysis relies on approximation rather than the precision you see
in symbolic math. It seems that the world is filled with approximations, and so
is the galaxy. Performing certain building construction tasks is impossible with-
out applying numerical analysis, and astronomy seems to require heavy use of
it as well. You probably won’t see a carpenter applying numerical analysis on
the job site with MATLAB, but you will see architects who might need to do so.

 Numerical analysis truly does apply to the natural world. For example, much
of modern biology and medicine rest on principles described using numerical
analysis. Your family physician probably doesn’t require a copy of MATLAB,
but the researcher who provides your physician with the information needed
to diagnose any problems with your health does. When it comes to numeric
analysis, you’re better off thinking about the creative end of things rather than
the application. The person inventing a new procedure needs MATLAB, but
the person applying it on the job site doesn’t.

www.it-ebooks.info

http://www.it-ebooks.info/

356 Part VI: The Part of Tens

Getting Involved in Science
Science is a pretty broad term, but it does have specific applications.
MATLAB is likely to be used to explore new theories. It’s important to dif-
ferentiate between science and engineering in this case. Engineering is the
application of known principles and theories to a problem in a predictable
and usually standardized manner. Science, on the other hand, is the act of
creating, testing, and proving principles and theories to eventually use to
solve problems. In other words, when applied to science, MATLAB helps you
perform “what if” analysis that helps you confirm (or deny) the viability of a
theory.

Of course, science is used in many different ways. For example, you might be
involved in the health industry and using science to find a cure for cancer or
the Ebola virus. A computer scientist might look for a new way to use com-
puter technology to aid those with accessibility needs. In fact, there are all
sorts of ways in which MATLAB could figure into helping someone do some-
thing special for humanity.

Engaging Mathematics
MATLAB is all about working with mathematics in a comfortable environment
that is less prone to errors. The rest of the chapter (in fact, most of this book)
tells you all about this way of looking at mathematics. However, some people
simply enjoy playing with math. It’s the reason that so many theorems are
available today to solve problems. These people are engaged with math in a
way that few others can readily understand. MATLAB makes it possible to play
with math, to create new ways of using numbers to perform useful tasks.

Exploring Research
Researchers have the world’s best job in many respects. As a researcher,
you get to ask a question, no matter how absurd, and determine whether the
question is both answerable and relevant. After the question is answered,
a researcher needs to determine whether the answer is both useful and
 reliable. In short, some view research as a kind of play (and they are correct —
it really is play for the creative and intelligent mind).

Of course, research isn’t just fun and games. If it were, people would have
flocked to research as they do to video games now. After a question is asked
and an answer is given, the researcher must convince colleagues that the
answer is correct and then viable to put into practice. MATLAB lets you

www.it-ebooks.info

http://www.it-ebooks.info/

357 Chapter 17: Top Ten Uses of MATLAB

check the answer and verify that it does, in fact, work as the researcher sug-
gests. After an answer is proven, the researcher can use MATLAB further to
define precisely how the answer is used.

 Although many of MATLAB’s uses require graphics, research has a signifi-
cant need for graphics because the researcher must often explain answers to
people who don’t have the researcher’s skills. In most cases, the explanation
will never work with a text-only presentation; the researcher must also include
plenty of graphics that start with abstract concepts, and then turn them into
concrete ideas that the audience can understand.

Walking through a Simulation
Flying a real jet is both dangerous and expensive — flying a ship carrying
humans to Mars is impossible at the moment. Simulation is the art of deter-
mining whether something is possible, at least in theory, by using known
facts. Using a simulation rather than a real-world counterpart is a low-cost
approach to testing that is an essential part of any sort of scientific or engi-
neering endeavor today, for these reasons:

 ✓ Saves human lives by seeing what could go wrong in the real-world
environment

 ✓ Saves time because simulations are usually easier to set up

 ✓ Enhances the ability of the people involved to try various solutions

 ✓ Reduces costs by using and wasting fewer resources

 ✓ Improves the chances of a new technology succeeding by removing reli-
ability issues before the real technology is built

 ✓ Increases the security surrounding a new technology by making it pos-
sible to test the technology without actually building a prototype that
could be compromised

MATLAB makes simulations possible in several different ways. It may not
always provide a complete solution, but you can use it to perform these
kinds of tasks:

 ✓ Define the original math model used to define the technology and there-
fore the simulation

 ✓ Create individual snapshots showing how the technology will work
based on the model

 ✓ Demonstrate the workflow for a technology using animation techniques
so that even less-skilled stakeholders can see the technology at work

www.it-ebooks.info

http://www.it-ebooks.info/

358 Part VI: The Part of Tens

Employing Image Processing
Images are made up of pixels. Each pixel defines a particular color in a spe-
cific location in the image. In short, a pixel is a dot of just one color. The
color is actually a numeric value that defines how much red, blue, and green
to use in order to create the pixel color. Because the pixel is represented as
a number, you can use various math techniques to manage the pixel. In fact,
images are often managed as matrices, as you saw in several areas of the
book (most notably Chapters 6, 7, and 16). A matrix is simply a structure con-
sisting of numeric information.

Image processing is the act of managing the pixels in an image using math
techniques to modify the matrix values. Techniques such as adding two
matrices together are common when performing image processing. In fact,
probably any technique you can think of that applies to matrices is also
employed in image processing in some way.

 The one thing you should know by this point in the book is that MATLAB
excels at matrix manipulation. Anyone involved in image processing needs the
sort of help that MATLAB provides to create and test new image processing
techniques. The point is that you can test the math and then see the result
right onscreen without changing applications. You can use MATLAB to both
create the required math and then test it (at least in a simulated environment).

Embracing Programming Using
Computer Science

The effect on the world at large with computer science is immense because
the applications that programmers build affect every other scientific and
engineering endeavor there is. In fact, the influence is even larger than that.
Computer science defines how appliances work, how games play, and even
how your doctor checks your health. In all these myriad uses, computer sci-
entists rely heavily on math to perform tasks. MATLAB, with its rich toolbox,
can be used to rapidly prototype an algorithm before committing the devel-
opment resources to implementing the algorithm in another language, such
as C++ or Java. Programmers commonly depend on MATLAB to enhance their
productivity.

 To give you some idea of just how much math is involved, consider the fact
that you can’t even write information to the screen without using math in
some way. The position of the text must be calculated, as does the text size
so that the computer knows whether the text will actually fit. All the fancy

www.it-ebooks.info

http://www.it-ebooks.info/

359 Chapter 17: Top Ten Uses of MATLAB

transitions you rely on to display special effects onscreen have their basis in
math. In fact, computers have special components devoted solely to the pur-
suit of math because you can’t do anything on a computer without it.

Of course, the question isn’t whether computer scientists use math quite a
lot — it’s whether they can use MATLAB to do it. The answer is a resounding
“yes.” When creating an application, you must ensure that the output is valid.
Otherwise, someone using the application will encounter errors (also called
bugs) that will cause both the user and the computer scientist woe.

Verification is just one use. Someone who spends a lot of time working on
computers developing applications needs to explore new ways of accom-
plishing tasks continually. Nothing is completely set with computers because
there is always more than one way to accomplish any given task. In fact, often
there isn’t even a best way to perform the task, just a best way in a given
circumstance. For a branch of science that should be closer to engineering
than science, computer scientists deal with a nearly inexhaustible supply of
unknowns that could potentially benefit from the use of MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

360 Part VI: The Part of Tens

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18

Ten Ways to Make a Living
Using MATLAB

In This Chapter
▶ Getting involved in next-generation energy management

▶ Making the world a safer place to live in

▶ Recognizing speech patterns

▶ Hunting down and killing disease

▶ Developing new computer chip types

▶ Designing better trucks

▶ Thinking outside the box while developing future technology

▶ Creating better-performing equipment to use on job sites

▶ Helping people plan their families

▶ Keeping costs under control using simulation

M
ATLAB is an excellent tool that performs a great many tasks. However,
you might perceive it as just a tool, not a means by which to earn a

living. Be ready to be amazed! Adding MATLAB proficiency to your résumé
may be the thing that gets your foot in the door for that bigger, better job
you’ve been wanting. In other words, MATLAB is the job, rather than a tool
you use to perform the job, in at least some cases. Employers have learned to
ask for MATLAB by name.

 A look at Monster.com (http://jobsearch.monster.com/search/
?q=matlab) clearly shows that proficiency in using MATLAB is the main
educational requirement for getting some jobs. At the time of this writing,
Monster.com had 766 postings specifically stating a need for MATLAB profi-
ciency. When looking for work, don’t overlook user groups such as the one on
LinkedIn (http://www.linkedin.com/groups/MATLAB-Users-109866).
These online sources often provide the networking needed to get just the
right job. The following sections describe some of the more interesting
ways (and just the tip of the iceberg at that) to get a job with your newfound
MATLAB skills.

www.it-ebooks.info

http://www.it-ebooks.info/

362 Part VI: The Part of Tens

Working with Green Technology
At one point, energy came from one source — a power company. The grid
could be simple because the energy went directly from one producer to mul-
tiple homes and businesses. Yes, there were interconnected grids, but the
connections were relatively simple.

 Today the energy picture is far different because many homes and businesses
now produce energy in addition to using it. A solar panel on a home might pro-
duce enough energy to meet the home’s needs and the needs of a neighboring
home, which means that the grid has to be able to deal with a surplus from a
home at times. In addition, the power company sources may now include wind
farms in diverse locations.

The old grid system doesn’t have the intelligence to manage such diverse
power sources and sinks, so new smart grids are being used to replace the old
system and make the new system more robust and flexible. Developing and
implementing smart grids is a lot more difficult than working with the grids of
old — MATLAB can help you perform the math required to make these new
grids happen. You can read more about this exciting job at http://www.
modelit.nl/index.php/matlab-webserver-user-story.

Looking for Unexploded Ordinance
You can’t find an activity that’s much more exciting than looking for unex-
ploded ordinance. Let’s just say that a cool resolve to get the job done and
steady nerves are prerequisites for this job. However, most people don’t
understand the scope of the job. It’s not just a few pieces of unexploded
ordinance — it’s thousands of pieces spread over a large area. Trying to find
every last piece (and let’s face it, when working with unexploded ordinance,
even one piece left behind is one piece too many) is almost impossible with-
out help.

People whose job is to locate unexploded ordinance use MATLAB to improve
their chances of finding every last piece of it while keeping costs low. Most of
these efforts have limited funds, so the challenge is to find more ordinance
before the money runs out. Check out the article at http://www.mathworks.
com/company/user_stories/Black-Tusk-Geophysics-Detects-and-
Classifies-Unexploded-Ordnance.html to get additional information.

www.it-ebooks.info

http://www.it-ebooks.info/

363 Chapter 18: Ten Ways to Make a Living Using MATLAB

Creating Speech Recognition Software
The need for computers to recognize what humans are saying is increas-
ing as humans rely more heavily on computers for help. Although products
like Siri (https://www.apple.com/ios/siri/) are helpful, the uses for
speech recognition go well beyond the basic need of turning human speech
into something a computer can understand. Consider the fact that robots
are becoming part of daily life. In fact, robots may eventually provide the
means for people to stay in their homes at a time when they’d normally move
to a nursing home (http://whatsnext.blogs.cnn.com/2013/07/19/
robots-the-future-of-elder-care/). These robots will need to be
able to recognize everything a person is saying and react to it. That’s why
ongoing research is important (http://www.cs.dartmouth.edu/~dwagn/
aiproj/speech.html).

Expect to find a lot of jobs that work in the areas of speech in the future.
Most of these jobs will require the ability to use math software, such as
MATLAB, to speed up the process. Efficient use of math to help solve
speech recognition problems will become more essential as the market for
various types of computer-assisted technology increases.

Getting Disease under Control
Eliminating every disease may not be possible. Despite talk of a cure for the
common cold, many other human ailments take precedence. MATLAB has
an important role to play in the never-ending quest for the cure and manage-
ment of disease. For example, the Centers for Disease Control (CDC) uses
MATLAB for poliovirus sequencing and tracking. (See the story at http://www.
mathworks.com/company/user_stories/Centers-for-Disease-
Control-and-Prevention-Automates-Poliovirus-Sequencing-and-
Tracking.html.)

 The clock is ticking, and health organizations need every second they can get
to chase down and kill off virulent diseases. Lest you think that modern medi-
cine has been hugely successful in eliminating such diseases, think again. Only
one serious pathogen has been eradicated to date: smallpox. (See the story at
http://www.historyofvaccines.org/content/articles/disease-
eradication.) We have a lot of work to do. Using products such as MATLAB
makes researchers more efficient, creating the possibility of eradicating a
virus or bacteria sooner — but only if the researcher actually knows how to
use the software.

www.it-ebooks.info

http://www.it-ebooks.info/

364 Part VI: The Part of Tens

Becoming a Computer Chip Designer
Knowing how computers work at a detailed level — all the way down into
the chip — opens an entirely new world of math calculations. A truly in-
depth knowledge of computer chip technology involves not just electronics
or chemistry, but a mix of both, with other technologies added in for good
measure. (Strong math skills are a requirement because you can’t actu-
ally see the interactions take place; you must know that they will occur
based on the math involved.) The people who design chips today enter an
alternative reality because things really don’t work the way you think they
will when you’re working at the level of individual atoms. Yet, jobs exist
for designing a System on a Chip (SoC) or Application Specific Integrated
Circuit (ASIC). You can read about one such job at http://jobview.
monster.com/Sr-Systems-Engineer-SoC-ASIC-%E2%80%93-Matlab-
Job-Beaverton-OR-137025672.aspx. And given the rapid advances in
chip technology, you can count on lots of opportunities in this area.

Keeping the Trucks Rolling
Designing better trucks may not seem like something you can do with MATLAB,
but modern trucks are actually complicated machinery that has to operate
safely on increasingly crowded roads. For example, just designing the air sus-
pension systems used to couple the truck to the trailer and ensure that the two
remain attached is a difficult task. You can read about this particular need at
http://www.mathworks.com/company/user_stories/Continental-
Develops-Electronically-Controlled-Air-Suspension-for-Heavy-
Duty-Trucks.html. The point is that designing trucks is a complex task.

 You can easily extend this particular need to other sorts of vehicles. The
amount of engineering to design a modern car is daunting. Think about every-
thing that a car needs to do now — everything from braking so that the car
doesn’t slide to ensuring that the people in the vehicle remain safe during an
accident. Modern vehicles do all sorts of nonvehicle things such as entertain
the kids in the back seat so that you can drive in peace. All these capabilities
require engineering that is better done using math software.

Creating the Next Generation of Products
Research and Development (R&D) may not sound all that exciting at first. It
really does need a better name because what you’re really doing is creating
all the products that people will use in the future. When working in R&D, an

www.it-ebooks.info

http://www.it-ebooks.info/

365 Chapter 18: Ten Ways to Make a Living Using MATLAB

engineer or scientist gets to work with bleeding-edge technology — things
that no one else can even imagine at times. You can read about one such job
at http://jobview.monster.com/Hands-On-Software-Developer-
C-C-Matlab-Job-Colorado-Springs-CO-137454808.aspx. However,
given the amount of innovation going on, you can be sure that many other
jobs exist in this area. Most of these jobs require proficiency using math
software such as MATLAB. Time is money in these places, and they want the
people working on tomorrow’s technology to be as efficient as possible.

Designing Equipment Used in the Field
Even though the story at http://www.mathworks.com/company/user_
stories/Electrodynamics-Associates-Designs-High-Performance-
Generator-Controller-for-the-Military.html tells about a generator
designed for use by the military, the story speaks to a much larger need. Every
outdoor activity, such as construction projects, requires equipment of various
sorts to make the task doable. Generating power is a huge need. Trying to build
something would be nearly impossible without the electricity required to run
various kinds of tools.

Generators, tools, appliances, and all sorts of other devices require special
design today. Not only does the equipment need to work well, but it has to
do so at a low energy cost, reduced use of materials, nearly invisible mainte-
nance costs, and with a small environmental impact. Trying to design such
equipment without the proper math software would be nearly impossible.

Performing Family Planning
Researchers are currently using products such as MATLAB to help predict
how the use of contraceptives and other family-planning methods will help
reduce populations in places like India and Bangladesh. Trying to find tech-
niques that work well to help control populations so that the local economy
can support them is hard — and ensuring that those techniques are actually
working is harder still. This is the sort of job that requires a mix of human
and research skills. You’d use the biological add-ins for MATLAB in this case.
One such instance of advanced techniques at work is at http://econ.
worldbank.org/external/default/main?pagePK=64165259&theSit
ePK=477894&entityID=000009265_3961003174232.

www.it-ebooks.info

http://www.it-ebooks.info/

366 Part VI: The Part of Tens

Reducing Risks Using Simulation
Many activities entail risk. It isn’t a matter of throwing money at the prob-
lem until you solve it; you really can’t know that the project will succeed
at all. Using simulation can greatly increase the likelihood of success,
however. For example, consider the salvaging of the Russian submarine
Kursk. (See the story at http://www.mathworks.com/company/user_
stories/International-Salvage-Team-Brings-Home-the-Kursk-
Submarine-Using-a-Simulation-Developed-in-Simulink.html
for details.) It wouldn’t be possible to know whether the salvage could ever
succeed without simulating it first. Simulations require both math skills and
plotting, both of which are found in MATLAB.

However, just knowing that the project can succeed isn’t enough. Using a
simulation lets you identify potential risks at the outset, before the project is
under way. Risk identification and management are important parts of many
endeavors today. Beyond having procedures in place that guarantee success,
you need procedures for those times when things do go wrong. Creating a
great simulation helps an engineer with the required knowledge to figure out
the risky situations in advance and do everything needed to avoid them, and
then also create procedures for when things go wrong anyway.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

MATL AB Functions

T
his appendix provides you with an overview of the MATLAB functions.
Each function helps you perform a specific task within MATLAB. The

tables contain the function name and a short description of the task that the
function performs. If you need more information than this appendix gives
you, you can obtain additional information by typing help <function_name>
in the MATLAB command window and pressing Enter. Of course, you also
have the information found in this book, and you can search in Help. See
Chapter 3 for some useful information on using the Help resources that
MATLAB provides.

Table A-1 Arithmetic Functions
Function Description
uplus Unary plus — comparable to + acting on one object

plus Plus — comparable to + adding two objects

uminus Unary minus — comparable to – acting on one object

minus Minus — comparable to – subtracting two objects

mtimes Matrix multiplication — comparable to *

times Array multiply — comparable to .*

rdivide Right-array division — comparable to ./

mrdivide Solves systems of linear equations xA = B for x —
comparable to /

ldivide Left-array division — comparable to .\

mldivide Solves systems of linear equations Ax = B for x —
comparable to \

power Array power — comparable to .^

mpower Matrix power — comparable to ^

diff Differences and approximate derivatives

prod Product of array elements
(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

368 MATLAB For Dummies

Function Description

sum Sum of array elements

ceil Rounds toward positive infinity

fix Rounds toward zero

floor Rounds toward negative infinity

idivide Integer division with rounding option

mod Modulus after division

rem Remainder after division

round Rounds to nearest integer

Table A-2 Trigonometric Functions
Function Description
sin Sine of argument in radians

sind Sine of argument in degrees

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

sinh Hyperbolic sine of argument in radians

asinh Inverse hyperbolic sine

cos Cosine of argument in radians

cosd Cosine of argument in degrees

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

cosh Hyperbolic cosine

acosh Inverse hyperbolic cosine

tan Tangent of argument in radians

tand Tangent of argument in degrees

atan Inverse tangent; result in radians

atand Inverse tangent; result in degrees

atan2 Four-quadrant inverse tangent

atan2d Four-quadrant inverse tangent; result in degrees

tanh Hyperbolic tangent

Table A-1 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

369 Appendix A: MATLAB Functions

Function Description

atanh Inverse hyperbolic tangent

csc Cosecant of argument in radians

cscd Cosecant of argument in degrees

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

csch Hyperbolic cosecant

acsch Inverse hyperbolic cosecant

sec Secant of argument in radians

secd Secant of argument in degrees

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

sech Hyperbolic secant

asech Inverse hyperbolic secant

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

coth Hyperbolic cotangent

acoth Inverse hyperbolic cotangent

hypot Square root of sum of squares

Table A-3 Exponentials, Logarithms, Powers, and Roots
Function Description
exp Exponential

expm1 Computes exp(x)–1 accurately for small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Computes log(1+x) accurately for small values of x

log2 Determines base 2 logarithm and dissect floating-point
 numbers into exponent and mantissa

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point numbers
(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

370 MATLAB For Dummies

Function Description

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

Table A-4 Complex Number Functions
Function Description
abs Absolute value and complex magnitude

angle Phase angle

complex Construct complex data from real and imaginary components

conj Complex conjugate

i Imaginary unit

imag Imaginary part of complex number

isreal Checks whether input is a real array

j Imaginary unit

real Real part of complex number

sign Signum() function, which returns 1 if the corresponding
 element is greater than 0, 0 if the corresponding element is zero,
and –1 if the corresponding element is less than 0.

Table A-5 Discrete Math Functions
Function Description
factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime numbers

lcm Least common multiple

nchoosek Binomial coefficient or all combinations

perms All possible permutations

primes Generates list of prime numbers

rat, rats Rational fraction approximation

Table A-3 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

371 Appendix A: MATLAB Functions

Table A-6 Polynomial Functions
Function Description
poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrates the polynomial analytically

polyval Polynomial evaluation

roots Polynomial roots

Table A-7 Special Functions
Function Description
erf Error function

erfc Complementary error function

erfcinv Inverse complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

Table A-8 Cartesian, Polar, and Spherical Functions
Function Description
cart2pol Transforms Cartesian coordinates to polar or cylindrical

coordinates

cart2sph Transforms Cartesian coordinates to spherical coordinates

pol2cart Transforms polar or cylindrical coordinates to Cartesian
coordinates

sph2cart Transforms spherical coordinates to Cartesian coordinates

Table A-9 Constants and Test Matrix Functions
Function Description
eps Floating-point relative accuracy

Inf Infinity
(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

372 MATLAB For Dummies

Function Description

pi Ratio of circle’s circumference to its diameter

NaN Not-a-Number

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

gallery Test matrices

magic Magic square

Table A-10 Matrix Operation Functions
Function Description
cross Vectors cross product

dot Vectors dot product

kron Kronecker tensor product

transpose Transposes

Table A-11 Linear Equation Functions
Function Description
inv Matrix inverse

linsolve Solves linear system of equations

Table A-12 Eigenvalue Functions
Function Description
eig Eigenvalues and eigenvectors

eigs Largest eigenvalues and eigenvectors of matrix

sqrtm Matrix square root

Table A-9 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

373 Appendix A: MATLAB Functions

Table A-13 Matrix Analysis Functions
Function Description
det Matrix determinant

norm Vector and matrix norms

rank Rank of matrix

rref Reduced row echelon form

trace Sum of diagonal elements

Table A-14 Matrix Functions
Function Description
expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

arrayfun Applies function to each element of array

Table A-15 Statistical Functions
Function Description
corrcoef Correlation coefficients

cov Covariance matrix

max Largest elements in array

mean Average or mean value of array

median Median value of array

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

www.it-ebooks.info

http://www.it-ebooks.info/

374 MATLAB For Dummies

Table A-16 Random Number Generator
Function Description
rng Controls random number generation

rand Uniformly distributed pseudo-random numbers

randn Normally distributed pseudo-random numbers

randi Uniformly distributed pseudo-random integers

Table A-17 1-D Interpolation
Function Description
interp1 1-D data interpolation (table lookup)

Spline Cubic spline data interpolation

Table A-18 Gridded Data Interpolation
Function Description
interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn nD data interpolation (table lookup)

griddedInterpolant Interpolant for gridded data

ndgrid Rectangular grid in nD space

meshgrid Rectangular grid in 2D and 3D space

Table A-19 Scattered Data Interpolation
Function Description

griddata Interpolates scattered data

Table A-20 Optimization Functions
Function Description
fminbnd Finds minimum of single-variable function on fixed intervals

fminsearch Finds minimum of unconstrained multivariable function using
derivative-free method

fzero Finds root of continuous function of one variable

www.it-ebooks.info

http://www.it-ebooks.info/

375 Appendix A: MATLAB Functions

Table A-21 Ordinary Differential Equation Functions
Function Description

ode23 Solve nonstiff differential equations; low-order method

Table A-22 Sparse Matrix Manipulation Functions
Function Description
spy Visualizes a sparsity pattern

find Finds indices and values of nonzero elements

Table A-23 Elementary Polygons
Function Description
polyarea Area of polygon

inpolygon Points inside polygonal region

rectint Rectangle intersection area

www.it-ebooks.info

http://www.it-ebooks.info/

376 MATLAB For Dummies

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

MATLAB’s Plotting Routines

T
his appendix lists the plotting routines in MATLAB with a brief descrip-
tion and example. To save space, some entries show a single encompass-

ing example for multiple commands. An example may also use an ellipsis (...)
to show the continuation of a pattern. To assist you, we have included
several functions to generate test matrices, for example, rand(), magic(),
peaks(), cylinder(), ellipsoid(), and sphere().

Table B-1 Basic Plotting Routines
Routine Description Example
ezplot Plots the expres-

sion enclosed in
quotes

ezplot('exp(-0.4*x)*sin(x)')

fplot Same as ezplot,
but requires limits

fplot('exp(-0.4*x)*sin(x)',
[0,2*pi,-0.3,0.6])

plot Plots data passed
in by vectors

x=[0:2*pi/100:2*pi];
y=exp(-0.4*x).*sin(x);

plot(x,y); figure(2)

comet(x,y); figure(3)

ribbon(x,y);figure(4)

y2=100*exp(-0.4*x).*cos(x);

plotyy(x,y,x,y2)

comet Just like plot,
but comet ani-
mates the trajec-
tory. It helps to
have a larger
vector to slow
down the comet
trace a tad

ribbon Like plot, but it
displays the data
as 3D ribbons

plotyy Plots data where
y values may
differ greatly — it
makes two y-axes

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

378 MATLAB For Dummies

Routine Description Example

loglog Plots data on a
log scale on both
x- and y-axes — y
proportional to
a power of x is
straight on this
plot

x=[0:2*pi/100:2*pi];
y=10*x.^pi;

loglog(x,y)

semilogx X-axis data is on
a log scale and
the y-axis is on a
linear scale — y
linearly related
to log(x) is
straight on this
plot

x=[0:2*pi/100:2*pi];
y=10*log(x)+pi;

semilogx(x,y);

semilogy Y-axis data is on
a log scale and
x-axis linear — y
proportional to
exponential of x
is straight on this
plot

x=[0:2*pi/100:2*pi];
y=10*exp(pi*x);

semilogy(x,y);

Table B-2 Beyond Basics
Routine Description Example
area Acts just like

plot except for
the fact that it fills
in the area for you

x=[0:2*pi/100:2*pi];

y=exp(-0.4*x).*sin(x);

area(x,y)

pie Creates a standard
pie chart

x=[2,4,6,8];

pie(x); figure(2)

pie3(x)
pie3 Adds some 3D

pizazz to pie

Table B-1 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

379 Appendix B: MATLAB’s Plotting Routines

Routine Description Example

ezpolar Creates a polar
plot where the
distance from
origin vs. angle
is plotted —
 argument is func-
tion expression

ezpolar('cos(2*x)^2');

polar Creates a polar
plot like ezpolar
but does so by
accepting vector
arguments — x
value corresponds
to angle and y
value to distance
from origin

x=[0:2*pi/100:2*pi];

y=(exp(-0.1*x).*sin(x)).^2;

polar(x,y)

compass Like polar, but
compass shows
data as vectors
from origin

compass(rand(1,3)-0.5,...

rand(1,3)-0.5)

bar Creates a standard
bar chart that can
handle both group-
ing and stacking

x=[8,7,6;13,21,15;32,27,32];

bar(x); figure(2)

y=sum(x,2);

bar(y); figure(3)

bar(x,'stacked'); figure(4)

barh(x); figure(5)

bar3(x); figure(6)

bar3h(x)

barh Just like bar
except plot is
horizontal

bar3 Adds a little 3D
pizazz to a stan-
dard bar chart

bar3h Creates a 3D hori-
zontal bar chart

fill Fills polygons
(vector inputs
define vertices)
with the specified
color

y=sin([0:2*pi/5:2*pi])

x=cos([0:2*pi/5:2*pi])

fill(x,y,'g')

www.it-ebooks.info

http://www.it-ebooks.info/

380 MATLAB For Dummies

Table B-3 Statistical Plotting Routines
Routine Description Example
scatter Plots (x,y) data

points.
x=[0:2*pi/100:2*pi];
y=10*x+pi+10*randn(1,101);

scatter(x,y); figure(2)

stem(x,y); figure(3)

errorbar(x,y,10*ones(1,
101),ones(1,101))

figure(4);

hist(y); figure(5)

histogram(y)

histc(y,[-40:20:80])

histcounts(y,5)

stem Like scatter,
but adds a line
from the x axis to
a data point.

errorbar Like scatter
but adds error
bars.

hist or
histogram

Creates a
 histogram — a
bar chart show-
ing the frequency
of occurrence of
data vs. value.
These two rou-
tines handle the
bins differently.

histc Related to hist,
but rather than
making a plot, it
makes a vector of
counts.

histc(y,[-40:20:80])
example with histc category

histcounts Like histc
except it creates
n bins.

histcounts(y,5) example
with histcounts category

stairs Like scatter,
but makes
stairsteps when y
values change.

x=[0:2*pi/10:2*pi];
y=10*x+pi+10*randn(1,11);

stairs(x,y)

rose A cross between
polar and
histogram;
it displays fre-
quency vs. angle.

rose(randn(1,100),5)

pareto A bar chart
arranged with the
highest bars first.

histc(randn(1,100),
[-4:1:4])

pareto(ans)

www.it-ebooks.info

http://www.it-ebooks.info/

381 Appendix B: MATLAB’s Plotting Routines

Routine Description Example

spy A scatter
plot of zeros in a
matrix.

mymat=rand(5);
mymat=(mymat>0.5).*mymat;

spy(mymat)

plotmatrix A scatter plot
of all permuta-
tions of columns
of x and y.

plotmatrix(magic(3),
magic(3))

Table B-4 3D Graphics
Routine Description Example
ezcontour Makes a contour plot

like a topographic map
ezcontour('cos(x)*
cos(y)')

ezcontourf Same as ezcontour
except it fills in the
area between contours

ezcontourf('cos(x)*
cos(y)')

ezmesh Creates a 3D perspec-
tive plot with an open
wireframe mesh

ezmesh('cos(x)*
cos(y)')

ezsurf Creates a 3D perspec-
tive plot with a filled
surface

ezsurf('cos(x)*
cos(y)')

ezmeshc Combines a contour
plot with mesh

ezmeshc('cos(x)*
cos(y)')

ezsurfc Combines a contour
plot with a 3D perspec-
tive filled surface plot

ezsurfc('cos(x)*
cos(y)')

ezplot3 Plots a curve in 3D
space; capable of
being animated

ezplot3('sin(x)',
'cos(x)','sin(3*x/2)',...

[-2*pi,2*pi],'animate')

plot3 Like ezplot3,
except it takes vector
arguments

a=[-2*pi:4*pi/100:2*pi];

x=sin(a); y=cos(a);
z=sin(3*a/2);

plot3(x,y,z);
figure(2)

scatter3(x,y,z)

scatter3 Like plot3, but
shows individual points

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

382 MATLAB For Dummies

Routine Description Example

stem3 Stem plot of 3D data stem3(rand(5))

contour Creates a contour plot
with matrix arguments

x=[-2*pi:4*pi/100:2*pi];

y=[-2*pi:4*pi/100:2*pi
];z=cos(x)'*cos(y);

contour(x,y,z);title
('contour');figure(2)

contourf(x,y,z);title
('contourf');figure(3)

contour3(x,y,z);title
('contour3');figure(4)

surf(x,y,z);title
('surf');figure(5)

surface(x,y,z);title
('surface');figure(6)

mesh(x,y,z);title
('mesh');figure(7)

waterfall(x,y,z);
title('waterfall');
figure(8)

surfc(x,y,z);title
('surfc');figure(9)

meshc(x,y,z);title
('meshc');figure(10)

meshz(x,y,z);title
('meshz');figure(11)

surfl(x,y,z);title
('surfl');figure(12)

pcolor(z);title('surfl')

contourf Same as contour,
except contourf
fills in the contours

contour3 Same as contour,
except contour3
provides a 3D
perspective

surf or
surface

Creates a filled surface

mesh Creates a wireframe
mesh surface

waterfall Like mesh, but all
column lines are
omitted

surfc Same as surf, but
with contour plot
added

meshc Wireframe mesh with
contour

meshz Wireframe mesh with
a curtain around the
plot

surfl Same as surf, except
surfl simulates light
and shadow

pcolor Shows values of the
matrix as colors

surfnorm Creates surface plot
with normal vectors

[x,y,z]=peaks; % Test
function

surfnorm(x,y,z)

fill3 Like fill except
in 3D; note that the
fill area may not be
coplanar

fill3([0,1,1,0],[0,0,
1,0],[0,1,0,1],'g')

Table B-4 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

383 Appendix B: MATLAB’s Plotting Routines

Table B-5 Vector Fields
Routine Description Example
feather Like compass

except it steps
once for each ele-
ment in x and y

feather(rand(1,3)-0.5,...

rand(1,3)-0.5)

quiver Works like
feather except
quiver plots
vectors in an x-y
plane

[x,y]=meshgrid([-5:5],[-5:5]);

u=ones(11)+(4./(sqrt(x.^2+y.^2)).
*cos(atan2(y,x)));

v=(4./(sqrt(x.^2+y.^2)).*sin
(atan2(y,x)));

v(6,6)=0; u(6,6)=0;

quiver(x,y,u,v); hold on

streamline(x,y,u,v,[-5,-5,-5],
[-1,.01,1]); hold off,
figure(2)

stream
line

Plots line from the
vector field; the
example plots 2D
streamline on
the same plot as
quiver

quiver3 Like quiver for
3D; the example
adds a uniform
velocity field to
a 1/r2 velocity
field

[x,y,z]=meshg
rid([-5:2:3],[-3:2:3],[-3:2:3]);

r=sqrt(x.^2+y.^2+z.^2);

u=ones(4,5,4)+(10./r.^2).*cos
(atan2(y,x)).*sin(acos(z./r));

v=(10./r.^2).*sin(atan2(y,x)).*
sin(acos(z./r));

w=10.*z./r;
quiver3(x,y,z,u,v,w);hold on;

streamribbon(x,y,z,u,v,w,
-5,0,.1);figure(2)

coneplot(x,y,z,u,v,w,x,y,z);
figure(3)

quiver3(x,y,z,u,v,w);hold on;

streamtube(x,y,z,u,v,w,-5,0,.1);

stream
ribbon

Like
streamline,
but shows ribbons

coneplot Like quiver3,
but coneplot
shows velocity as
cones

stream
tube

Like streamline,
but plots tubes
(cylindrical 3D
flow lines)

www.it-ebooks.info

http://www.it-ebooks.info/

384 MATLAB For Dummies

www.it-ebooks.info

http://www.it-ebooks.info/

Index

• A •
\a (alarm), 161
abs() function, 370
absolute breakpoint, 169
absolute rotation, 141
accessing

function browser, 52–54
MATLAB files, 72–75
multidimensional matrices, 102–103

acos() function, 52, 368
acosd() function, 368
acosh() function, 368
acot() function, 369
acotd() function, 369
acoth() function, 369
acsc() function, 369
acscd() function, 369
acsch() function, 369
activating MATLAB, 21–22
addCause() function, 260, 261
adding

about, 45–46
annotations to plots, 149
comments to scripts, 162–166
derivatives, 246–247
fractions, 243–244
icons to QAT, 23
integral, 246
math symbols, 243–247
matrices, 88–89
to plots, 125–127
square root, 244–245
steps to colon method, 87
sum, 245–246
titles to plots, 145–147
vectors, 88–89

Address Field, 23, 24
Address Field option (Current Folder

toolbar), 28

advanced script function publishing tasks,
248–251

alarm (\a), 161
algebraic tasks

comparing numeric and symbolic
algebra, 291–293

cubic and nonlinear equations, 294–295
interpolation, 295–296
solving quadratic equations, 293–294

analysis
about, 307
calculus

differential, 312–313
integral, 313–314
multivariate, 314–315

linear algebra
about, 308
determinants, 308
eigenvalues, 310–311
factorization, 311–312
reduction, 308–310

of scripts for errors, 169–170
solving differential equations

numerical approach, 316–317
symbolic approach, 317–318

angle distribution, displaying using
rose() function, 342–343

angle() function, 370
animation

about, 344–345
data updates, 348–349
movies, 346–347
objects, 347–348

annotation() function, 149
annotations, in plots, 148–150
anonymous functions, 191–192
ans constant, 40, 48
apostrophe (’), 49, 87–88
App option (Command window), 26
area() function, 133, 378

www.it-ebooks.info

http://www.it-ebooks.info/

386 MATLAB For Dummies

arguments, 39, 181, 186
arithmetic functions, 367–368
arrayfun() function, 373
asec() function, 369
asecd() function, 369
asech() function, 369
asin() function, 52, 368
asind() function, 368
asinh() function, 368
at (@) symbol, 192
atan() function, 52, 368
atan2() function, 368
atan2d() function, 368
atand() function, 368
atanh() function, 369
automation. See scripting
axes handles, getting, 143
axes labels, modifying, 144–145
axis

creating dates for using datetick()
function, 322–326

obtaining current using using gca()
function, 322

• B •
\b (backspace), 162
Back button (Current Folder toolbar),

27, 62
BackgroundColor property, 147
backslash (\), 161
backspace (\b), 162
backtrace, 264
bank command, 43
bar() function

about, 379
for flat 3D plots, 136–140
procedures for, 142

bar3() function
about, 379
for dimensional 3D plot, 140–142
procedures for, 142

bar3h() function
about, 379
procedures for, 142

barh() function
about, 142–143, 379
procedures for, 142

BASIC (Beginner’s All-Purpose Symbolic
Instruction Code), 10

Basic value, 222
Beginner’s All-Purpose Symbolic

Instruction Code (BASIC), 10
benefits, of scripts, 154
blkdiag() function, 111
blog, for this book, 16
bold

about, 234
using, 235–237

Boole, George (mathematician), 51
Boolean logic, 51–52
break clause, 207–208, 209
breakpoints, creating, 169
Browse for Folder button (Current Folder

toolbar), 28, 63
bsxfun() function, 91, 94, 95, 96, 97
bucky() function, 344
built-in functions

about, 52, 172–177
sending data in/getting data out,

177–178

• C •
C++, 61
calculating factorials, 202
calculator, using MATLAB as a, 38–44
calculus

differential, 312–313
integral, 313–314
multivariate, 314–315

calling scripts, 167–168
Cameron, James (explorer), 307
caret (^), 47, 242, 287
carriage return (r), 162
cart2pol() function, 371
cart2sph() function, 371
Cartesian functions, 371
case sensitivity

of MATLAB, 39
of variables, 49

cat() function, 101
catchError, 250
categories, of functions, 53
cause property, 260
C/C++ language, 13, 16

www.it-ebooks.info

http://www.it-ebooks.info/

387 Index

cd command, 67
CDC (Centers for Disease Control),

14, 363
ceil() function, 46, 368
cell arrays, using in matrices, 107–110
cell() function, 107
cell2mat() function, 226–228
Centers for Disease Control (CDC),

14, 363
char() function, 293
cheat sheet (website), 3
choosing layouts, 36
circumflex (^), 95–97
clc command, 39, 125
clc() function, 177
clf command, 125, 144
Clipboard, 70
closing windows, 34–35
codeToEvaluate, 250
colon (:)

creating ranges of values using, 86
multidimensional matrices and, 102

colon method, adding steps to, 87
color coding, 66
Color property, 147
colorbar() function, creating plots

with, 326–329
columns, importing, 224–225
comet() function, 377
comma (,), 84, 85
Command Bar (MuPAD Notebook), 287
Command History

converting into scripts, 160
window, 23, 24, 25

Command window
about, 23, 24
changing formatting, 42–44
suppressing output, 44
typing commands in, 290–291
using, 24–27

commands
creating plots using, 117–119
defined, 39
exploring folders with, 65–69
format, 43–44
formatting text with

about, 233–234
adding math symbols, 243–247

font, 234–241
special characters, 241–243

saving
figures to disk with, 252–253
with GUI, 77
as scripts, 31–33
using commands, 77–78
variables using, 77

typing, 24–25
typing in Command window, 290–291
using for user input, 158–159

comment out, 162
comments

adding to scripts, 162–166
defined, 162

common fixes, for error messages,
267–268

compact command, 44
companion files, website for, 4
Compare Against option, 64
comparing

built-in functions and custom
functions, 179–180

numeric and symbolic algebra, 291–293
plots and spreadsheet graphs, 116–117
scripts and functions, 179
scripts with functions, 179

compass() function, 340–342, 379
complex() function, 370
complex numbers, 97–99, 370
computer chips, 364
computer skills, for MATLAB, 15
computers, how they work, 9–10
concatenation operator ([]), 159
cond() function, 308
conditional breakpoint, 169
coneplot() function, 383
configuring

output page, 253–255
plots, 130–132

conj() function, 370
constants, functions for, 371–372
contacting the authors, 58
continuation operator (...), 160
continuing long strings, 160–162
contour() function, 382
contour3() function, 382
contourf() function, 382

www.it-ebooks.info

http://www.it-ebooks.info/

388 MATLAB For Dummies

control character, 161
converting

Command History into scripts, 160
between symbolic and numeric

data, 293
Copy option, 64
copyfile command, 67
copying

to Clipboard, 70
formulas, 41
and pasting, 70–71, 159–160

corrcoef() function, 300, 373
cos() function, 52, 368
cosd() function, 368
cosh() function, 368
cot() function, 369
cotd() function, 369
coth() function, 369
cov() function, 300, 373
Create Zip File option, 63
createThumbnail, 250
creating

axis dates using datetick()
function, 322–326

error messages
about, 262–264, 268
custom, 268–272
useful, 272–273

error-handling code, 170
exception code, 268–270
folders, 30–31
functions

about, 178
comparing built-in functions and

custom functions, 179–180
comparing scripts and functions, 179
global variables, 187–188
nesting functions, 190
optional arguments, 186
passing data in, 184–185
passing data out, 185–187
subfunctions, 188–189
using new functions, 182–183
writing your first, 180–182

menus, 210–211
multidimensional matrices, 99–102
multiple plots in single commands

with plot() function, 124

plots
with colorbar() function, 326–329
using commands, 117–119
using Plots tab options, 120–122
using Workspace window, 119–120

powers of matrices, 95–97
pseudo-random numbers, 301
ranges of values using colons, 86
ranges of values using linspace()

function, 86–87
recursive functions, 201–205
scripts

about, 155
adding comments to scripts, 162–166
continuing long strings, 160–162
converting Command History into

scripts, 160
copying and pasting into scripts, 159–160
using commands for user input, 158–159
writing your first, 156–158

speech recognition software, 363
storage lockers, 48–50
subplots, 128–130
variables, 49
warning messages, 262–264

cross() function, 372
csc() function, 369
cscd() function, 369
csch() function, 369
csvread() function, 216, 217, 224–225
csvwrite() function, 75, 225, 226–228
Ctrl+C, 55, 70, 159
Ctrl+Click, 31
Ctrl+X, 159
cubic and nonlinear equations, 294–295
Cubic Equation Calculator (website), 295
curly braces ({}), 107, 242
current folder, changing, 28–30
Current Folder toolbar, 27–28
Current Folder window

about, 23, 24
viewing, 28–33

Curve Fitting Toolbox (website), 297
custom error messages, 268–272
CustomException() function, 270–272
Cut option, 64
cutting and pasting, 71–72

www.it-ebooks.info

http://www.it-ebooks.info/

389 Index

• D •
daspect() function, interacting with,

329–331
data

entering, 83–88
exporting. See exporting
finding deviations in using errorbar()

function, 334
importing. See importing
passing in, 184–185
passing out, 185–187
printing, 255
sending in/getting out, 177–178
showing distibution using stem()

function, 336–337
data formats, 75
data updates, 348–349
datenum() function, 322
datetick() function, creating axis

dates using, 322–326
decision-making

about, 193–194
if statement, 194–198, 201
switch statement, 199–201

default folder, changing, 30
defining

delimiter types, 223–224
variable names, 48–49

delete command, 67
Delete option, 64
deleting

icons from QAT, 23
plots, 128

delimiter
defined, 217
types, 223–224

Delimiter property, 228
Delimiter value, 221
derivative, adding, 246–247
descriptive statistics, 297–300
designing

computer chips, 364
equipment, 365

det() function, 373
Details window, 23, 24
determinants, 308

determining truth, 50–52
diary command, 77–78
diary off command, 78
diary on command, 78
diff() function, 312, 367
differential calculus, 312–313
differential equations, solving

numerical approach, 316–317
symbolic approach, 317–318

digital data, plotting using stairs()
function, 335–336

dimensional 3D plot, bar3() function
for, 140–142

dir command, 67
discrete math functions, 370
disease control, 363
disk

saving figures to, 252–253
saving workspaces to, 33

disp command, 68
disp() function, 159, 169, 172, 175, 184,

186, 191, 261, 270
displaying

angle distribution using rose()
function, 342–343

data distribution using stem()
function, 336–337

velocity vectors
using compass() function, 340–342
using feather() function, 340
using quiver() function, 340

divide() function, 45
dividing

about, 45–46
matrices

effecting, 94–95
scalar, 90
two, 94–95
by vectors, 94

vectors
complex numbers, 97–99
exponents, 97–99
matrix, 94–95
scalar, 90
by scalars, 94
two, 93
working element-by-element, 97

www.it-ebooks.info

http://www.it-ebooks.info/

390 MATLAB For Dummies

dlmread() function, 216, 217
doc() function, 175, 177, 183
docking windows, 35–36
documentation, 56
dollar sign ($), 244, 246
dot() function, 372
dot (.) operator, 97
double, 42
double() function, 98, 293
double single quote (’’), 161
dragging, 72
drawing images using fill() function,

337–339
dsolve() function, 317–318
Dummies (website), 4, 31

• E •
e, for scientific notation, 47
E, for scientific notation, 47
EdgeColor property, 147
eig() function, 372
eigenvalues, 310–311, 372
eigs() function, 372
elementary polygon functions, 375
elements, replacing in matrices, 103–105
else clause, 196–197
empty matrix ([]), 106
endless loop, 207
enhancing plots

about, 143
adding titles, 145–147
axes handles, 143
employing annotations, 148–150
modifying axes labels, 144–145
printing plots, 150
rotating label text, 147–148

entering data, 83–88
eps constant, 40
eps() function, 371
@eq function, 96
equal (==) operator, 51
equal sign (=), 52
equations, solving

about, 279
algebraic tasks

comparing numeric and symbolic
algebra, 291–293

cubic and nonlinear equations, 294–295
interpolation, 295–296
solving quadratic equations, 293–294

statistics
about, 297
creating pseudo-random numbers, 301
descriptive, 297–300
least squares fit, 302–306
robust, 302

Symbolic Math Toolbox
about, 279–280
getting, 280–282
GUI, 286–290
installing, 282–286
typing commands in Command window,

290–291
equipment, designing, 365
erf() function, 371
erfc() function, 371
erfcinv() function, 371
erfcx() function, 371
erfinv() function, 371
error checking feature, 39–40
error() function, 262–264
error messages

about, 54–55, 258
analyzing scripts for, 169–170
creating

about, 268
custom, 268–272
useful, 272–273

creating error/warning messages, 262–264
defined, 258
MException class, 260–261
responding to, 258–260
setting warning message modes, 264–265

errorbar() function, 334, 380
error-handling code, creating, 170
evalCode, 250
examples, working through, 56
exception code, creating, 268–270
exist command, 67
exp() function, 52, 99, 369
expm() function, 99, 373
expml() function, 369
exponents

functions for, 369–370
working with, 47, 99

www.it-ebooks.info

http://www.it-ebooks.info/

391 Index

exporting
about, 215–216
functions, 228–229
images, 229–231
MATLAB files, 75
performing basics, 225–228
scripts, 228–229

eye() function, 111
ezcontour() function, 381
ezcontourf() function, 381
ezmesh() function, 381
ezmeshc() function, 381
ezplot() function, 377
ezplot3() function, 381
ezpolar() function, 133, 379
ezsurf() function, 381
ezsurfc() function, 381

• F •
f (form feed), 162
factor() function, 311–312, 370
factorial() function, 370
Factorial() function, 202–203
factorials, calculating, 202
factorization, 311–312
family planning, 365
feather() function, 340, 383
.fig file extension, 60
figure() function, 127, 144
figureSnapMethod, 250
file formats, supported, 252
fileattrib command, 67
filenames, 32
files

about, 59
accessing, 72–73
exporting, 75
importing, 73–75
opening, 72–73
saving

about, 76
commands using commands, 77–78
commands with GUI, 77
variables using commands, 77
variables with GUI, 76–77

structure of
about, 60

command method, 65–69
file types, 60–61
GUI method, 61–65
working with, 69–72

FileType property, 228
FileType value, 221
fill() function, 337–339, 379
fill3() function, 382
find() function, 375
finding

data deviations using errorbar()
function, 334

dimensions of matrices with Size
column, 85–86

roots. See roots, finding
sparcity patterns using spy()

function, 344
fix() function, 46, 368
fix modifier, 46
flat 3D plots, bar() function for, 136–140
floating point values, 42
floor() function, 46, 368
floor modifier, 46
fminbnd() function, 374
fminsearch() function, 374
folders

changing current, 28–30
changing default, 30
creating, 30–31
exploring with commands, 65–69
exploring with GUI, 61–65

font
available, 235
formatting, 234–241
modifying

about, 234–235
bold, 235–237
italic, 239–240
monospace, 237–238
underline, 240–241

FontName property, 147
FontSize property, 147
fopen() function, 259
for loop, 210
for statement, 205–206
form feed (f), 162
format, 250
format commands, 43–44

www.it-ebooks.info

http://www.it-ebooks.info/

392 MATLAB For Dummies

format compact command, 42–43, 84
Format value, 222
formatting

changing in Command window, 42–44
text with commands

about, 233–234
adding math symbols, 243–247
font, 234–241
special characters, 241–243

formulas
copying and pasting, 41
entering, 40
saving as scripts, 31–33

FORTRAN, 61
Forward button (Current Folder toolbar),

27, 62
fourth-generation language, 12–13
fplot() function, 377
fprint() function, 204, 270
fractions, adding, 243–244
fread() function, 259
function browser, accessing, 52–54
function call, 39
functions. See also specific functions

1-D interpolation, 374
about, 171–172
anonymous, 191–192
arithmetic, 367–368
built-in

about, 52, 172–177
sending data in/getting data out,

177–178
Cartesian, 371
comparing scripts with, 179
for complex numbers, 370
for constants, 371–372
creating

about, 178
comparing built-in functions and custom

functions, 179–180
comparing scripts and functions, 179
global variables, 187–188
nesting functions, 190
optional arguments, 186
passing data in, 184–185
passing data out, 185–187

subfunctions, 188–189
using new functions, 182–183
writing your first, 180–182

discrete math, 370
eigenvalue, 372
elementary polygon, 375
exponentials, 369–370
exporting, 228–229
gridded data interpolation, 374
in-line, 191
linear equation, 372
logarithms, 369–370
matrix, 373
matrix analysis, 373
matrix operation, 372
optimization, 374
ordinary differential equation, 375
polar, 371
polynomial, 371
powers, 369–370
random number generator, 374
roots, 369–370
scattered data interpolation, 374
searching for, 54
sparse matrix manipulation, 375
special, 371
spherical, 371
statistical, 373
for text matrices, 371–372
trigonometric, 368–369

fzero() function, 374

• G •
gallery() function, 112, 310–311, 372
gca() function, 143, 322
gcd() function, 370
gcf() function, 127, 144, 230
get() function, 138, 144, 145, 147
getframe() function, 346
GetGreeting() subfunction, 189, 190
getReport() function, 260, 261
getting

current axis using gca() function, 322
Symbolic Math Toolbox, 280–282

global variables, 187–188

www.it-ebooks.info

http://www.it-ebooks.info/

393 Index

good coding practices, 273–275
Graphical User Interface. See GUI

(Graphical User Interface)
greater than (>) operator, 51
greater than or equal to (>=) operator, 51
Greek letters, 241–242
green technology, 362
grid commands, 125
grid() function, 321
griddata() function, 374
gridded data interpolation functions, 374
griddedInterpolant() function, 374
GUI (Graphical User Interface)

about, 15
exploring folders with, 61–65
saving commands with, 77
saving figures to disk with, 252
saving variables with, 76–77
Symbolic Math Toolbox and, 286–290

• H •
handle, 91, 126
hangs, 55
HeaderLines value, 221
help

about, 55–56
contacting the authors, 58
documentation, 56
examples, 56
MathWorks support, 58
peer support, 57
training, 57–58

help command, 172
help() function, 172–173, 175, 177, 181
help links, 25
hex command, 43
hexadecimal number (xN), 162
hist() function, 133, 142, 380
histc() function, 143, 380
histcounts() function, 380
hold command, 120
hold off command, 126
Home tab, 22, 23
horizontal tab (t), 162
hypot() function, 369

• I •
i, used in complex numbers, 98
i constant, 40
i() function, 370
icons

adding to QAT, 23
explained, 3
removing from QAT, 23

identifier property, 260
idivide() function, 46, 54–55, 368
if statement, 194–198, 201
if...elseif statement, 199
image() function, 232, 370
image processing, 358
imageFormat, 251
images

drawing using fill() function,
337–339

exporting, 229–231
importing, 231–232

importing
about, 215–216
defining delimiter types, 223–224
images, 231–232
MATLAB files, 73–75
mixed strings/numbers, 221–223
performing basics, 216–220
selected rows/columns, 224–225

improving script performance, 168
imread() function, 231
imwrite() function, 231
Inf constant, 40
Inf() function, 371
information, publishing, 165–166
in-line functions, 191
inner product, 91
inpolygon() function, 375
input() function, 158, 166, 172, 173, 174,

175, 180
installing

MATLAB, 19–22
Symbolic Math Toolbox and, 282–286

int() function, 246, 313–314
int8, 42

www.it-ebooks.info

http://www.it-ebooks.info/

394 MATLAB For Dummies

int8() function, 98, 293
int16, 42
int16() function, 99, 293
int32, 42
int32() function, 98, 99, 293
int64, 42
int64() function, 99, 293
integer values, 42
integral calculus, 313–314
integrals, adding, 246
interacting

with daspect() function, 329–331
with pbaspect() function, 332–333

interactions
about, 37–38
determining truth, 50–52
error messages, 54–55
help

about, 55–56
contacting the authors, 58
documentation, 56
examples, 56
MathWorks support, 58
peer support, 57
training, 57–58

math syntax
about, 44–45
adding, 45–46
dividing, 45–46
exponents, 47
multiplying, 45–46
subtracting, 45–46

storage locker, 48–50
using as a calculator

changing Command window formatting,
42–44

copying and pasting formulas, 41
entering formulas, 40
entering information at the prompt,

38–40
suppressing Command window

output, 44
interface

about, 22
starting for first time, 22–24

interp2() function, 374

interp3() function, 374
interpl() function, 374
interpn() function, 374
interpolation, 295–296
inv() function, 95, 96, 372
isdir command, 67
isfinite() function, 372
isinf() function, 372
isnan() function, 372
isprime() function, 370
isreal() function, 370
italic

about, 234
using, 239–240

• J •
j() function, 370
Java, 13, 16
Joint Photographic Experts Group (.jpeg)

files, 230

• K •
Khan Academy (website), 83
kron() function, 372

• L •
label text, rotating, 147–148
last() function, 260
LaTeX (website), 240
layouts

changing, 33–36
choosing, 36
saving, 36

lcm() function, 370
ldivide() function, 367
learning curve, 17
least squares fit, 302–306
left division, 90
legend() function, 126
length() function, 113
less than (<) operator, 51
less than or equal to (<=) operator, 51

www.it-ebooks.info

http://www.it-ebooks.info/

395 Index

line color/markers/style, 122–123
linear algebra

about, 82–83, 308, 355
determinants, 308
eigenvalues, 310–311
factorization, 311–312
reduction, 308–310

linear equation functions, 372
lines, starting with semicolon, 84–85
LineWidth property, 147
LinkedIn (website), 361
links, help, 25
linsolve() function, 372
linspace() function, creating ranges of

values using, 86–87
Linux, platforms supported by

MATLAB, 20
listfonts() function, 235
load command, 73
local variables, 187
log() function, 52, 369
log1p() function, 369
log2() function, 369
log10() function, 369
logarithms, functions for, 369–370
loglog() function, 132, 378
logm() function, 373
long command, 43
longe command, 43
longeng command, 43
lookfor() function, 174
loose command, 44
ls command, 67

• M •
.m file extension, 60–61
Mac OS X, platforms supported by

MATLAB, 20
Macro Assembler, 13
magic() function, 112, 309, 372
Margin property, 147
.mat file extension, 60, 61
math

about, 356
adding symbols, 243–247
requirements for MATLAB, 15

math syntax
about, 44–45
adding, 45–46
dividing, 45–46
exponents, 47
multiplying, 45–46
subtracting, 45–46

MathWorks, 21, 58
MATLAB. See also specific topics

about, 7, 8
activating, 21–22
functions, 367–375. See also specific

functions
how to use, 14–16
installing, 19–22
interacting with. See interactions
interface, 22–36
minimum requirements for, 20
obtaining your copy, 20–21
platforms supported by, 19–20
purchasing, 21
real-life uses for, 13–14
reasons for needing, 11–13
Turing machines, 8
uses for, 8, 10–11, 353–359
using as a calculator, 38–44
website, 176
working with files in, 69–72

MATLAB Answers (website), 267, 279
MATLAB Central, 57
MATLAB Programming/Error Messages

(website), 267
MATLAB Tips (website), 268
matrices

about, 81–82, 99–100
accessing multidimensional, 102–103
adding, 88–89
cell arrays/structures, 107–110
checking relations, 96
complex numbers, 97–99
creating multidimensional, 100–102
creating powers of, 95–97
dividing

effecting, 94–95
scalar, 90
two, 94–95
by vectors, 94

www.it-ebooks.info

http://www.it-ebooks.info/

396 MATLAB For Dummies

entering data, 83–88
exponents, 99
functions, 111–113
help, 110
linear algebra, 82–83
modifying size, 105–106
multiplying

effecting, 90–93
scalar, 90
two, 93

multiplying by vectors, 92
operation functions, 372
replacing individual elements, 103–104
replacing range of elements, 104–105
subtracting, 88–89
testing, 110–113
transposing with apostrophes, 87–88
working element-by-element, 97
working with, 226

matrix analysis functions, 373
matrix functions, 373
max() function, 300, 373
maxHeight, 251
maximizing windows, 34
maxOutputLines, 251
maxWidth, 251
.mdl file extension, 61
mean() function, 300, 373
median() function, 300, 373
menus, creating, 210–211
Mersenne Twister, 301
mesh() function, 382
meshc() function, 382
meshgrid() function, 374
meshz() function, 382
message property, 260
.mex* file extension, 61
MException class, 260–261
military equipment, 365
min() function, 300, 302, 373
minimizing

Toolstrip, 23
windows, 34

minus() function, 45, 367
mistakes, recovering from

about, 257–258
common fixes for error messages,

267–268
creating error messages

about, 268
custom, 268–272
useful, 272–273

error messages
about, 258
creating error/warning messages,

262–264
MException class, 260–261
responding to, 258–260
setting warning message modes,

264–265
good coding practices, 273–275
quick alerts, 265–266

mixed data, working with, 226–228
mixed strings/numbers, importing,

221–223
mkdir command, 67
mldivide() function, 367
MLFG (Multiplicative Lagged Fibonacci

Generator), 301
mod() function, 46, 368
mode() function, 300, 373
modifying

axes labels, 144–145
Command window formatting, 42–44
current folder, 28–30
default folder, 30
font

about, 234–235
bold, 235–237
italic, 239–240
monospace, 237–238
underline, 240–241

layout, 33–36
matrix size, 105–106
plots

about, 124–125
adding to plots, 125–127
deleting plots, 128
figure() function, 127
simple changes, 125
working with subplots, 128–132

matrices (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

397 Index

monospace
about, 234
using, 237–238

Monster.com (website), 361
movefile command, 67
movie() function, 346–347
movies, 346–347
mpower() function, 96, 367
mrdivide() function, 367
MRG (Multiple Recursive Generator), 301
mtimes() function, 367
Mueller, John Paul (author)

blog, 115, 257
contacting, 58
email address for, 16, 20

multidimensional matrices
accessing, 102–103
creating, 99–102

Multiple Recursive Generator (MRG), 301
Multiplicative Lagged Fibonacci Generator

(MLFG), 301
multiplying

about, 45–46
matrices

effecting, 90–93
scalar, 90
two, 93

matrices by vectors, 92
vectors

complex numbers, 97–99
exponents, 99
matrix, 90–93
scalar, 90
two, 91
working element-by-element, 97

multivariate calculus, 314–315
MuPAD Notebook, 286–290
myVariable variable, 49

• N •
\n (new line), 162
\N (octal number), 162
\n character, 161
NaN constant, 40
NaN() function, 372

NASA (National Aeronautic and Space
Administration), 14

nchoosek() function, 370
ndgrid() function, 374
nesting functions, 190
New File option, 64
New Folder option, 64
new line (n), 162
nonlinear equations, 294–295
norm() function, 373
not equal (~=) operator, 51
nthroot() function, 369
numeric data, working with, 226
numerical analysis, performing, 355

• O •
Object-Oriented Programming (OOP), 12
objects, 347–348
oblique italic, 239–240
obtaining

current axis using gca() function, 322
Symbolic Math Toolbox, 280–282

octal number (N), 162
ode23() function, 375
off, 264
on, 264
ones() function, 111
OOP (Object-Oriented Programming), 12
open command, 73
open command, 67
Open option, 63
opening

MATLAB files, 72–73
windows, 34–35

optimization functions, 374
optional arguments, 186
ordinary differential equation functions, 375
organizing

with MATLAB, 11
storage locker, 48–50

otherwise clause, 200
outer product, 91
output formats, supported, 248
output page, configuring, 253–255
outputDir, 251

www.it-ebooks.info

http://www.it-ebooks.info/

398 MATLAB For Dummies

• P •
.p file extension, 61
pareto() function

about, 380
procedures for, 143
ranking related measures using, 334–335

passing
data in, 184–185
data out, 185–187

Paste option, 64
pasting

copying and, 70–71
copying and, into scripts, 159–160
cutting and, 71–72
formulas, 41

pause() function, 211, 347
pbaspect() function, interacting with,

332–333
pcolor() function, 382
peer support, 57
percent (%) character, 161, 162–163,

180, 204
performance, improving for scripts, 168
performing

exporting basics, 225–228
family planning, 365
importing basics, 216–220
numerical analysis, 355

perms() function, 370
pi constant, 40
pi() function, 372
pie() function, 132–133, 378
pie3() function, 378
platforms supported by MATLAB, 19–20
plot() function

about, 118, 122, 377
creating multiple plots in single

commands, 124
line color/markers/style, 122–123

plot routines
about, 334
displaying

angle distribution using rose()
function, 342–343

velocity vectors using compass()
function, 340–342

velocity vectors using feather()
function, 340

velocity vectors using quiver()
function, 340

drawing images using fill() function,
337–339

finding
data deviations using errorbar()

function, 334
sparcity patterns using spy()

function, 344
plotting digital data using stairs()

function, 335–336
polar() function, 342
ranking related measures using

pareto() function, 334–335
showing data distribution using stem()

function, 336–337
plot3() function, 381
plotmatrix() function, 381
Plots tab options, creating plots using,

120–122
plotting

with 2D information, 132–133
with 3D information

about, 136
bar() function, 136–140
bar3() function, 140–142
barh() function, 142–143

about, 115–116, 135
compared with spreadsheet graphs,

116–117
creating plots using commands, 117–119
creating plots using Plots tab options,

120–122
creating plots using Workspace window,

119–120
creating plots with colorbar() function,

326–329
digital data using stairs() function,

335–336
enhancing plots

about, 143
adding titles, 145–147
axes handles, 143
employing annotations, 148–150
modifying axes labels, 144–145

www.it-ebooks.info

http://www.it-ebooks.info/

399 Index

printing plots, 150
rotating label text, 147–148

modifying plots
about, 124–125
adding to plots, 125–127
deleting plots, 128
figure() function, 127
simple changes, 125
working with subplots, 128–132

plot() function
about, 122
creating multiple plots in single

commands, 124
line color/markers/style, 122–123

routines for, 377–383
saving plots as scripts, 249
uses for, 116

plotyy() function, 132, 377
plus() function, 45, 367
pol2cart() function, 371
polar coordinates, 342
polar() function, 143, 342, 379
polar functions, 371
poly() function, 371
poly2sym() function, 293
polyarea() function, 375
polyder() function, 371
polyeig() function, 371
polyfit() function, 371
polyint() function, 371
polynomial functions, 371
polyval() function, 371
Position property, 148
pow2() function, 369
power() function, 367
powers, functions for, 369–370
primary function, 188
primes() function, 370
print() function, 150, 253
printing

about, 233, 253
configuring output page, 253–255
data, 255
formatting text with commands

about, 233–234
adding math symbols, 243–247
font, 234–241
special characters, 241–243

plots, 150

printopt() function, 253
procedural languages, 16
procedure, 153
prod() function, 367
professional uses, 361–366
program/programming, 9–10, 358–359
prompt, entering information at the,

38–40
Prompt variable, 161
pseudo-random numbers, creating, 301
publish() function, 228–229, 248,

250–251
publishing

about, 233, 248
formatting text with commands

about, 233–234
adding math symbols, 243–247
font, 234–241
special characters, 241–243

information, 165–166
performing advanced script/function

publishing tasks, 248–251
saving figures to disk, 252–253

purchasing MATLAB, 21
pwd command, 68
Python, 16

• Q •
QAT (Quick Access toolbar), 23
quadratic equations, solving, 293–294
query, 264
Quick Access toolbar (QAT), 23
quick alerts, 265–266
quiver() function, 340, 383
quiver3() function, 383

• R •
\r (carriage return), 162
rand() function, 101, 111, 301, 374
randi() function, 301, 374
randn() function, 101, 111, 301, 374
random number generator functions, 374
randperm() function, 301
Range property, 228
Range value, 222
rank() function, 373

www.it-ebooks.info

http://www.it-ebooks.info/

400 MATLAB For Dummies

ranking related measures using pareto()
function, 334–335

rat command, 44
rat() function, 370
rdivide() function, 367
Read Getting Started option (Command

window), 27
ReadRowNames value, 221
readtable() function, 217, 220, 221–222,

225, 228
ReadVariableNames value, 221
real() function, 370
reallog() function, 370
realpow() function, 370
realsqrt() function, 370
Recognized Data Files drop-down list,

73–74
rectint() function, 375
recursive functions, creating, 201–205
recycle command, 68
red lines, 40
Reduced Row Echelon Form (RREF),

308–310
reduction, 308–310
Refresh option, 65
related measures, ranking using pareto()

function, 334–335
rem() function, 46, 368
Remember icon, 3
removing

icons from QAT, 23
plots, 128

Rename option, 63
repetitive tasks

about, 205
break clause, 207–208, 209
for loop, 210
return clause, 208–209
for statement, 205–206
while loop, 210
while statement, 206–207

replacing elements in matrices, 103–105
requesting support from MathWorks, 58
research, 356–357
Research and Development (R&D), 364–365

reset() function, 144
resizing matrices, 105–106
responding to error messages,

258–260
rethrow() function, 260
return clause, 208–209
revising scripts, 167
ribbon() function, 377
Ribbon interface, 22
right division, 90
right-clicking, 70
rmdir command, 68
rng() function, 113, 297, 374
robust statistics, 302
roots, finding

about, 279
algebraic tasks

comparing numeric and symbolic
algebra, 291–293

cubic and nonlinear equations,
294–295

interpolation, 295–296
solving quadratic equations, 293–294

functions for, 369–370
statistics

about, 297
creating pseudo-random numbers, 301
descriptive, 297–300
least squares fit, 302–306
robust, 302

Symbolic Math Toolbox
about, 279–280
getting, 280–282
GUI, 286–290
installing, 282–286
typing commands in Command

window, 290–291
roots() function, 293–294, 371
rose() function, 143, 380
rotate3d() function, 346–347
rotating label text, 147–148
rotation, 320
Rotation property, 147
round() function, 46, 368
round modifier, 46

www.it-ebooks.info

http://www.it-ebooks.info/

401 Index

rows
importing, 224–225
starting with semicolon, 84–85

rref() function, 308–310, 373
Run and Advance, 163–165
running scripts, 33

• S •
save command, 77
saveas() function, 231, 249
saving

commands as scripts, 31–33
figures to disk, 252–253
files

about, 76
commands using commands, 77–78
commands with GUI, 77
variables using commands, 77
variables with GUI, 76–77

formulas as scripts, 31–33
layouts, 36
plots as scripts, 249
workspaces to disk, 33

SayHello() function, 184
SayHello2() function, 185, 186
scalar multiplication/division, of vectors/

matrices, 90
scalars, dividing vectors by, 94
scatter() function, 133, 380
scatter3() function, 381
scattered data interpolation functions, 374
science, 356
Science, Technology, Engineering and

Mathematics (STEM), 10, 13–14
scientific notation, 47
Script option (Command window), 26
scripting

about, 153–154
analyzing scripts for errors, 169–170
benefits of, 154
calling scripts, 167–168
creating scripts

about, 155
adding comments to scripts, 162–166
continuing long strings, 160–162

converting Command History into
scripts, 160

copying and pasting into scripts,
159–160

using commands for user input, 158–159
writing your first, 156–158

improving script performance, 168
revising scripts, 167
when to use, 155

scripts
about, 193
comparing with functions, 179
creating menus, 210–211
creating recursive functions, 201–205
decision-making

about, 193–194
if statement, 194–198, 201
switch statement, 199–201

exporting, 228–229
fprint() function, 204
repetitive tasks

about, 205
break clause, 207–208, 209
for loop, 210
return clause, 208–209
for statement, 205–206
while loop, 210
while statement, 206–207

running, 33
saving formulas/commands as, 31–33
saving plots as, 249

Search option (Current Folder toolbar), 28
searching, for functions, 54
sec() function, 369
secd() function, 369
sech() function, 369
second-generation language, 13
See Examples option (Command

window), 26
seed value, 297
selecting layouts, 36
semicolon (;)

separating values with, 85
starting new lines/rows with, 84–85

semilogx() function, 133, 378
semilogy() function, 133, 378

www.it-ebooks.info

http://www.it-ebooks.info/

402 MATLAB For Dummies

sending data in/getting data out, 177–178
sendmail() function, 265, 266
separating values with commas/

semicolons, 85
set() function, 130–131, 139, 145
setpref() function, 265
setting

breakpoints, 169
warning message modes, 264–265

sharing MATLAB files, 72–75
Sheet property, 228
Sheet value, 222
short command, 43
shorte command, 43
shorteng command, 43
shortg command, 43
Show in Explorer option, 63
showCode, 251
showing

angle distribution using rose() function,
342–343

data distribution using stem() function,
336–337

velocity vectors
using compass() function, 340–342
using feather() function, 340
using quiver() function, 340

sign() function, 370
SimpleFor() function, 206
simulations, 357, 366
Simulink model, 61
sin() function, 52, 118, 368
sind() functuion, 368
single, 42
single() function, 98, 293
single quotes (’), 49
sinh() function, 368
Size column, finding dimensions of

matrices with, 85–86
size() function, 113
Sizemore, Jim (author)

contacting, 58
email address for, 16

.slx file extension, 61
solve() function, 288, 290, 291,

293–294

solving
differential equations

numerical approach, 316–317
symbolic approach, 317–318

quadratic equations, 293–294
solving equations. See equations, solving
sparcity patterns, finding using spy()

function, 344
sparse matrix manipulation functions, 375
special characters, 241–243
special functions, 371
speech recognition software, 363
sph2cart() function, 371
spherical functions, 371
Spline() function, 374
spreadsheet graphs, compared with plots,

116–117
sprintf() function, 270
spy() function, 113, 344, 375, 381
SQL (Structured Query Language), 13
sqrt function, 244
sqrt() function, 370
sqrtm() function, 372, 373
square brackets ([]), entering values

inside, 84
square root, adding, 244–245
stack property, 260
stairs() function, 335–336, 380
starting

MATLAB for first time, 22–24
new lines/rows with semicolon, 84–85

statistical functions, 373
statistics

about, 297
creating pseudo-random numbers, 301
descriptive, 297–300
least squares fit, 302–306
robust, 302

Statistics Toolbox (website), 297
Status bar, 23, 24
std() function, 300, 302, 373
STEM (Science, Technology, Engineering

and Mathematics), 10, 13–14
stem() function, 336–337, 380
stem plot, 336
stem3() function, 382

www.it-ebooks.info

http://www.it-ebooks.info/

403 Index

stopping, when hanging, 55
storage locker, organizing, 48–50
streamline() function, 383
streamribbon() function, 383
streamtube() function, 383
strings, continuing long, 160–162
structure

adding to scripts. See scripts
files

about, 60
command method, 65–69
file types, 60–61
GUI method, 61–65
working with, 69–72

provided by MATLAB, 11
using in matrices, 107–110

Structured Query Language (SQL), 13
student version, 21
stylesheet, 251
subfunctions, 188–189
subplot() function, 130
subplots, working with, 128–132
subscript, 242–243
subtracting

about, 45–46
matrices, 88–89
vectors, 88–89

sum, adding, 245–246
sum function, 245–246
sum() function, 368
super plots

about, 319–321
animation

about, 344–345
data updates, 348–349
movies, 346–347
objects, 347–348

creating axis dates using datetick()
function, 322–326

creating plots with colorbar() function,
326–329

grid() function, 321
interacting with daspect() function,

329–331
interacting with pbaspect() function,

332–333

obtaining current axis using gca()
function, 322

plot routines
about, 334
displaying angle distribution using
rose() function, 342–343

displaying velocity vectors using
compass() function, 340–342

displaying velocity vectors using
feather() function, 340

displaying velocity vectors using
quiver() function, 340

drawing images using fill() function,
337–339

finding data deviations using
errorbar() function, 334

finding sparcity patterns using spy()
function, 344

plotting digital data using stairs()
function, 335–336

polar() function, 342
ranking related measures using
pareto() function, 334–335

showing data distribution using stem()
function, 336–337

superscript, 242–243
support, requesting from

MathWorks, 58
suppressing Command window output, 44
surf() function, 382
surf1() function, 382
surfc() function, 382
surfnorm() function, 382
switch statement, 199–201
sym() function, 293
sym2poly() function, 293
Symbolic Math Toolbox

about, 279–280
getting, 280–282
GUI, 286–290
installing, 282–286
typing commands in Command window,

290–291
symfun() function, 293

www.it-ebooks.info

http://www.it-ebooks.info/

404 MATLAB For Dummies

• T •
\t (horizontal tab), 162
table2cell() function, 226–228
tan() function, 52, 368
tand() function, 368
tanh() function, 368
Technical Stuff icon, 3
Teknomo, Kardi (programmer), 83
TestCustomException() function, 272
testing harness, 268
testing matrices, 110–113
text, formatting with commands

about, 233–234
adding math symbols, 243–247
font, 234–241
special characters, 241–243

text matrix functions, 371–372
textread() function, 224
textscan() function, 216, 218–220,

221, 225
third-generation language, 13
throw() function, 260, 270
throwAsCaller() function, 261
times() function, 45, 367
@times function, 91
Tip icon, 3
title() function, 145–147
titles, adding to plots, 145–147
toolbox, MATLAB, 12
Toolstrip, 22, 23
trace() function, 373
training, 57–58
transpose() function, 372
transposing matrices with apostrophes,

87–88
TreatAsEmpty value, 221
tree structure, 77
trial version, 21
trigonometric functions, 368–369
trucks, 364
truth, determining, 50–52
try...catch structure, 259
Turing machines, 8
.txt file extension, 60
type command, 68
typing commands, 24–25, 290–291

• U •
uint8, 42
uint8() function, 99, 293
uint16, 42
uint16() function, 99, 293
uint32, 42
uint32() function, 99, 293
uint64, 42
uint64() function, 99, 293
uminus() function, 45, 367
underline

about, 234
using, 240–241

underscore (_), 242
undocking windows, 35–36
unexploded ordinance, 362
unimodular matrix, 308
Up One Level button (Current Folder

toolbar), 27, 63
updates, website for, 4
uplus() function, 45, 367
useful error messages, 272–273
useNewFigure, 251
user input, using commands for, 158–159
userpath command, 30
userpath() function, 38–39
UseTextscan() function, 228–229

• V •
\v (vertical tab), 162
values

creating
ranges of using colons, 86
ranges of using linspace() function,

86–87
entering inside square brackets, 84
separating with commas/semicolons, 85

var() function, 300, 373
variables

avoiding existing names, 50
case sensitivity of, 49
creating, 49
defined, 37
defining names for, 48–49
global, 187–188

www.it-ebooks.info

http://www.it-ebooks.info/

405 Index

local, 187
saving using commands, 77
saving with GUI, 76–77

vectors
about, 81–82
adding, 88–89
dividing

complex numbers, 97–99
exponents, 97–99
matrices by, 94
matrix, 94–95
scalar, 90
two, 93
working element-by-element, 97

dividing by scalars, 94
entering data, 83–88
linear algebra, 82–83
multiplying

complex numbers, 97–99
exponents, 99
matrix, 90–93
scalar, 90
two, 91
working element-by-element, 97

multiplying matrices by, 92
subtracting, 88–89

velocity vectors
displaying using compass()

function, 340–342
displaying using feather()

function, 340
displaying using quiver() function, 340

verbose, 264
vertical tab (v), 162
Video option (Command window), 26
view() function, 140–142
viewing Current Folder window, 28–33
visdiff command, 68
vpa() function, 293
vpasolve() function, 291–292

• W •
warning() function, 262–264
Warning! icon, 3

warning messages
creating, 262–264
defined, 258
setting modes, 264–265

Watch This Video tutorial, 26
waterfall() function, 382
web() function, 248
websites

accessing .fig files, 60
activation help, 21–22
blog, for this book, 16
bucky() function, 344
Cartesian coordinates, 340–341
cheat sheet, 3
color presentation, 255
colormap() function

documentation, 329
companies using MATLAB, 14
for companion files, 4
complex numbers, 97
composition of velocity vectors, 340
Cubic Equation Calculator, 295
Curve Fitting Toolbox, 297
data formats for importing, 75
dividing two vectors, 93
Dummies, 4, 31
Earth statistics, 40
education-related materials, 354
exponents, 99
file formats, 230
formats, 77
functions, 176
interpolation, 295
Khan Academy, 83
LaTeX, 240
least fit squares, 302
linear algebra resources, 83
LinkedIn, 361
math tutorials, 15
MATLAB, 176
MATLAB Answers, 267, 279
MATLAB installation help, 21
MATLAB Programming/Error

Messages, 267
MATLAB Tips, 268

www.it-ebooks.info

http://www.it-ebooks.info/

406 MATLAB For Dummies

Mersenne Twister, 301
minimum requirements for MATLAB, 20
MLFG (Multiplicative Lagged Fibonacci

Generator), 301
monospaces fonts, 238
Monster.com, 361
MRG (Multiple Recursive Generator), 301
polar coordinates, 342
prime factorization, 311
Reduced Row Echelon Form (RREF),

308–309
standard statistical functions, 300
Statistics Toolbox (website), 297
stem plot, 336
student version, 21
Teknomo, Kardi, 83
text properties, 242
trial version, 21
for updates, 4
updating files to .slx file format, 61

well-conditioned matrix, 308
what command, 69
what() function, 175
which command, 69
which() function, 174
while loop, 210
while statement, 206–207
windows

closing, 34–35
docking, 35–36
maximizing, 34
minimizing, 34

opening, 34–35
undocking, 35–36

Windows, platforms supported by
MATLAB, 20

winopen command, 69
Workspace window

about, 23, 24, 25
creating plots using, 119–120

workspaces, saving to disk, 33
WriteRowNames property, 228
writetable() function, 225, 228
WriteVariableNames property, 228
writing

your first function, 180–182
your first script, 156–158

• X •
xlabel() function, 125
\xN (hexadecimal number), 162

• Y •
ylabel() function, 125

• Z •
zeros() function, 100, 101, 111
zlabel() function, 144
zlim() function, 145
ZTickLabel property, 144

websites (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Jim Sizemore is a physics and engineering professor earning an MS in physics
from UC-San Diego and a PhD in Materials Science from Stanford University. He
was employed many years in the semiconductor industry working on several
projects, including diffusion and oxidation, radiation hardening, and optoelec-
tronics. After his private sector career, he turned to teaching, and is currently
a physics and engineering professor at Tyler Junior College in Tyler, Texas.
There, he started a popular science club where students were able to design
and build several projects, including a 2 meter trebuchet, just in case they
needed to attack any castles in the area. He currently teaches programming
for engineers, with MATLAB being the primary language taught. (Check out
his instructional web site at http://iteach.org/funphysicist/.) He
has enthusiasm for teaching and learning, but also enjoys photography and
bicycle riding in his spare time.

John Mueller is a freelance author and technical editor. He has writing in
his blood, having produced 96 books and more than 300 articles to date.
The topics range from networking to artificial intelligence and from data-
base management to heads-down programming. Some of his current books
include a book on Python for beginners, a Java e-learning kit, a book on
HTML5 development with JavaScript, and another on CSS3. His technical
editing skills have helped over more than 63 authors refine the content of
their manuscripts. John has provided technical editing services to both Data
Based Advisor and Coast Compute magazines. It was during his time with Data
Based Advisor that John was first exposed to MATLAB and he has continued
to follow the progress in MATLAB development ever since. Be sure to read
John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the
garden, cutting wood, or generally enjoying nature. John also likes making
wine, baking cookies, and knitting. When not occupied with anything else, he
makes glycerin soap and candles, which come in handy for gift baskets. You
can reach John on the Internet at John@JohnMuellerBooks.com. John is
also setting up a website at http://www.johnmuellerbooks.com/. Feel
free to take a look and make suggestions on how he can improve it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dedication
Jim Sizemore: I wish to dedicate this book to many mentors including Bob Abel,
Greg Sherman, and Gene Branum. Also my thoughts and dedication go to my
brother Bill who is afflicted with Parkinson’s disease and to my son Daniel as
the future belongs to his generation.

John Paul Mueller: This book is dedicated to Aaron and Sarah Oberman —
two devoted people who delight in doing kind deeds for others in need.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Authors’ Acknowledgments
Jim Sizemore: Thanks to Sara McCaslin who freely shared in order to start
our MATLAB programming course.

Thanks also go to Gene Branum, Doug Parsons, and other Tyler Junior
College colleagues who supported me in order to devote time to this project.

Finally, I wish to thank my coauthor John Mueller, whose writing skill and
experience were essential to taking my original vision and finely polishing it.

John Paul Mueller: Thanks to my wife, Rebecca. Even though she is gone
now, her spirit is in every book I write, in every word that appears on the
page. She believed in me when no one else would.

Russ Mullen deserves thanks for his technical edit of this book. He greatly
added to the accuracy and depth of the material you see here. Russ worked
exceptionally hard helping with the research for this book by locating hard to
find URLs and also offering a lot of suggestions.

Matt Wagner, my agent, deserves credit for helping me get the contract in
the first place and taking care of all the details that most authors don’t really
consider. I always appreciate his assistance. It’s good to know that someone
wants to help.

A number of people read all or part of this book to help me refine the approach,
test scripts, and generally provide input that all readers wish they could have.
These unpaid volunteers helped in ways too numerous to mention here. I
especially appreciate the efforts of Eva Beattie and Glenn A. Russell, who pro-
vided general input, read the entire book, and selflessly devoted themselves
to this project.

Finally, I would like to thank Paul Levesque, Susan Christophersen, and the
rest of the editorial and production staff.

www.it-ebooks.info

http://www.it-ebooks.info/

Publisher’s Acknowledgments

Acquisitions Editor: Connie Santisteban,
Andy Cummings

Senior Project Editor: Paul Levesque

Copy Editor: Susan Christopherson

Technical Editor: Russ Mullen

Editorial Assistant: Claire Johnson

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Patrick Redmond

Cover Image: ©iStock.com/elly99

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.it-ebooks.info

http://www.it-ebooks.info/

	Title Page

	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started With MATLAB
	Chapter 1: Introducing MATLAB and Its Many Uses
	Putting MATLAB in Its Place
	Understanding how MATLAB relates to a Turing machine
	Using MATLAB as more than a calculator
	Determining why you need MATLAB

	Discovering Who Uses MATLAB for Real-World Tasks
	Knowing How to Get the Most from MATLAB
	Getting the basic computer skills
	Defining the math requirements
	Applying what you know about other procedural languages
	Understanding how this book will help you

	Getting Over the Learning Curve

	Chapter 2: Starting Your Copy of MATLAB
	Installing MATLAB
	Discovering which platforms MATLAB supports
	Getting your copy of MATLAB
	Performing the installation
	Activating the product

	Meeting the MATLAB Interface
	Starting MATLAB for the first time
	Employing the Command window
	Using the Current Folder toolbar
	Viewing the Current Folder window
	Changing the MATLAB layout

	Chapter 3: Interacting with MATLAB

	Using MATLAB as a Calculator
	Entering information at the prompt
	Entering a formula
	Copying and pasting formulas
	Changing the Command window formatting
	Suppressing Command window output

	Understanding the MATLAB Math Syntax
	Adding, subtracting, multiplying, and dividing
	Working with exponents

	Organizing Your Storage Locker
	Using ans — the default storage locker
	Creating your own storage lockers

	Operating MATLAB as More Than a Calculator
	Learning the truth
	Using the built-in functions
	Accessing the function browser

	Recovering from Mistakes
	Understanding the MATLAB error messages
	Stopping MATLAB when it hangs

	Getting Help
	Exploring the documentation
	Working through the examples
	Relying on peer support
	Obtaining training
	Requesting support from MathWorks
	Contacting the authors

	Chapter 4: Starting, Storing, and Saving MATLAB Files

	Examining MATLAB’s File Structure
	Understanding the MATLAB files and what they do
	Exploring folders with the GUI
	Exploring folders with commands
	Working with files in MATLAB

	Accessing and Sharing MATLAB Files
	Opening
	Importing
	Exporting

	Saving Your Work
	Saving variables with the GUI
	Saving variables using commands
	Saving commands with the GUI
	Saving commands using commands

	Part II: Manipulating and Plotting Data in MATLAB
	Chapter 5: Embracing Vectors, Matrices, and Higher Dimensions

	Working with Vectors and Matrices
	Understanding MATLAB’s perspective of linear algebra
	Entering data

	Adding and Subtracting
	Understanding the Many Ways to Multiply and Divide
	Performing scalar multiplication and division
	Employing matrix multiplication
	Effecting matrix division
	Creating powers of matrices
	Working element by element
	Using complex numbers
	Working with exponents

	Working with Higher Dimensions
	Creating a multidimensional matrix
	Accessing a multidimensional matrix
	Replacing individual elements
	Replacing a range of elements
	Modifying the matrix size
	Using cell arrays and structures

	Using the Matrix Helps

	Chapter 6: Understanding Plotting Basics

	Considering Plots
	Understanding what you can do with plots
	Comparing MATLAB plots to spreadsheet graphs
	Creating a plot using commands
	Creating a plot using the Workspace window
	Creating a plot using the Plots tab options

	Using the Plot Function
	Working with line color, markers, and line style
	Creating multiple plots in a single command

	Modifying Any Plot
	Making simple changes
	Adding to a plot
	Deleting a plot
	Working with subplots

	Plotting with 2D Information

	Chapter 7: Using Advanced Plotting Features

	Plotting with 3D Information
	Using the bar() function to obtain a flat 3D plot
	Using bar3() to obtain a dimensional 3D plot
	Using barh() and more

	Enhancing Your Plots
	Getting an axes handle
	Modifying axes labels
	Adding a title
	Rotating label text
	Employing annotations
	Printing your plot

	Part III: Streamlining MATLAB
	Chapter 8: Automating Your Work

	Understanding What Scripts Do
	Creating less work for yourself
	Defining when to use a script

	Creating a Script
	Writing your first script
	Using commands for user input
	Copying and pasting into a script
	Converting the Command History into a script
	Continuing long strings
	Adding comments to your script

	Revising Scripts
	Calling Scripts
	Improving Script Performance
	Analyzing Scripts for Errors

	Chapter 9: Expanding MATLAB’s Power with Functions

	Working with Built-in Functions
	Learning about built-in functions
	Sending data in and getting data out

	Creating a Function
	Understanding script and function differences
	Understanding built-in function and custom function differences
	Writing your first function
	Using the new function
	Passing data in
	Passing data out
	Creating and using global variables
	Using subfunctions
	Nesting functions

	Using Other Types of Functions
	Inline functions
	Anonymous functions

	Chapter 10: Adding Structure to Your Scripts
	Making Decisions
	Using the if statement
	Using the switch statement
	Understanding the switch difference
	Deciding between if and switch

	Creating Recursive Functions
	Performing Tasks Repetitively
	Using the for statement
	Using the while statement
	Ending processing using break
	Ending processing using return
	Determining which loop to use

	Creating Menus

	Part IV: Employing Advanced MATLAB Techniques
	Chapter 11: Importing and Exporting Data

	Importing Data
	Performing import basics
	Importing mixed strings and numbers
	Defining the delimiter types
	Importing selected rows or columns

	Exporting Data
	Performing export basics
	Exporting scripts and functions

	Working with Images
	Exporting images
	Importing images

	Chapter 12: Printing and Publishing Your Work

	Using Commands to Format Text
	Modifying font appearance
	Using special characters
	Adding math symbols

	Publishing Your MATLAB Data
	Performing advanced script and function publishing tasks
	Saving your figures to disk

	Printing Your Work
	Configuring the output page
	Printing the data

	Chapter 13: Recovering from Mistakes
	Working with Error Messages
	Responding to error messages
	Understanding the MException class
	Creating error and warning messages
	Setting warning message modes

	Understanding Quick Alerts
	Relying on Common Fixes for MATLAB’s Error Messages
	Making Your Own Error Messages
	Developing the custom error message
	Creating useful error messages

	Using Good Coding Practices

	Part V: Specific MATLAB Applications
	Chapter 14: Solving Equations and Finding Roots

	Working with the Symbolic Math Toolbox
	Obtaining your copy of the Toolbox
	Installing the Symbolic Math Toolbox
	Working with the GUI
	Typing a simple command in the Command window

	Performing Algebraic Tasks
	Differentiating between numeric and symbolic algebra
	Solving quadratic equations
	Working with cubic and other nonlinear equations
	Understanding interpolation

	Working with Statistics
	Understanding descriptive statistics
	Understanding robust statistics
	Employing least squares fit

	Chapter 15: Performing Analysis

	Using Linear Algebra
	Working with determinants
	Performing reduction
	Using eigenvalues
	Understanding factorization

	Employing Calculus
	Working with differential calculus
	Using integral calculus
	Working with multivariate calculus

	Solving Differential Equations
	Using the numerical approach
	Using the symbolic approach

	Chapter 16: Creating Super Plots
	Understanding What Defines a Super Plot
	Using the Plot Extras
	Using grid()
	Obtaining the current axis using gca
	Creating axis dates using datetick()
	Creating plots with colorbar()
	Interacting with daspect
	Interacting with pbaspect

	Working with Plot Routines
	Finding data deviations using errorbar()
	Ranking related measures using pareto()
	Plotting digital data using stairs()
	Showing data distribution using stem()
	Drawing images using fill
	Displaying velocity vectors using quiver()
	Displaying velocity vectors using feather()
	Displaying velocity vectors using compass()
	Working with polar coordinates using polar()
	Displaying angle distribution using rose()
	Spotting sparcity patterns using spy()

	Employing Animation
	Working with movies
	Working with objects
	Performing data updates

	Part VI: The Part of Tens
	Chapter 17: Top Ten Uses of MATLAB

	Engineering New Solutions
	Getting an Education
	Working with Linear Algebra
	Performing Numerical Analysis
	Getting Involved in Science
	Engaging Mathematics
	Exploring Research
	Walking through a Simulation
	Employing Image Processing
	Embracing Programming Using Computer Science

	Chapter 18: Ten Ways to Make a Living Using MATLAB
	Index
	Working with Green Technology
	Looking for Unexploded Ordinance
	Creating Speech Recognition Software
	Getting Disease under Control
	Becoming a Computer Chip Designer
	Keeping the Trucks Rolling
	Creating the Next Generation of Products
	Designing Equipment Used in the Field
	Performing Family Planning
	Reducing Risks Using Simulation

	Appendix A: MATLAB Functions
	Appendix B: MATLAB’s Plotting Routines

	About the Authors
	Wiley End User License Agreement
	Uploaded by [StormRG]

